Academic literature on the topic 'Non-Euclidean elasticity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non-Euclidean elasticity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Non-Euclidean elasticity"
Kupferman, Raz, and Cy Maor. "A Riemannian approach to the membrane limit in non-Euclidean elasticity." Communications in Contemporary Mathematics 16, no. 05 (August 29, 2014): 1350052. http://dx.doi.org/10.1142/s0219199713500521.
Full textKupferman, Raz, and Yossi Shamai. "Incompatible elasticity and the immersion of non-flat Riemannian manifolds in Euclidean space." Israel Journal of Mathematics 190, no. 1 (October 24, 2011): 135–56. http://dx.doi.org/10.1007/s11856-011-0187-1.
Full textMinozzi, Manuela, Paola Nardinocchi, Luciano Teresi, and Valerio Varano. "Growth-induced compatible strains." Mathematics and Mechanics of Solids 22, no. 1 (August 6, 2016): 62–71. http://dx.doi.org/10.1177/1081286515570510.
Full textSharma, P., and S. Ganti. "Gauge-field-theory solution of the elastic state of a screw dislocation in a dispersive (non-local) crystalline solid." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, no. 2056 (April 8, 2005): 1081–95. http://dx.doi.org/10.1098/rspa.2004.1403.
Full textLewicka, Marta, L. Mahadevan, and Mohammad Reza Pakzad. "The Föppl-von Kármán equations for plates with incompatible strains." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467, no. 2126 (July 21, 2010): 402–26. http://dx.doi.org/10.1098/rspa.2010.0138.
Full textKosmas, Odysseas, Pieter Boom, and Andrey P. Jivkov. "On the Geometric Description of Nonlinear Elasticity via an Energy Approach Using Barycentric Coordinates." Mathematics 9, no. 14 (July 19, 2021): 1689. http://dx.doi.org/10.3390/math9141689.
Full textYajima, Takahiro, and Hiroyuki Nagahama. "Finsler geometry of seismic ray path in anisotropic media." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, no. 2106 (March 11, 2009): 1763–77. http://dx.doi.org/10.1098/rspa.2008.0453.
Full textYavari, Arash, and Alain Goriely. "Weyl geometry and the nonlinear mechanics of distributed point defects." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, no. 2148 (September 5, 2012): 3902–22. http://dx.doi.org/10.1098/rspa.2012.0342.
Full textChang, SooAh, Scott Chapman, and William Smith. "Elasticity in certain block monoids via the Euclidean table." Mathematica Slovaca 57, no. 5 (January 1, 2007). http://dx.doi.org/10.2478/s12175-007-0037-0.
Full textDissertations / Theses on the topic "Non-Euclidean elasticity"
Gemmer, John Alan. "Shape Selection in the Non-Euclidean Model of Elasticity." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/223311.
Full textBook chapters on the topic "Non-Euclidean elasticity"
Lewicka, Marta. "Metric-induced Morphogenesis and Non-Euclidean Elasticity: Scaling Laws and Thin Film Models." In Parabolic Problems, 433–45. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_22.
Full text