Journal articles on the topic 'Non Equilibrium Green's Function'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Non Equilibrium Green's Function.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Stefanucci, Gianluca, Andrea Marini, and Stefano Bellucci. "Non‐Equilibrium Green's Functions." physica status solidi (b) 256, no. 7 (July 2019): 1900335. http://dx.doi.org/10.1002/pssb.201900335.
Full textWinge, David O., Martin Franckié, Claudio Verdozzi, Andreas Wacker, and Mauro F. Pereira. "Simple electron-electron scattering in non-equilibrium Green's function simulations." Journal of Physics: Conference Series 696 (March 2016): 012013. http://dx.doi.org/10.1088/1742-6596/696/1/012013.
Full textTakeda, Hiroshi, and Nobuya Mori. "Mode-Coupling Effects in Non-Equilibrium Green's Function Device Simulation." Japanese Journal of Applied Physics 44, no. 4B (April 21, 2005): 2664–68. http://dx.doi.org/10.1143/jjap.44.2664.
Full textYAMAMOTO, Kouhei, Hiroyuki ISHII, Kenji HIROSE, and Nobuhiko KOBAYASHI. "Thermal Conduction Calculation of Nanowire by Non-equilibrium Green's Function." Hyomen Kagaku 32, no. 7 (2011): 410–15. http://dx.doi.org/10.1380/jsssj.32.410.
Full textKoshelkin, A. V. "Two-particle Green's functions in non-equilibrium matter." Physics Letters B 471, no. 2-3 (December 1999): 202–7. http://dx.doi.org/10.1016/s0370-2693(99)01373-8.
Full textKoshelkin, A. V. "Two-particle Green's functions in non-equilibrium matter." Czechoslovak Journal of Physics 50, S2 (February 2000): 120–25. http://dx.doi.org/10.1007/s10582-000-0036-7.
Full textCamsari, Kerem Y., Samiran Ganguly, Deepanjan Datta, and Supriyo Datta. "Non-Equilibrium Green's Function Based Circuit Models for Coherent Spin Devices." IEEE Transactions on Nanotechnology 18 (2019): 858–65. http://dx.doi.org/10.1109/tnano.2018.2889443.
Full textZhao, Renqiang, Yao Luo, Fan Jiang, Yuxin Dai, Zengying Ma, Junwen Zhong, Peng Wu, Tao Zhou, and Yucheng Huang. "Ultrahigh-stability SnOX (X = S, Se) nanotubes with a built-in electric field as a highly promising platform for sensing NH3, NO and NO2: a theoretical investigation." Journal of Materials Chemistry A 10, no. 14 (2022): 7948–59. http://dx.doi.org/10.1039/d2ta00463a.
Full textHe, Yu, Yu Wang, Gerhard Klimeck, and Tillmann Kubis. "Non-equilibrium Green's functions method: Non-trivial and disordered leads." Applied Physics Letters 105, no. 21 (November 24, 2014): 213502. http://dx.doi.org/10.1063/1.4902504.
Full textSubhan, Fazle, M. Umar Farooq, and Jisang Hong. "Bias-dependent transport properties of passivated tilted black phosphorene nanoribbons." Physical Chemistry Chemical Physics 20, no. 16 (2018): 11021–27. http://dx.doi.org/10.1039/c8cp00090e.
Full textŠpička, Václav, Bedřich Velický, and Anděla Kalvová. "Electron systems out of equilibrium: Nonequilibrium Green's function approach." International Journal of Modern Physics B 28, no. 23 (July 13, 2014): 1430013. http://dx.doi.org/10.1142/s0217979214300138.
Full textLiu, Chenhan, Qiang Fu, Zhongzhu Gu, and Ping Lu. "The reservoir area dependent thermal transport at the nanoscale interface." Physical Chemistry Chemical Physics 22, no. 38 (2020): 22016–22. http://dx.doi.org/10.1039/d0cp04001k.
Full textZhai, Ming-Xing, Xue-Feng Wang, P. Vasilopoulos, Yu-Shen Liu, Yao-Jun Dong, Liping Zhou, Yong-Jing Jiang, and Wen-Long You. "Giant magnetoresistance and spin Seebeck coefficient in zigzag α-graphyne nanoribbons." Nanoscale 6, no. 19 (2014): 11121–29. http://dx.doi.org/10.1039/c4nr02426e.
Full textLiu, Qing-Bo, Dan-Dan Wu, and Hua-Hua Fu. "Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons." Phys. Chem. Chem. Phys. 19, no. 39 (2017): 27132–39. http://dx.doi.org/10.1039/c7cp05621d.
Full textLipavský, Pavel. "Green's function approach to the non-equilibrium superconductivity near the critical line." Journal of Physics: Conference Series 696 (March 2016): 012015. http://dx.doi.org/10.1088/1742-6596/696/1/012015.
Full textZhou, Song, Jianfei Jiang, and Qiyu Cai. "Small-signal ac response: a self-consistent non-equilibrium Green's function approach." Journal of Physics D: Applied Physics 38, no. 2 (January 7, 2005): 255–59. http://dx.doi.org/10.1088/0022-3727/38/2/009.
Full textFranckié, M., L. Bosco, M. Beck, C. Bonzon, E. Mavrona, G. Scalari, A. Wacker, and J. Faist. "Two-well quantum cascade laser optimization by non-equilibrium Green's function modelling." Applied Physics Letters 112, no. 2 (January 8, 2018): 021104. http://dx.doi.org/10.1063/1.5004640.
Full textChu, H. Y., Z. Ye, F. C. Khanna, and H. Umezawa. "Dissipative Two-State System at Non-Equilibrium: Real Time Green's Function Approach." physica status solidi (b) 199, no. 1 (January 1997): 143–55. http://dx.doi.org/10.1002/1521-3951(199701)199:1<143::aid-pssb143>3.0.co;2-j.
Full textŠpička, V., A. Kalvová, and B. Velický. "Dynamics of mesoscopic systems: Non-equilibrium Green's functions approach." Physica E: Low-dimensional Systems and Nanostructures 42, no. 3 (January 2010): 525–38. http://dx.doi.org/10.1016/j.physe.2009.08.008.
Full textZou, Fei, Lin Zhu, Gaoying Gao, Menghao Wu, and Kailun Yao. "Temperature-controlled spin filter and spin valve based on Fe-doped monolayer MoS2." Physical Chemistry Chemical Physics 18, no. 8 (2016): 6053–58. http://dx.doi.org/10.1039/c5cp05001d.
Full textZhang, Tian, Yan Cheng, and Xiang-Rong Chen. "Ab initio calculations of quantum transport of Au–GaN–Au nanoscale junctions." RSC Adv. 4, no. 94 (2014): 51838–44. http://dx.doi.org/10.1039/c4ra09132a.
Full textSánchez-Ochoa, F., Jie Zhang, Yueyao Du, Zhiwei Huang, G. Canto, Michael Springborg, and Gregorio H. Cocoletzi. "Ultranarrow heterojunctions of armchair-graphene nanoribbons as resonant-tunnelling devices." Physical Chemistry Chemical Physics 21, no. 45 (2019): 24867–75. http://dx.doi.org/10.1039/c9cp04368c.
Full textXie, Fang, Zhi-Qiang Fan, Xiao-Jiao Zhang, Jian-Ping Liu, Hai-Yan Wang, and Meng-Qiu Long. "Tunable negative differential resistance in a single cruciform diamine molecule with zigzag graphene nanoribbon electrodes." RSC Advances 6, no. 88 (2016): 84978–84. http://dx.doi.org/10.1039/c6ra19001d.
Full textYang, Haiying, Yunqing Tang, and Ping Yang. "Factors influencing thermal transport across graphene/metal interfaces with van der Waals interactions." Nanoscale 11, no. 30 (2019): 14155–63. http://dx.doi.org/10.1039/c9nr03538a.
Full textZhang, Dan, Mengqiu Long, Xiaojiao Zhang, Jun Ouyang, Hui Xu, and KowkSum Chan. "Spin-resolved transport properties in zigzag α-graphyne nanoribbons with symmetric and asymmetric edge fluorinations." RSC Advances 6, no. 18 (2016): 15008–15. http://dx.doi.org/10.1039/c5ra26007h.
Full textSun, L., Z. H. Zhang, H. Wang, and M. Li. "Electronic and transport properties of zigzag phosphorene nanoribbons with nonmetallic atom terminations." RSC Advances 10, no. 3 (2020): 1400–1409. http://dx.doi.org/10.1039/c9ra06360a.
Full textSouza, A. M., I. Rungger, U. Schwingenschlögl, and S. Sanvito. "The image charge effect and vibron-assisted processes in Coulomb blockade transport: a first principles approach." Nanoscale 7, no. 45 (2015): 19231–40. http://dx.doi.org/10.1039/c5nr04245c.
Full textMu, Yi, Zhao-Yi Zeng, Yan Cheng, and Xiang-Rong Chen. "Electronic transport properties of silicon carbide molecular junctions: first-principles study." RSC Advances 6, no. 94 (2016): 91453–62. http://dx.doi.org/10.1039/c6ra11028b.
Full textZhang, Wenfei, Guang-Ping Zhang, Zong-Liang Li, Xiao-Xiao Fu, Chuan-Kui Wang, and Minglang Wang. "Design of multifunctional spin logic gates based on manganese porphyrin molecules connected to graphene electrodes." Physical Chemistry Chemical Physics 24, no. 3 (2022): 1849–59. http://dx.doi.org/10.1039/d1cp04861a.
Full textTawfik, Sherif Abdulkader, X. Y. Cui, S. P. Ringer, and C. Stampfl. "Endohedral metallofullerenes, M@C60 (M = Ca, Na, Sr): selective adsorption and sensing of open-shell NOx gases." Physical Chemistry Chemical Physics 18, no. 31 (2016): 21315–21. http://dx.doi.org/10.1039/c6cp02249a.
Full textQu, Hengze, Shiying Guo, Wenhan Zhou, Bo Cai, Shengli Zhang, Yaxin Huang, Zhi Li, Xianping Chen, and Haibo Zeng. "Electronic structure and transport properties of 2D RhTeCl: a NEGF-DFT study." Nanoscale 11, no. 43 (2019): 20461–66. http://dx.doi.org/10.1039/c9nr07684k.
Full textLi, Longhua, Jianli Mi, Yangchun Yong, Baodong Mao, and Weidong Shi. "First-principles study on the lattice plane and termination dependence of the electronic properties of the NiO/CH3NH3PbI3 interfaces." Journal of Materials Chemistry C 6, no. 30 (2018): 8226–33. http://dx.doi.org/10.1039/c8tc01974f.
Full textChu, Yuanchen, Jingjing Shi, Kai Miao, Yang Zhong, Prasad Sarangapani, Timothy S. Fisher, Gerhard Klimeck, Xiulin Ruan, and Tillmann Kubis. "Thermal boundary resistance predictions with non-equilibrium Green's function and molecular dynamics simulations." Applied Physics Letters 115, no. 23 (December 2, 2019): 231601. http://dx.doi.org/10.1063/1.5125037.
Full textMichael, Fredrick, and M. D. Johnson. "Replacing leads by self-energies using non-equilibrium Green's functions." Physica B: Condensed Matter 339, no. 1 (November 2003): 31–38. http://dx.doi.org/10.1016/s0921-4526(03)00447-2.
Full textPeng, G. W., L. Zhu, and K. L. Yao. "Negative differential resistance and spin filter effects in VS2 monolayers." RSC Advances 7, no. 54 (2017): 33733–36. http://dx.doi.org/10.1039/c7ra03908e.
Full textZou, Dongqing, Bin Cui, Xiangru Kong, Wenkai Zhao, Jingfen Zhao, and Desheng Liu. "Spin transport properties in lower n-acene–graphene nanojunctions." Physical Chemistry Chemical Physics 17, no. 17 (2015): 11292–300. http://dx.doi.org/10.1039/c5cp00544b.
Full textRojas, W. Y., Cesar E. P. Villegas, and A. R. Rocha. "Spin–orbit coupling prevents spin channel suppression of transition metal atoms on armchair graphene nanoribbons." Physical Chemistry Chemical Physics 20, no. 47 (2018): 29826–32. http://dx.doi.org/10.1039/c8cp05337e.
Full textLu, Juan, Zhi-Qiang Fan, Jian Gong, Jie-Zhi Chen, Huhe ManduLa, Yan-Yang Zhang, Shen-Yuan Yang, and Xiang-Wei Jiang. "Enhancement of tunneling current in phosphorene tunnel field effect transistors by surface defects." Physical Chemistry Chemical Physics 20, no. 8 (2018): 5699–707. http://dx.doi.org/10.1039/c7cp08678d.
Full textWang, Rui-Ning, Guo-Yi Dong, Shu-Fang Wang, Guang-Sheng Fu, and Jiang-Long Wang. "Thermoelectric properties of fullerene-based junctions: a first-principles study." Physical Chemistry Chemical Physics 18, no. 40 (2016): 28117–24. http://dx.doi.org/10.1039/c6cp04339a.
Full textShin, Mincheol. "Non-Equilibrium Green's Function Approach to Three-Dimensional Carbon Nanotube Field Effect Transistor Simulations." Journal of the Korean Physical Society 52, no. 9(4) (April 15, 2008): 1287–91. http://dx.doi.org/10.3938/jkps.52.1287.
Full textHaroon and M. A. H. Ahsan. "Electron Transport in T-Shaped Double Quantum Dot System Using Non-Equilibrium Green's Function." Advanced Science Letters 20, no. 7 (July 1, 2014): 1281–86. http://dx.doi.org/10.1166/asl.2014.5528.
Full textYamamoto, Takahiro, Kenji Sasaoka, and Satoshi Watanabe. "AC Power Consumption of Single-Walled Carbon Nanotube Interconnects: Non-Equilibrium Green's Function Simulation." Japanese Journal of Applied Physics 51, no. 4R (April 1, 2012): 045104. http://dx.doi.org/10.7567/jjap.51.045104.
Full textYamamoto, Takahiro, Kenji Sasaoka, and Satoshi Watanabe. "AC Power Consumption of Single-Walled Carbon Nanotube Interconnects: Non-Equilibrium Green's Function Simulation." Japanese Journal of Applied Physics 51 (March 30, 2012): 045104. http://dx.doi.org/10.1143/jjap.51.045104.
Full textFITRIAWAN, H., M. OGAWA, S. SOUMA, and T. MIYOSHI. "Fullband Simulation of Nano-Scale MOSFETs Based on a Non-equilibrium Green's Function Method." IEICE Transactions on Electronics E91-C, no. 1 (January 1, 2008): 105–9. http://dx.doi.org/10.1093/ietele/e91-c.1.105.
Full textSarvari, H., R. Ghayour, and E. Dastjerdy. "Frequency analysis of graphene nanoribbon FET by Non-Equilibrium Green's Function in mode space." Physica E: Low-dimensional Systems and Nanostructures 43, no. 8 (June 2011): 1509–13. http://dx.doi.org/10.1016/j.physe.2011.04.018.
Full textSun, Cuicui, Guiling Zhang, Yan Shang, Zhao-Di Yang, and Xiaojun Sun. "Electronic and transport properties of PSi@MoS2 nanocables." Physical Chemistry Chemical Physics 18, no. 6 (2016): 4333–44. http://dx.doi.org/10.1039/c5cp05694b.
Full textZou, Dongqing, Wenkai Zhao, Bin Cui, Dongmei Li, and Desheng Liu. "Adsorption of gas molecules on a manganese phthalocyanine molecular device and its possibility as a gas sensor." Physical Chemistry Chemical Physics 20, no. 3 (2018): 2048–56. http://dx.doi.org/10.1039/c7cp06760g.
Full textVogl, P., and T. Kubis. "The non-equilibrium Green’s function method: an introduction." Journal of Computational Electronics 9, no. 3-4 (September 28, 2010): 237–42. http://dx.doi.org/10.1007/s10825-010-0313-z.
Full textLiang, Xiu Yan, Guiling Zhang, Peng Sun, Yan Shang, Zhao-Di Yang, and Xiao Cheng Zeng. "The electronic and transport properties of (VBz)n@CNT and (VBz)n@BNNT nanocables." Journal of Materials Chemistry C 3, no. 16 (2015): 4039–49. http://dx.doi.org/10.1039/c5tc00332f.
Full textChoi, J. H., M. Pala, L. Latu-Romain, and Edwige Bano. "Theoretical Study of Thermoelectric Properties of SiC Nanowires." Materials Science Forum 717-720 (May 2012): 561–64. http://dx.doi.org/10.4028/www.scientific.net/msf.717-720.561.
Full text