Dissertations / Theses on the topic 'Non-equilibrium structures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 28 dissertations / theses for your research on the topic 'Non-equilibrium structures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Qian, Bin. "Laser sintered materials with Non-equilibrium structures." Doctoral thesis, Stockholms universitet, Institutionen för material- och miljökemi (MMK), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-101096.
Full textAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Accepted. Paper 3: Accepted. Paper 4: Submitted. Paper 5: Manuscript.
Zhang, Qingteng. "Properties of Ferroelectric Perovskite Structures under Non-equilibrium Conditions." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4422.
Full textDecoster, Thibault. "Stabilising alloys in non-equilibrium crystal structures by epitaxial growth." Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/3849/.
Full textHeimes, Andreas Franz [Verfasser], and G. [Akademischer Betreuer] Schön. "Non-equilibrium quasiparticles and topological excitations in hybrid superconducting structures / Andreas Franz Heimes. Betreuer: G. Schön." Karlsruhe : KIT-Bibliothek, 2014. http://d-nb.info/1064940102/34.
Full textNarayanan, Vindhya. "Non-equilibrium Thermomechanics of Multifunctional Energetic Structural Materials." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7570.
Full textLee, Youseung. "Traitement quantique original des interactions inélastiques pour la modélisation atomistique du transport dans les nano-structures tri-dimensionnelles." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0345.
Full textNon-equilibrium Green’s function (NEGF) formalism during recent decades has attracted numerous interests for studying quantum transport properties of nanostructures and nano-devices in which inelastic interactions like electron-phonon scattering have a significant impact. Incorporation of inelastic interactions in NEGF framework is usually performed within the self-consistent Born approximation (SCBA) which induces a numerically demanding iterative scheme. As an alternative technique, we propose an efficient method, the so-called Lowest Order Approximation (LOA) coupled with the Pade approximants. Its main advantage is to significantly reduce the computational time, and to describe the electron-phonon scattering physically. This approach should then considerably extend the accessibility of using atomistic quantum transport codes to study three-dimensional (3D) realistic systems without requiring numerous numerical resources
Kraikivski, Pavel. "Non-equilibrium dynamics of adsorbed polymers and filaments." Phd thesis, Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2005/597/.
Full textThe first part is dedicated to thermally activated dynamics of polymers on structured substrates in the presence or absence of a driving force. The structured substrate is represented by double-well or periodic potentials. We consider both homogeneous and point driving forces. Point-like driving forces can be realized in single molecule manipulation by atomic force microscopy tips. Uniform driving forces can be generated by hydrodynamic flow or by electric fields for charged polymers.
In the second part, we consider collective filament motion in motility assays for motor proteins, where filaments glide over a motor-coated substrate. The model for the simulation of the filament dynamics contains interactive deformable filaments that move under the influence of forces from molecular motors and thermal noise. Motor tails are attached to the substrate and modeled as flexible polymers (entropic springs), motor heads perform a directed walk with a given force-velocity relation. We study the collective filament dynamics and pattern formation as a function of the motor and filament density, the force-velocity characteristics, the detachment rate of motor proteins and the filament interaction. In particular, the formation and statistics of filament patterns such as nematic ordering due to motor activity or clusters due to blocking effects are investigated. Our results are experimentally accessible and possible experimental realizations are discussed.
In der vorliegenden Arbeit behandeln wir zwei Probleme aus dem Gebiet der Nichtgleichgewichtsdynamik von Polymeren oder biologischen Filamenten, die an zweidimensionale Substrate adsorbieren.
Der erste Teil befasst sich mit der thermisch aktivierten Dynamik von Polymeren auf strukturierten Substraten in An- oder Abwesenheit einer treibenden Kraft. Das strukturierte Substrat wird durch Doppelmulden- oder periodische Potentiale dargestellt. Wir betrachten sowohl homogene treibende Kräfte als auch Punktkräfte. Punktkräfte können bei der Manipulation einzelner Moleküle mit die Spitze eines Rasterkraftmikroskops realisiert werden. Homogene Kräfte können durch einen hydrodynamischen Fluss oder ein elektrisches Feld im Falle geladener Polymere erzeugt werden.
Im zweiten Teil betrachten wir die kollektive Bewegung von Filamenten in Motility-Assays, in denen Filamente über ein mit molekularen Motoren überzogenes Substrat gleiten. Das Modell zur Simulation der Filamentdynamik beinhaltet wechselwirkende, deformierbare Filamente, die sich unter dem Einfluss von Kräften, die durch molekulare Motoren erzeugt werden, sowie thermischem Rauschen bewegen. Die Schaftdomänen der Motoren sind am Substrat angeheftet und werden als flexible Polymere (entropische Federn) modelliert. Die Kopfregionen der Motoren vollführen eine gerichtete Schrittbewegung mit einer gegebenen Kraft-Geschwindigkeitsbeziehung. Wir untersuchen die kollektive Filamentdynamik und die Ausbildung von Mustern als Funktion der Motor- und der Filamentdichte, der Kraft-Geschwindigkeitscharakteristik, der Ablöserate der Motorproteine und der Filamentwechselwirkung. Insbesondere wird die Bildung und die Statistik der Filamentmuster, wie etwa die nematische Anordnung aufgrund der Motoraktivität oder die Clusterbildung aufgrund von Blockadeeffekten, untersucht. Unsere Ergebnisse sind experimentell zugänglich und mögliche experimentelle Realisierungen werden diskutiert.
Mor, Selene [Verfasser]. "Fundamental interactions governing the (non-)equilibrium electronic structure in low dimensions / Selene Mor." Berlin : Freie Universität Berlin, 2019. http://d-nb.info/1187243787/34.
Full textHeptner, Nils. "Dynamics and non-equilibrium structure of colloidal dumbbell-shaped particles in dense suspensions." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17518.
Full textBesides being important for industrial applications, colloidal suspensions have long served as model systems for investigating the structure and dynamics of condensed matter. Recently, it has been demonstrated experimentally that apparently a small particle anisotropy is sufficient to dramatically change the viscoelastic response under external shearing fields, of which the microscopic mechanisms are not yet sufficiently understood. In the present work, NEBD simulations of colloidal hard dumbbells in oscillatory shear fields are developed and employed to elucidate the novel findings in close connection with comprehensive rheology and SANS experiments. Furthermore, by utilising BD simulations and linear response theory, the impact of anisotropy on structure and dynamics of such suspensions in equilibrium is analysed. In the linear response limit, the shear viscosity exhibits a dramatic increase at high packing fractions beyond a critical anisotropy of the particles. This indicates that newly occurring, collective rotational-translational couplings must be made responsible for slow time scales appearing in the PC. Moreover, a non-equilibrium transition emerging at moderate aspect ratios is revealed by NEBD of plastic crystalline suspensions under oscillatory shear. This transition behaviour is systematically studied. It is demonstrated that the continuous nature of the transition is retained for very low aspect ratios only. Above a certain aspect ratio, the transition is mediated by an intermediate disordered state. Furthermore, a partially oriented sliding layer state featuring a finite collective order in the particles'' orientations is observed at high strains. Hence, this thesis demonstrates that the NEBD simulations explain novel phenomena in rheology and scattering experiments. In the light of these experiments, it is shown that the orientational degree of freedom has a vigorous impact on the structural transition under increasing oscillatory shear.
Dziekan, Piotr. "Dynamics of far-from-equilibrium chemical systems : microscopic and mesoscopic approaches." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066402/document.
Full textMany nonlinear systems under non-equilibrium conditions are highly sensitive to internal fluctuations. In this dissertation, stochastic effects in some generic reaction-diffusion models are studied using two approaches of different precision. In the mesoscopic approach, evolution of the system is governed by the master equation, which can be solved numerically or used to set up kinetic Monte Carlo simulations. On the microscopic level, particle computer simulations are used. These two stochastic approaches are compared with deterministic, macroscopic reaction-diffusion equations.In the Introduction, key information about the different approaches is presented, together with basics of nonlinear systems and a presentation of numerical algorithms used.The first part of the Results chapter is devoted to studies on reaction-induced perturbation of particle velocity distributions in models of bistability and wave front propagation. A master equation including this perturbation is presented and compared with microscopic simulations.The second part of the Results deals with pattern formation in reaction-diffusion systems in the context of developmental biology. A method for simulating Turing patternsat the microscopic level using the direct simulation Monte Carlo algorithm is developed. Then, experiments consisting of perturbing segmentation of vertebrate embryo’s bodyaxis are explained using the Turing mechanism. Finally, a different possible mechanism of body axis segmentation, the “clock and wavefront” model, is formulated as a reaction-diffusion model
Odell, Anders. "Quantum transport in photoswitching molecules : An investigation based on ab initio calculations and Non Equilibrium Green Function theory." Licentiate thesis, KTH, Materials Science and Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4790.
Full textMolecular electronics is envisioned as a possible next step in device miniaturization. It is usually taken to mean the design and manufacturing of electronic devices and applications where organic molecules work as the fundamental functioning unit. It involves the easurement and manipulation of electronic response and transport in molecules attached to conducting leads. Organic molecules have the advantages over conventional solid state electronics of inherent small sizes, endless chemical diversity and ambient temperature low cost manufacturing.
In this thesis we investigate the switching and conducting properties of photochromic dithienylethene derivatives. Such molecules change their conformation in solution when acted upon by light. Photochromic molecules are attractive candidates for use in molecular electronics because of the switching between different states with different conducting properties. The possibility of optically controlling the conductance of the molecule attached to leads may lead to new device implementations.
The switching reaction is investigated with potential energy calculations for different values of the reaction coordinate between the closed and the open isomer. The electronic and atomic structure calculations are performed with density functional theory (DFT). It is concluded that there is a large potential energy barrier separating the open and closed isomer and that switching between open and closed forms must involve excited states.
The conducting properties of the molecule inserted between gold leads is calculated within the Non Equilibrium Green Function theory. The transmission function is calculated for the two isomers with different basis sizes for the gold contacts, as well as the electrostatic potential, for finite applied bias voltages. We conclude that a Au 6s basis give qualitatively the same result as a Au spd basis close to the Fermi level. The transmission coefficient at the Fermi energy is around 10 times larger in the closed molecule compared to the open. This will result in a large difference in conductivity. It is also found that the large difference in conductivity will remain for small applied bias voltages. The results are consistent with earlier work.
Qin, Yanping. "Simulating Thermodynamics and Kinetics of Living Polymerization." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16200.
Full textHeptner, Nils [Verfasser], Joachim [Gutachter] Dzubiella, Benjamin [Gutachter] Lindner, and Holger [Gutachter] Stark. "Dynamics and non-equilibrium structure of colloidal dumbbell-shaped particles in dense suspensions / Nils Heptner. Gutachter: Joachim Dzubiella ; Benjamin Lindner ; Holger Stark." Berlin : Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://d-nb.info/1102992933/34.
Full textNemoto, Takahiro. "Phenomenological structure for large deviation principle in time-series statistics." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199092.
Full textStoreck, Gero [Verfasser], Claus [Akademischer Betreuer] Ropers, Claus [Gutachter] Ropers, and Stefan [Gutachter] Mathias. "Non-equilibrium structural Dynamics of incommensurate Charge-Density Waves : Diffractive Probing with a micron-scale ultrafast Electron Gun / Gero Storeck ; Gutachter: Claus Ropers, Stefan Mathias ; Betreuer: Claus Ropers." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/1213096286/34.
Full textDavid, Gabriel. "Structure et dynamique du cytoplasme auto-organisé : exemple par la ségrégation du génome bactérien." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS098.
Full textCellular organisms appear organized. Bacteria use membraneless compartments to confine chemical reactions in space and time. There is a general paradigm of intracellular space self-organization that distinguishes between self-assembly, molecular structures assembled by passive phase transition mechanisms, and dissipative structures, generated for example by reaction-diffusion processes. If self-assemblies correspond to the evolution towards thermodynamic equilibrium, dissipative structures are manifestations of an out-of-equilibrium energy cost. We illustrate this paradigm by studying the segregation of bacterial genome, in this case the F-plasmid segregation of Escherichia coli, based on the ParABS partition system. Segregation is a crucial step in the bacterial cell cycle since it ensures the transmission of genetic information in daughter bacteria before division.The ParABS system consists of a parS centromeric sequence; a ParB protein which is able to bind to DNA, specifically on the parS sequence and not specifically elsewhere; and a ParA ATPase protein than can bind to DNA. Interactions between ParB proteins on DNA and specific adsorption on the parS sequence lead to the formation of a three-dimensional focus called the ParBS complex located around the parS sequence. Interactions between ParA and ParB proteins lead to the positioning of this complex at the center of the cell cytoplasm. After replication, two ParBS complexes exist and are segregated by the action of ParA proteins at positions 1/4 and 3/4 of the intracellular space.We first seek to explain the formation of ParBS complexes by a passive phase separation mechanism between high- and low-density states of ParB proteins in space. We construct two statistical physics models using tools borrowed from the physics of phase transitions. Our second approach rigorously defines all the elements of the biological system consisting of the interacting DNA-polymer and ParB proteins and allows us to formulate a first-order phase transition existence criterion that is verified by the DNA. We can draw the phase diagrams of this transition. These two models allow us to argue that the physiological thermodynamic regime of this biological system is a regime of metastable coexistence in ParB proteins on DNA. The parS sequence plays the role of a defect or nucleation seed. We use a third approach to explain the relationship between the three-dimensional and DNA distributions of ParB proteins around the parS sequence.We try to explain the fluorescence recovery curves from photobleaching experiments on ParBS complexes. We construct an in silico photobleaching method, i.e. we reproduce these recovery curves from a phenomenological equation solved numerically. We then develop a system of equations that describe the evolution of proteins on DNA from the previous statistical physical approach to produce an in silico photobleaching taking into account that ParBS complexes are the result of phase separation. We show that a pure passive system does not allow photobleaching experiments because of the Ostwald maturation undergone by the complexes. We correct this approach by including ParA proteins and their biochemical cycle in our simulations. We show that the interactions between ParA and ParB proteins and the hydrolysis of ATP allows the survival of several ParBS complexes thanks to an inversion mechanism of Ostwald's ripening. This fundamental approach explains the positioning of ParBS complexes during segregation
Yu, Wumin. "Interfacial Structure of Bilayer Compensation Films Prepared by Direct Coating Process." University of Akron / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=akron1353304726.
Full textWhite, Thomas G. "Study of high energy density matter through quantum molecular dynamics and time resolved X-ray scattering." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:ec7d9bd3-5b94-4466-9276-6f5d6edfc710.
Full textClaveau, Yann. "Modeling of ballistic electron emission microscopy." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S074/document.
Full textAfter the discovery of Giant Magneto-Resistance (GMR) by Albert Fert and Peter Grünberg, electronics had a breakthrough with the birth of a new branch called spintronics. This discipline, while still young, exploit the spin of electrons, for instance to store digital information. Most quantum devices exploiting this property of electrons consist of alternating magnetic and nonmagnetic thin layers on a semiconductor substrate. One of the best tools used for characterizing these structures, invented in 1988 by Kaiser and Bell, is the so-called Ballistic Electron Emission Microscope (BEEM). Originally, this microscope, derived from the scanning tunneling microscope (STM), was dedicated to the imaging of buried (nanometer-scale) objects and to the study of the potential barrier (Schottky barrier) formed at the interface of a metal and a semiconductor when placed in contact. With the development of spintronics, the BEEM became an essential spectroscopy technique but still fundamentally misunderstood. It was in 1996 that the first realistic model, based on the non-equilibrium Keldysh formalism, was proposed to describe the transport of electrons during BEEM experiments. In particular, this model allowed to explain some experimental results previously misunderstood. However, despite its success, its use was limited to the study of semi-infinite structures through a calculation method called decimation of Green functions. In this context, we have extended this model to the case of thin films and hetero-structures like spin valves: starting from the same postulate that electrons follow the band structure of materials in which they propagate, we have established an iterative formula allowing calculation of the Green functions of the finite system by tight-binding method. This calculation of Green’s functions has been encoded in a FORTRAN 90 program, BEEM v3, in order to calculate the BEEM current and the surface density of states. In parallel, we have developed a simpler method which allows to avoid passing through the non-equilibrium Keldysh formalism. Despite its simplicity, we have shown that this intuitive approach gives some physical interpretation qualitatively similar to the non-equilibrium approach. However, for a more detailed study, the use of “non-equilibrium approach” is inevitable, especially for the detection of thickness effects linked to layer interfaces. We hope these both tools should be useful to experimentalists, especially for the Surfaces and Interfaces team of our department
Pathak, Harshad. "Nucleation and Droplet Growth During Co-condensation of Nonane and D2O in a Supersonic Nozzle." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1383312754.
Full textNavarro, Rafael. "Étude et réalisation d'une structure combinant un métamatériau à perméabilité ajustable plongé dans un plasma froid à permittivité contrôlable." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30032.
Full textMetamaterials are materials with exotic characteristics that do not exist in nature. They can be made by a periodic metal structure whose elementary cell is quite small compared to the wavelength at the frequencies of interest. From an electromagnetic point of view, these materials can in particular have a negative permeability at certain frequencies. On the other hand, a low pressure plasma can be modeled as a material with negative permittivity if its electron density exceeds the critical density at a specific frequency. This thesis studies the integration of a negative permeability metamaterial, the Split Ring Resonator (SRR), into a low pressure argon plasma (between 5 and 100 mTorr). The objectives are, on the one hand, to produce a reconfigurable metamaterial based on plasma as a controllable element and, on the other hand, to produce a doubly negative material, also known as a left-hand material, presenting both a permittivity and a negative permeability. The approach was experimentally conducted using a metal cavity where a 13.56 MHz Inductively Coupled Source (ICP) was placed over the cavity (isolated by quartz glass) for ignition and the maintenance of the plasma. Inside this cavity two horn antennas have been fixed for the microwave characterization. A dedicated characterization method, specific to this complex environment, has been developed to electromagnetically characterize the created structure. A Langmuir probe was used to measure the electron density of the generated plasma. Electromagnetic simulations are made using the ANSYS Electronics Desktop(r) tool to help understand the effects of plasma on the SRR metamaterial and its resonance
"Using Granular Model Systems to Study Structures and Collective Motions of Non-Equilibrium Condensed Matter." 2016. http://repository.lib.cuhk.edu.hk/en/item/cuhk-1292675.
Full textAdamovski, Serguei [Verfasser]. "A calorimetric study of non-equilibrium structures on fast cooling (100 000 K/s) / submitted by Serguei Adamovski." 2010. http://d-nb.info/1011895897/34.
Full textStoreck, Gero. "Non-equilibrium structural Dynamics of incommensurate Charge-Density Waves." Doctoral thesis, 2020. http://hdl.handle.net/21.11130/00-1735-0000-0005-13F4-2.
Full textReynolds, Robert Graham. "Islands, Metapopulations, and Archipelagos: Genetic Equilibrium and Non-equilibrium Dynamics of Structured Populations in the Context of Conservation." 2011. http://trace.tennessee.edu/utk_graddiss/1016.
Full textLutz, Christoph [Verfasser]. "Structure and dynamics of equilibrium and non-equilibrium systems : colloidal suspensions in confining light fields / vorgelegt von Christoph Lutz." 2006. http://d-nb.info/978330935/34.
Full textWang, Ju. "Formation, structure and properties of ultrahigh-strength Co-Ta-B bulk metallic glasses." 2020. https://tud.qucosa.de/id/qucosa%3A74251.
Full text(10893069), Anton C. Yang. "Structural Estimation of Non-Homothetic Demand Systems for Quantitative Trade Models." Thesis, 2021.
Find full text