Journal articles on the topic 'Non-Inverting Buck-Boost Converter'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 47 journal articles for your research on the topic 'Non-Inverting Buck-Boost Converter.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Jabbari, Masoud, Saead Sharifi, and Ghazanfar Shahgholian. "Resonant CLL Non-Inverting Buck-Boost Converter." Journal of Power Electronics 13, no. 1 (January 20, 2013): 1–8. http://dx.doi.org/10.6113/jpe.2013.13.1.1.
Full textVenkatesh, Naik, and Paulson Samuel. "A high efficiency non-inverting multi device buck-boost DC-DC converter with reduced ripple current and wide bandwidth for fuel cell low voltage applications." Serbian Journal of Electrical Engineering 15, no. 2 (2018): 165–86. http://dx.doi.org/10.2298/sjee171104002v.
Full textFarah, Fouad, Mustapha El Alaoui, Abdelali El Boutahiri, Mounir Ouremchi, Karim El Khadiri, Ahmed Tahiri, and Hassan Qjidaa. "High Efficiency Buck-Boost Converter with Three Modes Selection for HV Applications using 0.18 μm Technology." ECTI Transactions on Electrical Engineering, Electronics, and Communications 18, no. 2 (August 31, 2020): 137–44. http://dx.doi.org/10.37936/ecti-eec.2020182.222580.
Full textChae, Jun-Young, Seung-Yong Jeong, Hon-Nyong Cha, and Heung-Geun Kim. "2-Phase Bidirectional Non-Inverting Buck-Boost Converter using Coupled Inductor." Transactions of the Korean Institute of Power Electronics 19, no. 6 (December 20, 2014): 481–87. http://dx.doi.org/10.6113/tkpe.2014.19.6.481.
Full textHajizadeh, Amin, Amir H. Shahirinia, Navid Namjoo, and David C. Yu. "Self‐tuning indirect adaptive control of non‐inverting buck–boost converter." IET Power Electronics 8, no. 11 (November 2015): 2299–306. http://dx.doi.org/10.1049/iet-pel.2014.0492.
Full textCheng, Xu-Feng, Yong Zhang, and Chengliang Yin. "A Zero Voltage Switching Topology for Non-Inverting Buck–Boost Converter." IEEE Transactions on Circuits and Systems II: Express Briefs 66, no. 9 (September 2019): 1557–61. http://dx.doi.org/10.1109/tcsii.2018.2887105.
Full textGonzález-Castaño, Catalina, Carlos Restrepo, Fredy Sanz, Andrii Chub, and Roberto Giral. "DC Voltage Sensorless Predictive Control of a High-Efficiency PFC Single-Phase Rectifier Based on the Versatile Buck-Boost Converter." Sensors 21, no. 15 (July 28, 2021): 5107. http://dx.doi.org/10.3390/s21155107.
Full textLale, Srdjan, Milomir Soja, Slobodan Lubura, Dragan Mancic, and Milan Radmanovic. "A non-inverting buck-boost converter with an adaptive dual current mode control." Facta universitatis - series: Electronics and Energetics 30, no. 1 (2017): 67–80. http://dx.doi.org/10.2298/fuee1701067l.
Full textRodriguez-Lorente, Alba, Andres Barrado, Carlos Calderon, Cristina Fernandez, and Antonio Lazaro. "Non-inverting and Non-isolated Magnetically Coupled Buck–Boost Bidirectional DC–DC Converter." IEEE Transactions on Power Electronics 35, no. 11 (November 2020): 11942–54. http://dx.doi.org/10.1109/tpel.2020.2984202.
Full textKarimi, Mohsen, Mohammad Pichan, Adib Abrishamifar, and Mehdi Fazeli. "An improved integrated control modeling of a high-power density interleaved non-inverting buck-boost DC-DC converter." World Journal of Engineering 15, no. 6 (December 3, 2018): 688–99. http://dx.doi.org/10.1108/wje-11-2017-0360.
Full textZhang, Feng Ge, Zhi Fei Teng, Xiao Ju Yin, and Shi Lu Zhu. "Application of Non-Inverting Buck-Boost DC-DC Converter in Photovoltaic Power Systems." Advanced Materials Research 588-589 (November 2012): 818–21. http://dx.doi.org/10.4028/www.scientific.net/amr.588-589.818.
Full textLiao, H. K., T. J. Liang, L. S. Yang, and J. F. Chen. "Non-inverting buck–boost converter with interleaved technique for fuel-cell system." IET Power Electronics 5, no. 8 (2012): 1379. http://dx.doi.org/10.1049/iet-pel.2011.0102.
Full textChen, Zengshi, Jiangang Hu, and Wenzhong Gao. "Closed-loop analysis and control of a non-inverting buck–boost converter." International Journal of Control 83, no. 11 (November 2010): 2294–307. http://dx.doi.org/10.1080/00207179.2010.520030.
Full textZhang, Yong, Xu-Feng Cheng, and Chengliang Yin. "A Soft-Switching Non-Inverting Buck–Boost Converter With Efficiency and Performance Improvement." IEEE Transactions on Power Electronics 34, no. 12 (December 2019): 11526–30. http://dx.doi.org/10.1109/tpel.2019.2920310.
Full textMahrubi, Irfan, Jusuf Bintoro, and Wisnu Djatmiko. "RANCANG BANGUN SOLAR CHARGE CONTROLLER MENGGUNAKAN SYNCRONOUS NON-INVERTING BUCK-BOOST CONVERTER PADA PANEL SURYA 50 WATT PEAK (WP) BERBASIS ARDUINO NANO V3.0." JURNAL PENDIDIKAN VOKASIONAL TEKNIK ELEKTRONIKA (JVoTE) 1, no. 1 (April 27, 2018): 14–17. http://dx.doi.org/10.21009/jvote.v1i1.6902.
Full textHwang, Dong-Hyeon, and Woo-Cheol Lee. "Efficiency Comparison of a Non-Inverting Buck-Boost Converter According to the Control Method." Journal of the Korean Institute of Illuminating and Electrical Installation Engineers 31, no. 1 (January 31, 2017): 79. http://dx.doi.org/10.5207/jieie.2017.31.1.079.
Full textRamirez, Harryson, Germàn Garzón, Carlos Torres, Jhon Navarrete, and Carlos Restrepo. "LMI Control Design of a Non-Inverting Buck-Boost Converter: a Current Regulation Approach." TECCIENCIA 12, no. 22 (February 28, 2017): 79–85. http://dx.doi.org/10.18180/tecciencia.2017.22.9.
Full textPious, Ani, and K. Rajalakshmi. "Optimization of Subcell Interconnection for Multijunction Solar Cells Using DC-DC Converter." Applied Mechanics and Materials 573 (June 2014): 52–58. http://dx.doi.org/10.4028/www.scientific.net/amm.573.52.
Full textAlmasi, Omid Naghash, Vahid Fereshtehpoor, Abolfazl Zargari, and Ehsan Banihashemi. "Design An Optimal T-s Fuzzy Pi Controller For A Non-inverting Buck-boost Converter." Journal of Mathematics and Computer Science 11, no. 01 (July 14, 2014): 42–52. http://dx.doi.org/10.22436/jmcs.011.01.05.
Full textNaik, M. Venkatesh. "Comparative analysis of non-inverting buck-boost converter topologies for fuel cell low voltage applications." International Journal of Power Electronics 12, no. 1 (2020): 111. http://dx.doi.org/10.1504/ijpelec.2020.10029620.
Full textNaik, M. Venkatesh. "Comparative analysis of non-inverting buck-boost converter topologies for fuel cell low voltage applications." International Journal of Power Electronics 12, no. 1 (2020): 111. http://dx.doi.org/10.1504/ijpelec.2020.108388.
Full textGonzález-Castaño, Catalina, Carlos Restrepo, Roberto Giral, Jordi García-Amoros, Enric Vidal-Idiarte, and Javier Calvente. "Coupled inductors design of the bidirectional non-inverting buck–boost converter for high-voltage applications." IET Power Electronics 13, no. 14 (November 4, 2020): 3188–98. http://dx.doi.org/10.1049/iet-pel.2019.1479.
Full textVilla-Villaseñor, Noé, and J. Jesús Rico-Melgoza. "Complementarity framework formulation from bond graphs to model a class of nonlinear systems and hybrid systems with fixed causality." SIMULATION 94, no. 9 (January 26, 2018): 783–95. http://dx.doi.org/10.1177/0037549717751288.
Full textMoon, Jiho, Jaeseong Lee, Seungjin Kim, Gyeongha Ryu, Ju-Pyo Hong, Juhyun Lee, Haifeng Jin, and Jeongjin Roh. "60-V Non-Inverting Four-Mode Buck–Boost Converter With Bootstrap Sharing for Non-Switching Power Transistors." IEEE Access 8 (2020): 208221–31. http://dx.doi.org/10.1109/access.2020.3038444.
Full textShiau, Jaw-Kuen, and Chun-Jen Cheng. "Design of a non-inverting synchronous buck-boost DC/DC power converter with moderate power level." Robotics and Computer-Integrated Manufacturing 26, no. 3 (June 2010): 263–67. http://dx.doi.org/10.1016/j.rcim.2009.11.007.
Full textTsai, Chien-Hung, Yu-Shin Tsai, and Han-Chien Liu. "A Stable Mode-Transition Technique for a Digitally Controlled Non-Inverting Buck–Boost DC–DC Converter." IEEE Transactions on Industrial Electronics 62, no. 1 (January 2015): 475–83. http://dx.doi.org/10.1109/tie.2014.2327565.
Full textZhang, Guidong, Jun Yuan, Samson S. Yu, Neng Zhang, Yu Wang, and Yun Zhang. "Advanced four‐mode‐modulation‐based four‐switch non‐inverting buck–boost converter with extra operation zone." IET Power Electronics 13, no. 10 (August 2020): 2049–59. http://dx.doi.org/10.1049/iet-pel.2019.1540.
Full textGiral, Roberto, Javier Calvente, Ramon Leyva, Abdelali Aroudi, Goce Arsov, and Luis Martinez-Salamero. "Symmetrical power supply for 42 v automotive applications." Facta universitatis - series: Electronics and Energetics 17, no. 3 (2004): 365–76. http://dx.doi.org/10.2298/fuee0403365g.
Full textSAHIN, Erdinc. "A PSO Tuned Fractional-Order PID Controlled Non-inverting Buck-Boost Converter for a Wave/UC Energy System." International Journal of Intelligent Systems and Applications in Engineering 4, Special Issue-1 (December 26, 2016): 32–37. http://dx.doi.org/10.18201/ijisae.265971.
Full textCong, Lin, Jin Liu, and Hoi Lee. "A High-Efficiency Low-Profile Zero-Voltage Transition Synchronous Non-Inverting Buck-Boost Converter With Auxiliary-Component Sharing." IEEE Transactions on Circuits and Systems I: Regular Papers 66, no. 1 (January 2019): 438–49. http://dx.doi.org/10.1109/tcsi.2018.2858544.
Full textUrkin, Tom, and Mor Mordechai Peretz. "Digital CPM Controller for a Non-Inverting Buck–Boost Converter With Unified Hardware for Steady-State and Optimized Transient Conditions." IEEE Transactions on Power Electronics 35, no. 8 (August 2020): 8794–804. http://dx.doi.org/10.1109/tpel.2020.2965554.
Full textKim, Jong-Seok, Jin-O. Yoon, Jaeyun Lee, and Byong-Deok Choi. "High-efficiency peak-current-control non-inverting buck–boost converter using mode selection for single Ni–MH cell battery operation." Analog Integrated Circuits and Signal Processing 89, no. 2 (July 4, 2016): 297–306. http://dx.doi.org/10.1007/s10470-016-0787-0.
Full textOrtatepe, Zafer, and Ahmet Karaarslan. "Pre-calculated duty cycle optimization method based on genetic algorithm implemented in DSP for a non-inverting buck-boost converter." Journal of Power Electronics 20, no. 1 (December 10, 2019): 34–42. http://dx.doi.org/10.1007/s43236-019-00009-2.
Full textAlmasi, Omid Naghash, Vahid Fereshtehpoor, Mohammad Hassan Khooban, and Frede Blaabjerg. "Analysis, control and design of a non-inverting buck-boost converter: A bump-less two-level T–S fuzzy PI control." ISA Transactions 67 (March 2017): 515–27. http://dx.doi.org/10.1016/j.isatra.2016.11.009.
Full textAli, Kamran, Laiq Khan, Qudrat Khan, Shafaat Ullah, Saghir Ahmad, Sidra Mumtaz, Fazal Wahab Karam, and Naghmash. "Robust Integral Backstepping Based Nonlinear MPPT Control for a PV System." Energies 12, no. 16 (August 19, 2019): 3180. http://dx.doi.org/10.3390/en12163180.
Full textKhan, Rashid, Laiq Khan, Shafaat Ullah, Irfan Sami, and Jong-Suk Ro. "Backstepping Based Super-Twisting Sliding Mode MPPT Control with Differential Flatness Oriented Observer Design for Photovoltaic System." Electronics 9, no. 9 (September 21, 2020): 1543. http://dx.doi.org/10.3390/electronics9091543.
Full textWeng, Xing, Xiang Xiao, Weibin He, Yongyan Zhou, Yu Shen, Wei Zhao, and Zhengming Zhao. "Comprehensive comparison and analysis of non-inverting buck boost and conventional buck boost converters." Journal of Engineering 2019, no. 16 (March 1, 2019): 3030–34. http://dx.doi.org/10.1049/joe.2018.8373.
Full text"A Non-Inverting Soft Switching Buck-Boost Converter (Closed Loop) and It’s Performance Against Various Converters." International Journal of Engineering and Advanced Technology 9, no. 5 (June 30, 2020): 399–403. http://dx.doi.org/10.35940/ijeat.d9071.069520.
Full text"A Novel Single Switch Non Inverting Buck Boost Converter based Maximum Power Point Tracking System." International Journal of Science and Research (IJSR) 5, no. 2 (February 5, 2016): 1182–85. http://dx.doi.org/10.21275/v5i2.nov161345.
Full text"Design of Non-Inverting Buck-Boost Converter for Electronic Ballast Compatible with LED Drivers." Karaelmas Science and Engineering Journal, December 31, 2018, 473–81. http://dx.doi.org/10.7212/zkufbd.v8i2.1145.
Full textM, Rajbhushan, and Nalini S. "Open Circuit Voltage Based MPPT Tracing For Thermoelectric Generator Fed Non-Inverting Synchronous Buck-Boost Derived Converter – Part II (Hardware Studies)." International Journal Of Scientific Research And Education, September 29, 2016. http://dx.doi.org/10.18535/ijsre/v4i06.14.
Full textTawfique Ahmed, Khandker, Mithun Datta, and Nur Mohammad. "A Novel Two Switch Non-inverting Buck-Boost Converter based Maximum Power Point Tracking System." International Journal of Electrical and Computer Engineering (IJECE) 3, no. 4 (May 24, 2013). http://dx.doi.org/10.11591/ijece.v3i4.2772.
Full textZhang, Yong, Xu-Feng Cheng, and Chengliang Yin. "A Soft-Switching Synchronous Rectification Non-Inverting Buck-Boost Converter with a New Auxiliary Circuit." IEEE Transactions on Industrial Electronics, 2020, 1. http://dx.doi.org/10.1109/tie.2020.3009574.
Full textKhan, Usman Ali, Hyoung-Kyu Yang, Ashraf Ali Khan, and Jung-Wook Park. "Design and Implementation of Novel Non-Inverting Buck-Boost AC-AC Converter for DVR Applications." IEEE Transactions on Industrial Electronics, 2020, 1. http://dx.doi.org/10.1109/tie.2020.3028815.
Full textHajizadeh, Amin. "Fuzzy/State-Feedback Control of a Non-Inverting Buck-Boost Converter for Fuel Cell Electric Vehicles." Iranica Journal of Energy and Environment 5, no. 1 (2014). http://dx.doi.org/10.5829/idosi.ijee.2014.05.01.06.
Full textAnnie Bincy C. A and Salitha K. "Simulation of a Non Inverting Buck Boost Converter Fed BLDC Motor Drive with Four Quadrant Operation." International Journal of Engineering Research and V4, no. 07 (July 21, 2015). http://dx.doi.org/10.17577/ijertv4is070572.
Full textXu, Guo, Kang Hong, Guangfu Ning, Wenjing Xiong, Yao Sun, and Mei Su. "A Coupled-Inductor-Based Soft-Switching Non-Inverting Buck-Boost Converter with Reduced Auxiliary Component Count." IEEE Transactions on Industrial Electronics, 2021, 1. http://dx.doi.org/10.1109/tie.2021.3095794.
Full text