Journal articles on the topic 'Non-Globally Hyperbolic Spacetimes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 21 journal articles for your research on the topic 'Non-Globally Hyperbolic Spacetimes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
KAY, BERNARD S. "THE PRINCIPLE OF LOCALITY AND QUANTUM FIELD THEORY ON (NON GLOBALLY HYPERBOLIC) CURVED SPACETIMES." Reviews in Mathematical Physics 04, spec01 (December 1992): 167–95. http://dx.doi.org/10.1142/s0129055x92000194.
Full textSeggev, Itai. "Dynamics in stationary, non-globally hyperbolic spacetimes." Classical and Quantum Gravity 21, no. 11 (April 29, 2004): 2651–68. http://dx.doi.org/10.1088/0264-9381/21/11/010.
Full textIshibashi, Akihiro, and Robert M. Wald. "Dynamics in non-globally-hyperbolic static spacetimes: III. Anti-de Sitter spacetime." Classical and Quantum Gravity 21, no. 12 (May 19, 2004): 2981–3013. http://dx.doi.org/10.1088/0264-9381/21/12/012.
Full textFewster, C. J., and A. Higuchi. "Quantum field theory on certain non-globally hyperbolic spacetimes." Classical and Quantum Gravity 13, no. 1 (January 1, 1996): 51–61. http://dx.doi.org/10.1088/0264-9381/13/1/006.
Full textBULLOCK, DAVID M. A. "KLEIN–GORDON SOLUTIONS ON NON-GLOBALLY HYPERBOLIC STANDARD STATIC SPACETIMES." Reviews in Mathematical Physics 24, no. 10 (November 2012): 1250028. http://dx.doi.org/10.1142/s0129055x12500286.
Full textDuggal, K. L. "Space time manifolds and contact structures." International Journal of Mathematics and Mathematical Sciences 13, no. 3 (1990): 545–53. http://dx.doi.org/10.1155/s0161171290000783.
Full textYurtsever, Ulvi. "Algebraic approach to quantum field theory on non-globally-hyperbolic spacetimes." Classical and Quantum Gravity 11, no. 4 (April 1, 1994): 999–1012. http://dx.doi.org/10.1088/0264-9381/11/4/016.
Full textRovenski, Vladimir. "Einstein-Hilbert type action on spacetimes." Publications de l'Institut Math?matique (Belgrade) 103, no. 117 (2018): 199–210. http://dx.doi.org/10.2298/pim1817199r.
Full textGarfinkle, David, and Steven G. Harris. "Ricci fall-off in static and stationary, globally hyperbolic, non-singular spacetimes." Classical and Quantum Gravity 14, no. 1 (January 1, 1997): 139–51. http://dx.doi.org/10.1088/0264-9381/14/1/015.
Full textDappiaggi, Claudio, Giuseppe Ruzzi, and Ezio Vasselli. "Aharonov–Bohm superselection sectors." Letters in Mathematical Physics 110, no. 12 (October 17, 2020): 3243–78. http://dx.doi.org/10.1007/s11005-020-01335-4.
Full textMORETTI, VALTER. "ASPECTS OF NONCOMMUTATIVE LORENTZIAN GEOMETRY FOR GLOBALLY HYPERBOLIC SPACETIMES." Reviews in Mathematical Physics 15, no. 10 (December 2003): 1171–217. http://dx.doi.org/10.1142/s0129055x03001886.
Full textde Lorenci, V. A., and E. S. Moreira. "Lessons from the Casimir Effect on a Spinning Circle." International Journal of Modern Physics A 18, no. 12 (May 10, 2003): 2073–76. http://dx.doi.org/10.1142/s0217751x03015507.
Full textGUIDO, D., R. LONGO, J. E. ROBERTS, and R. VERCH. "CHARGED SECTORS, SPIN AND STATISTICS IN QUANTUM FIELD THEORY ON CURVED SPACETIMES." Reviews in Mathematical Physics 13, no. 02 (February 2001): 125–98. http://dx.doi.org/10.1142/s0129055x01000557.
Full textIshibashi, Akihiro, and Robert M. Wald. "Dynamics in non-globally-hyperbolic static spacetimes: II. General analysis of prescriptions for dynamics." Classical and Quantum Gravity 20, no. 16 (July 31, 2003): 3815–26. http://dx.doi.org/10.1088/0264-9381/20/16/318.
Full textStoica, Ovidiu-Cristinel. "Spacetimes with singularities." Analele Universitatii "Ovidius" Constanta - Seria Matematica 20, no. 2 (June 1, 2012): 213–38. http://dx.doi.org/10.2478/v10309-012-0050-3.
Full textWrochna, Michał, and Jochen Zahn. "Classical phase space and Hadamard states in the BRST formalism for gauge field theories on curved spacetime." Reviews in Mathematical Physics 29, no. 04 (May 2017): 1750014. http://dx.doi.org/10.1142/s0129055x17500143.
Full textMondal, Puskar. "On the non-blow up of energy critical nonlinear massless scalar fields in ‘3+1’ dimensional globally hyperbolic spacetimes: light cone estimates." Annals of Mathematical Sciences and Applications 6, no. 2 (2021): 227–308. http://dx.doi.org/10.4310/amsa.2021.v6.n2.a5.
Full textChoudhury, Binayak S., and Himadri S. Mondal. "Continuous representation of a globally hyperbolic spacetime with non-compact Cauchy surfaces." Analysis and Mathematical Physics 5, no. 2 (October 24, 2014): 183–91. http://dx.doi.org/10.1007/s13324-014-0093-x.
Full textHOLLANDS, STEFAN. "RENORMALIZED QUANTUM YANG–MILLS FIELDS IN CURVED SPACETIME." Reviews in Mathematical Physics 20, no. 09 (October 2008): 1033–172. http://dx.doi.org/10.1142/s0129055x08003420.
Full textBarbado, Luis C., Ana L. Báez-Camargo, and Ivette Fuentes. "Evolution of confined quantum scalar fields in curved spacetime. Part I." European Physical Journal C 80, no. 8 (August 2020). http://dx.doi.org/10.1140/epjc/s10052-020-8369-9.
Full textBartolo, R., A. M. Candela, and E. Caponio. "Normal Geodesics Connecting two Non-necessarily Spacelike Submanifolds in a Stationary Spacetime." Advanced Nonlinear Studies 10, no. 4 (January 1, 2010). http://dx.doi.org/10.1515/ans-2010-0407.
Full text