Academic literature on the topic 'Non-reciprocal devices'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non-reciprocal devices.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Non-reciprocal devices"

1

Yang, Chek Pin, Paul A. Smith, Geoffrey Dolman, Timothy W. Button, and David Cruickshank. "Helical Ferrite Devices for Non-Reciprocal Applications." Ferroelectrics 387, no. 1 (2009): 197–203. http://dx.doi.org/10.1080/00150190902967113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wolfe, Raymond. "Thin films for non-reciprocal magneto-optic devices." Thin Solid Films 216, no. 1 (1992): 184–88. http://dx.doi.org/10.1016/0040-6090(92)90892-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shoji, Yuya, and Tetsuya Mizumoto. "Magneto-optical non-reciprocal devices in silicon photonics." Science and Technology of Advanced Materials 15, no. 1 (2014): 014602. http://dx.doi.org/10.1088/1468-6996/15/1/014602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parkinson, G., and D. K. Paul. "MMIC implementation of non-reciprocal couplers using pHEMT devices." Electronics Letters 40, no. 13 (2004): 810. http://dx.doi.org/10.1049/el:20040541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kopnov, G., and A. Gerber. "Non-reciprocal magnetoresistance, directional inhomogeneity and mixed symmetry Hall devices." Applied Physics Letters 119, no. 10 (2021): 102405. http://dx.doi.org/10.1063/5.0065445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fleury, Romain, Dimitrios Sounas, and Andrea Alu. "Non-reciprocal acoustic devices based on spatio-temporal angular-momentum modulation." Journal of the Acoustical Society of America 136, no. 4 (2014): 2281. http://dx.doi.org/10.1121/1.4900246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

El-Ganainy, R., A. Eisfeld, Miguel Levy, and D. N. Christodoulides. "On-chip non-reciprocal optical devices based on quantum inspired photonic lattices." Applied Physics Letters 103, no. 16 (2013): 161105. http://dx.doi.org/10.1063/1.4824895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tao, Ke Yu, Qiong Wang, and Jian Pang Zhai. "Running around a Gyrotropic Material." Advanced Materials Research 479-481 (February 2012): 611–14. http://dx.doi.org/10.4028/www.scientific.net/amr.479-481.611.

Full text
Abstract:
Non-reciprocal component is very important for nanophotonic circuit. In this article, we demonstrate that a kind of unidirectional surface state can exist in various interfaces between magnetized gyrotropic material and other medium. Since this type of modes is not limited by bandgap as those in photonic crystals, it provides possibilities for making broad-spectrum non-reciprocal devices.
APA, Harvard, Vancouver, ISO, and other styles
9

Pierce, Allan D. "Reciprocity theorems and perception of non-reciprocal behavior in vibrating systems, imetamaterials, acoustic devices, and electroacoustic devices." Journal of the Acoustical Society of America 143, no. 3 (2018): 1946. http://dx.doi.org/10.1121/1.5036376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ergin, Rabia, Ann Senghas, Ray Jackendoff, and Lila Gleitman. "Structural cues for symmetry, asymmetry, and non-symmetry in Central Taurus Sign Language." Special Issue in Memory of Irit Meir 23, no. 1-2 (2020): 171–207. http://dx.doi.org/10.1075/sll.00048.erg.

Full text
Abstract:
Abstract We investigate how predicates expressing symmetry, asymmetry and non-symmetry are encoded in a newly emerging sign language, Central Taurus Sign Language (CTSL). We find that predicates involving symmetry (i.e., reciprocal and symmetrical actions) differ from those involving asymmetry (i.e., transitive) in their use of the morphological devices investigated here: body segmentation, mirror-image articulators and double perspective. Symmetrical predicates also differ from non-symmetrical ones (i.e., intransitive) in their use of mirror-image configuration. Furthermore, reciprocal action
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Non-reciprocal devices"

1

Hartman, Gregory. "Monolithically integrated non-reciprocal devices based on magnetic thin films." Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1369095798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sillars, D. B. "Non-reciprocal coupled-slot devices in fin-line structures for millimetric wavelengths." Thesis, University of the West of Scotland, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Le, Cong Nha. "Fabrication processes by chemical routes of textured Barium ferrite compacts for non reciprocal microwave devices." Thesis, Brest, 2018. http://www.theses.fr/2018BRES0046.

Full text
Abstract:
Il existe actuellement un important besoin en dispositifs électroniques dans le domaine des longueurs d’ondes millimétriques, tels que les circulateurs et les isolateurs fonctionnant dans la gamme de fréquence 30-100 GHz. Les aimants permanents qui garantissent la propagation de l’onde électromagnétique dans ces dispositifs comportent très généralement des éléments terres rares. En raison du coût à l’acquisition de ces éléments, d’une part, ainsi que de leur coût environnemental d’autre part, il existe une demande d’aimants permanents produits sans terres rares. Les ferrites durs peuvent prése
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Bin. "Assessment of Magnetic material for use in quasi-optical non-reciprocal devices operating at frequencies above 90 ghz." Thesis, Queen Mary, University of London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.502604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Alshannaq, Shadi Sami. "Nonreciprocal Millimeter and Sub-Millimeter Wave Devices Based on Semiconductor Magnetoplasma." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1313134612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Noutehou, Nathan. "Conception de circulateurs et isolateurs pour des applications spatiales : nouvelles technologies d'intégration." Thesis, Brest, 2019. http://www.theses.fr/2019BRES0033/document.

Full text
Abstract:
L’objectif de cette thèse est d’explorer de nouvelles technologies permettant de faciliter l’intégration des isolateurs dans les chaînes radiofréquences de satellites. Ces composants sont utilisés pour contrôler l’adaptation des amplificateurs dans les sections d’entrée et de sortie des équipements RF bas niveaux. Nous proposons deux voies de réalisation de ces isolateurs. Une première voie basée sur l’utilisation de matériaux ferricomposites est étudiée pour concevoir des composants en bande Ku. Une deuxième voie, basée sur l’utilisation d’hexaferrites de strontium et de baryum préorientés, a
APA, Harvard, Vancouver, ISO, and other styles
7

Luong, Duc Long. "Aide à la conception de lignes microrubans à onde lente sur substrat structuré dans les bandes RF et millimétriques : applications aux coupleurs et dispositifs passifs non-réciproques." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSES007/document.

Full text
Abstract:
L’objectif de ces travaux est pour d’apporter des solutions innovantes à la réalisation de dispositifs passifs performants et compacts, susceptibles d’intéresser les concepteurs de circuits RF et millimétriques. Ces dispositifs sont basés notamment sur des lignes microrubans à ondes lentes sur substrat structuré, que cela soit sur PCB avec des vias borgnes pour la RF, ou nanostructurés sur membranes à nanofils pour le millimétrique. Les travaux complets comprennent (i) une analyse de la topologie, (ii) un développement du modèle équivalent validée par des simulations électromagnétiques (HFSSTM
APA, Harvard, Vancouver, ISO, and other styles
8

Bahamonde, José Antonio. "Non-reciprocal Acoustic Devices for RF Communications." Thesis, 2020. https://doi.org/10.7916/d8-337z-1463.

Full text
Abstract:
The purpose of this research is to develop, demonstrate, and characterize a novel architecture based on surface acoustic wave (SAW) devices capable of non-reciprocal propagation of forward and reverse signals. To begin, a novel topology is introduced based on asymmetrical delay lines and a current source representing a copy of the input signal. An analysis of this structure demonstrates it is capable of functioning as an isolator with the added capability of tuning the frequency response by controlling the phase relationships be- tween input signal and its copy. The structure is dependent on c
APA, Harvard, Vancouver, ISO, and other styles
9

(10285355), Matthew J. Storey. "Lithium Niobate Acoustoelectric Platforms for Integrated Non-Reciprocal RF MEMS Devices." Thesis, 2021.

Find full text
Abstract:
<div>Some of the biggest challenges with analog signal processing at radio frequencies (RF) are: RF loss at the frequency of interest, large enough fractional bandwidth, and sufficient delay. It is difficult to achieve enough delay in radio front ends using a purely electromagnetic approach since it is limited to a fraction of the speed of light. A solution has been the use of acoustic RF devices, such as surface acoustic wave (SAW) delaylines and MEMS filters. For some acoustic RF devices, like high performance Transmit and Receive SAW correlators, the long delays introduce significant propag
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Non-reciprocal devices"

1

Helszajn, J. Microwave engineering: Passive, active, and non-reciprocal circuits. McGraw-Hill, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Non-reciprocal devices"

1

Sounas, D. L., and A. Alu. "Non-reciprocal devices enabled by metamaterials." In 2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS). IEEE, 2014. http://dx.doi.org/10.1109/metamaterials.2014.6948579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Veis, Martin, Lukas Beran, Stana Tazlaru, Takian Fakhrul, Yan Zhang, and Caroline A. Ross. "Ferrimagnetic garnets for integrated non-reciprocal devices." In 2020 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2020. http://dx.doi.org/10.1109/nusod49422.2020.9217659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dong, Chunhua, Zhen Shen, Changling Zou, Yanlei Zhang, Wei Fu, and Guangcan Guo. "Non-reciprocal light storage in a silica microsphere." In Optoelectronic Devices and Integration. OSA, 2015. http://dx.doi.org/10.1364/oedi.2015.ot2a.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Estep, N. A., D. L. Sounas, and A. Alu. "Angular-momentum-biasing for non-reciprocal electromagnetic devices." In 2014 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS). IEEE, 2014. http://dx.doi.org/10.1109/wmcas.2014.7015879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sounas, Dimitrios L., and Christophe Caloz. "Graphene for highly tunable non-reciprocal electromagnetic devices." In 2012 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2012. http://dx.doi.org/10.1109/aps.2012.6349123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lu, Ting, Joseph D. Schneider, Xiating Zou, et al. "Lamb Wave Resonator Loaded Non-reciprocal RF Devices." In 2020 IEEE/MTT-S International Microwave Symposium (IMS). IEEE, 2020. http://dx.doi.org/10.1109/ims30576.2020.9224075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tedjini, S., E. Pic, and P. Saguet. "On the Research of Non Reciprocal Fin-Line Devices." In 13th European Microwave Conference, 1983. IEEE, 2006. http://dx.doi.org/10.1109/euma.1983.333199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Franco Rêgo, Davi, and Vitaly Felix Rodriguez-Esquerre. "Non-reciprocal optical devices based on linear silicon photonic crystals." In SPIE OPTO, edited by Bernd Witzigmann, Marek Osinski, Fritz Henneberger, and Yasuhiko Arakawa. SPIE, 2014. http://dx.doi.org/10.1117/12.2038216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hakim, F., M. Ramezani, S. Rassay, and R. Tabrizian. "Non-Reciprocal Acoustoelectric Amplification in Germanium-Based Lamb Wave Delay Lines." In 2019 IEEE International Electron Devices Meeting (IEDM). IEEE, 2019. http://dx.doi.org/10.1109/iedm19573.2019.8993543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shanhui Fan, M. F. Yanik, Zheng Wang, M. Povinelle, and S. Sandhu. "Photonic crystals for communications: stopping light and miniaturized non-reciprocal devices." In OFCNFOEC 2006. 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference. IEEE, 2006. http://dx.doi.org/10.1109/ofc.2006.215883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!