Academic literature on the topic 'Non-Uniform Quantization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non-Uniform Quantization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Non-Uniform Quantization"
Xu, De Hong, Huan Xin Peng, and Bin Liu. "Non-Uniform Probabilistically Quantized Distributed Consensus Applied on Sensors Network." Applied Mechanics and Materials 577 (July 2014): 921–25. http://dx.doi.org/10.4028/www.scientific.net/amm.577.921.
Full textChen, Hai Qiang, Ling Shan Luo, Xiao Li Huang, Dao Feng Li, Qi Liang, and Tuan Fa Qin. "Quantization Methods of the Reliability-Based Iterative Decoding Algorithm for LDPC Codes." Applied Mechanics and Materials 738-739 (March 2015): 699–704. http://dx.doi.org/10.4028/www.scientific.net/amm.738-739.699.
Full textHulle, Marc M. Van, and Dominique Martinez. "On an Unsupervised Learning Rule for Scalar Quantization following the Maximum Entropy Principle." Neural Computation 5, no. 6 (November 1993): 939–53. http://dx.doi.org/10.1162/neco.1993.5.6.939.
Full textChang, Xiaohua, and Yu Zhang. "Non-uniform Quantization of Soft Information for 5G LDPC Codes." Journal of Physics: Conference Series 1606 (August 2020): 012014. http://dx.doi.org/10.1088/1742-6596/1606/1/012014.
Full textYuan, Yong, Chen Chen, Xiyuan Hu, and Silong Peng. "CNQ: Compressor-Based Non-uniform Quantization of Deep Neural Networks." Chinese Journal of Electronics 29, no. 6 (November 1, 2020): 1126–33. http://dx.doi.org/10.1049/cje.2020.09.014.
Full textMehmood, Anam, Ishtiaq Rasool Khan, Hassan Dawood, and Hussain Dawood. "A non-uniform quantization scheme for visualization of CT images." Mathematical Biosciences and Engineering 18, no. 4 (2021): 4311–26. http://dx.doi.org/10.3934/mbe.2021216.
Full textSeo, Sanghyun, and Juntae Kim. "Efficient Weights Quantization of Convolutional Neural Networks Using Kernel Density Estimation based Non-uniform Quantizer." Applied Sciences 9, no. 12 (June 23, 2019): 2559. http://dx.doi.org/10.3390/app9122559.
Full textMarwanto, Arief, Sharifah Kamilah Syed Yusof, and Muhammad Haikal Satria. "Adaptive quantization for spectrum exchange information in mobile cognitive radio networks." International Journal of Electrical and Computer Engineering (IJECE) 10, no. 4 (August 1, 2020): 3605. http://dx.doi.org/10.11591/ijece.v10i4.pp3605-3614.
Full textBaskin, Chaim, Natan Liss, Eli Schwartz, Evgenii Zheltonozhskii, Raja Giryes, Alex M. Bronstein, and Avi Mendelson. "UNIQ." ACM Transactions on Computer Systems 37, no. 1-4 (June 2021): 1–15. http://dx.doi.org/10.1145/3444943.
Full textZaqout, Ihab. "Content-Based Image Retrieval using Color Quantization and Angle Representation." INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 13, no. 10 (October 30, 2014): 5094–104. http://dx.doi.org/10.24297/ijct.v13i10.2332.
Full textDissertations / Theses on the topic "Non-Uniform Quantization"
Syed, Arsalan Jawed. "Analog-to-Digital Converter Design for Non-Uniform Quantization." Thesis, Linköping University, Department of Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2654.
Full textThe thesis demonstrates a low-cost, low-bandwidth and low-resolution Analog-to- Digital Converter(ADC) in 0.35 um CMOS Process. A second-order Sigma-Delta modulator is used as the basis of the A/D Converter. A Semi-Uniform quantizer is used with the modulator to take advantage of input distributions that are dominated by smaller-amplitude signals e.g. Audio, Voice and Image-sensor signals. A Single-bit feedback topology is used with a multi-bit quantizer in the modulator. This topology avoids the use of a multi-bit DAC in the feedback loop – hence the system does not need to use digital correction techniques to compensate for a multi-bit DAC nonlinearity.
High-Level Simulations of the second-order Sigma-Delta modulator single-bit feedback topology along with a Semi-Uniform quantizer are performed in Cadence. Results indicate that a 5-bit Semi-Uniform quantizer with a Over-Sampling Ratio of 32, can achieve a resolution of 10 bits, in addition, a semi-uniform quantizer exhibits a 5-6 dB gain in SNR over its uniform counterpart for input amplitudes smaller than –10 dB. Finally, this system is designed in 0.35um CMOS process.
Joo, Eon Kyeong. "A study of non-uniform quantization methods for memoryless sources /." The Ohio State University, 1987. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487324944215857.
Full textFuentes, Muela Manuel. "Non-Uniform Constellations for Next-Generation Digital Terrestrial Broadcast Systems." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/84743.
Full textHoy en día, el mercado de la televisión digital terrestre (TDT) está caracterizado por la alta capacidad requerida para transmitir servicios de televisión de alta definición y el espectro disponible. Es necesario por tanto un uso eficiente del espectro radioeléctrico, el cual requiere nuevas tecnologías para garantizar mayores capacidades. Las constelaciones no-uniformes (NUC) emergen como una de las técnicas más innovadoras para abordar tales requerimientos. Las NUC reducen el espacio existente entre las constelaciones uniformes QAM y el límite teórico de Shannon. Con estas constelaciones, los símbolos se optimizan en ambas componentes fase (I) y cuadratura (Q) mediante técnicas geométricas de modelado de la señal, considerando un nivel señal a ruido (SNR) concreto y un modelo de canal específico. Hay dos tipos de NUC, unidimensionales y bidimensionales (1D-NUC y 2D-NUC, respectivamente). Las 1D-NUC mantienen la forma cuadrada de las QAM, pero permiten cambiar la distribución entre los símbolos en una componente concreta, teniendo una distancia no uniforme entre ellos. Estas constelaciones proporcionan un mejor rendimiento SNR que QAM, sin ningún incremento en la complejidad en el demapper. Las 2D-NUC también permiten cambiar la forma cuadrada de la constelación, permitiendo optimizar los símbolos en ambas dimensiones y por tanto obteniendo mayores ganancias en capacidad y menores requerimientos en SNR. Sin embargo, el uso de 2D-NUCs implica una mayor complejidad en el receptor. En esta tesis se analizan las NUC desde el punto de vista tanto de transmisión como de recepción, utilizando bien configuraciones con una antena (SISO) o con múltiples antenas (MIMO). En transmisiones SISO, se han optimizado 1D-NUCs para un rango amplio de distintas SNR y varios órdenes de constelación. También se ha investigado la optimización de 2D-NUCs rotadas. Aunque la complejidad no aumenta, la ganancia SNR de estas constelaciones no es significativa. La mayor ganancia por rotación se obtiene para bajos órdenes de constelación y altas SNR. Sin embargo, utilizando técnicas multi-RF, la ganancia aumenta drásticamente puesto que las componentes I y Q se transmiten en distintos canales RF. En esta tesis, se han estudiado varias ganancias multi-RF representativas de las NUC, con o sin rotación. En el receptor, se han identificado dos cuellos de botella diferentes en la implementación. Primero, se ha analizado la complejidad en el receptor para todas las constelaciones consideradas y, posteriormente, se proponen dos algoritmos para reducir la complejidad con 2D-NUCs. Además, los dos pueden combinarse en un único demapper. También se ha explorado la cuantización de estas constelaciones, ya que tanto los valores LLR como las componentes I/Q se ven modificados, comparando con constelaciones QAM tradicionales. Además, se ha propuesto un algoritmo que se basa en la optimización para diferentes niveles de cuantización, para una NUC concreta. Igualmente, se ha investigado en detalle el uso de NUCs en MIMO. Se ha incluido la optimización en una sola o en dos antenas, el uso de un desbalance de potencia, factores de discriminación entre antenas receptoras (XPD), o el uso de distintos demappers. Asumiendo distintos valores, se han obtenido nuevas constelaciones multi-antena (MA-NUC) gracias a un nuevo proceso de re-optimización específico para MIMO. En el receptor, se ha extendido el análisis de complejidad en el demapper, la cual se incrementa enormemente con el uso de 2D-NUCs y sistemas MIMO. Como alternativa, se propone una solución basada en el algoritmo Soft-Fixed Sphere Decoding (SFSD). El principal problema es que estos demappers no funcionan con 2D-NUCs, puesto que necesitan de un paso adicional en el que las componentes I y Q necesitan separarse. El método propuesto cuantifica el símbolo más cercano utilizando las regiones de Voronoi, permitiendo el uso de este tipo de receptor.
Actualment, el mercat de la televisió digital terrestre (TDT) està caracteritzat per l'alta capacitat requerida per a transmetre servicis de televisió d'alta definició i l'espectre disponible. És necessari per tant un ús eficient de l'espectre radioelèctric, el qual requereix noves tecnologies per a garantir majors capacitats i millors servicis. Les constel·lacions no-uniformes (NUC) emergeixen com una de les tècniques més innovadores en els sistemes de televisió de següent generació per a abordar tals requeriments. Les NUC redueixen l'espai existent entre les constel·lacions uniformes QAM i el límit teòric de Shannon. Amb estes constel·lacions, els símbols s'optimitzen en ambdós components fase (I) i quadratura (Q) per mitjà de tècniques geomètriques de modelatge del senyal, considerant un nivell senyal a soroll (SNR) concret i un model de canal específic. Hi ha dos tipus de NUC, unidimensionals i bidimensionals (1D-NUC i 2D-NUC, respectivament). 1D-NUCs mantenen la forma quadrada de les QAM, però permet canviar la distribució entre els símbols en una component concreta, tenint una distància no uniforme entre ells. Estes constel·lacions proporcionen un millor rendiment SNR que QAM, sense cap increment en la complexitat al demapper. 2D-NUC també canvien la forma quadrada de la constel·lació, permetent optimitzar els símbols en ambdós dimensions i per tant obtenint majors guanys en capacitat i menors requeriments en SNR. No obstant això, l'ús de 2D-NUCs implica una major complexitat en el receptor, ja que es necessita un demapper 2D, on les components I i Q no poden ser separades. En esta tesi s'analitzen les NUC des del punt de vista tant de transmissió com de recepció, utilitzant bé configuracions amb una antena (SISO) o amb múltiples antenes (MIMO). En transmissions SISO, s'han optimitzat 1D-NUCs, per a un rang ampli de distintes SNR i diferents ordes de constel·lació. També s'ha investigat l'optimització de 2D-NUCs rotades. Encara que la complexitat no augmenta, el guany SNR d'estes constel·lacions no és significativa. El major guany per rotació s'obté per a baixos ordes de constel·lació i altes SNR. No obstant això, utilitzant tècniques multi-RF, el guany augmenta dràsticament ja que les components I i Q es transmeten en distints canals RF. En esta tesi, s'ha estudiat el guany multi-RF de les NUC, amb o sense rotació. En el receptor, s'han identificat dos colls de botella diferents en la implementació. Primer, s'ha analitzat la complexitat en el receptor per a totes les constel·lacions considerades i, posteriorment, es proposen dos algoritmes per a reduir la complexitat amb 2D-NUCs. Ambdós algoritmes redueixen dràsticament el nombre de distàncies. A més, els dos poden combinar-se en un únic demapper. També s'ha explorat la quantització d'estes constel·lacions, ja que tant els valors LLR com les components I/Q es veuen modificats, comparant amb constel·lacions QAM tradicionals. A més, s'ha proposat un algoritme que es basa en l'optimització per a diferents nivells de quantització, per a una NUC concreta. Igualment, s'ha investigat en detall l'ús de NUCs en MIMO. S'ha inclòs l'optimització en una sola o en dos antenes, l'ús d'un desbalanç de potència, factors de discriminació entre antenes receptores (XPD), o l'ús de distints demappers. Assumint distints valors, s'han obtingut noves constel·lacions multi-antena (MA-NUC) gràcies a un nou procés de re-optimització específic per a MIMO. En el receptor, s'ha modificat l'anàlisi de complexitat al demapper, la qual s'incrementa enormement amb l'ús de 2D-NUCs i sistemes MIMO. Com a alternativa, es proposa una solució basada en l'algoritme Soft-Fixed Sphere Decoding (SFSD) . El principal problema és que estos demappers no funcionen amb 2D-NUCs, ja que necessiten d'un pas addicional en què les components I i Q necessiten separar-se. El mètode proposat quantifica el símbol més pròxim utilitzan
Fuentes Muela, M. (2017). Non-Uniform Constellations for Next-Generation Digital Terrestrial Broadcast Systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/84743
TESIS
Silva, Verônica Maria Lima. "Conversor A/D com amostragem não-uniforme e passo de quantização adaptativo." Universidade Federal da Paraíba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/5298.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work, we analyse different architectures of analog-to-digital converters (ADC) and propose an architecture based on sampling by crossing levels and adaptive quantization step, aiming at reducing the energy required to convert and process specific signals. The proposed architecture has parameters which can be dynamically configured by the user, as to adapt the conversion process to the signal being sampled and to the requirements of power consumption of the target application. The architecture was modeled and simulated using Matlab, and used to convert several test signals, of which an ECG signal. The use of the proposed architecture resulted in SNR improvements of up to 10dB if compared against uniform (periodic) sampling. The digital logic was implemented in FPGA from a SystemVerilog description functionally compatible with the Matlab model, and the analog part was implemented with discrete components.
Neste trabalho, faz-se uma análise de diferentes arquiteturas de conversores analógico-digitais, e propõe-se uma arquitetura de conversor analógico-digital baseado em amostragem por cruzamento de níveis (não-uniforme) com adaptação do passo de quantização, com o objetivo de reduzir o consumo de energia requerido pela conversão analógica-digital e processamento de sinais com características específicas. A arquitetura proposta possui parâmetros que podem ser configurados dinamicamente pelo usuário, a fim de que o processo de conversão se adeque às características do sinal a ser amostrado e aos requerimentos de consumo de energia da aplicação. A arquitetura foi modelada e simulada em MatLab, tendo sido utilizada na conversão de diversos sinais de teste, dentre os quais um sinal típico de eletrocardiograma. Verificou-se que a amostragem não-uniforme com adaptação do passo de quantização proposta resultou em um aumento da relação sinal-ruído do sinal amostrado de até 10dB quando comparado com a amostragem uniforme. A implementação da parte digital foi feita em FPGA a partir de uma descrição em SystemVerilog funcionalmente compatível com o modelo em Matlab, e a parte analógica foi implementada com componentes discretos.
Hoq, Qazi Enamul. "Quantization Of Spin Direction For Solitary Waves in a Uniform Magnetic Field." Thesis, University of North Texas, 2003. https://digital.library.unt.edu/ark:/67531/metadc4210/.
Full textChih-HaoChang and 張智皓. "Effects of Non-Uniform Quantization on the Interference Mitigation Using Multi-Cell MIMO Coordinated Beamforming." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/hafunh.
Full text國立成功大學
電腦與通信工程研究所
102
In recent years, the coordinated beamforming (CBF) has attracted many attentions because of its effectiveness in the inter-cell interference (ICI) mitigation. In order to facilitate the operations of CBF, efficient channel state information (CSI) exchanges through backhaul links are necessary. From the literature, we find that uniform quantization of CSI was generally assumed in the feedback schemes. Statistically, however, uniform quantization may not be optimal from the viewpoint of the ICI in CBF, which is mainly caused by the quantization error (QE). In this paper, with a limited number of feedback bits, a non-uniform quantization method is proposed to apply more quantization levels to represent the feedback CSI with higher probability. This is because more accurate representation of frequent CSI can lead to lower QE so as to reduce the ICI level in most cases. To prove the effectiveness of the proposed scheme, the ICI in the considered two-cell CBF scenario is analyzed with various numbers of feedback bits. Also, higher transmission rate, especially in the cases with fewer feedback bits, is also proved by simulation results.
Book chapters on the topic "Non-Uniform Quantization"
Chen, Licong, Yun Q. Shi, Patchara Sutthiwan, and Xinxin Niu. "Non-uniform Quantization in Breaking HUGO." In Digital-Forensics and Watermarking, 48–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43886-2_4.
Full textAgrež, Dušan. "A/D Conversion with Non-uniform Differential Quantization." In Design, Modeling and Testing of Data Converters, 277–306. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39655-7_9.
Full textWen, Chenglin, Chaoyang Zhu, Daxing Xu, and Lidi Quan. "A Non-uniform Quantization Filter Based on Adaptive Quantization Interval in WSNs." In Communications in Computer and Information Science, 595–605. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5230-9_58.
Full textNing, MeiJun, Tao Peng, YueQing Xu, and QingYi Quan. "Spread Spectrum Audio Watermark Based on Non-uniform Quantization." In Communications and Networking, 235–45. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41114-5_18.
Full textSeifert, Tobias, Friedrich Pauls, and Gerhard Fettweis. "Multi-TSV Crosstalk Channel Equalization with Non-uniform Quantization." In 3D Stacked Chips, 69–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20481-9_4.
Full textGennari do Nascimento, Marcelo, Theo W. Costain, and Victor Adrian Prisacariu. "Finding Non-uniform Quantization Schemes Using Multi-task Gaussian Processes." In Computer Vision – ECCV 2020, 383–98. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58520-4_23.
Full textBrandão, Tomás, and Paula Queluz. "Blind PSNR Estimation of Video Sequences, Through Non-uniform Quantization Watermarking." In Lecture Notes in Computer Science, 587–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11867586_55.
Full textWang, Guoyuo, and Wentao Wang. "A Novel Wavelet Image Coding Based on Non-uniform Scalar Quantization." In Computational Intelligence and Security, 893–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11596981_131.
Full textGoncharenko, Alexander, Andrey Denisov, Sergey Alyamkin, and Evgeny Terentev. "On Practical Approach to Uniform Quantization of Non-redundant Neural Networks." In Lecture Notes in Computer Science, 349–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30484-3_29.
Full textU., KinTak, Nian Ji, Dongxu Qi, and Zesheng Tang. "An Adaptive Quantization Technique for JPEG Based on Non-uniform Rectangular Partition." In Lecture Notes in Electrical Engineering, 179–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27323-0_23.
Full textConference papers on the topic "Non-Uniform Quantization"
Hagiwara, Mao, Toru Kitayabu, Hiroyasu Ishikawa, and Hiroshi Shirai. "Delta-sigma modulator with non-uniform quantization." In 2011 IEEE Radio and Wireless Symposium (RWS). IEEE, 2011. http://dx.doi.org/10.1109/rws.2011.5725439.
Full textCai, Jianrui, and Lei Zhang. "Deep Image Compression with Iterative Non-Uniform Quantization." In 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018. http://dx.doi.org/10.1109/icip.2018.8451411.
Full textChengjiao Lv, Feng Chen, Yongzhi Xu, Junping Song, and Pin Lv. "A trajectory compression algorithm based on non-uniform quantization." In 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2015. http://dx.doi.org/10.1109/fskd.2015.7382342.
Full textDas, Dhritiman, and Siddharth Deshmukh. "Non-Uniform Quantization based Reporting in Cooperative Cognitive Radio." In TENCON 2018 - 2018 IEEE Region 10 Conference. IEEE, 2018. http://dx.doi.org/10.1109/tencon.2018.8650060.
Full textSeo, Dongho, Hyeongyun Kim, and Haewoon Nam. "SDR implementation of energy detection with non-uniform quantization scheme." In 2017 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2017. http://dx.doi.org/10.1109/ictc.2017.8190814.
Full textStoykova, Elena, Dimana Nazarova, Lian Nedelchev, Kwan-Jung Oh, and Joongki Park. "Coarse Quantization in Dynamic Speckle Metrology at Non-uniform Illumination." In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/dh.2020.hth5h.5.
Full textWong, Lok S., Gregory E. Allen, and Brian L. Evans. "Sonar data compression using non-uniform quantization and noise shaping." In 2014 48th Asilomar Conference on Signals, Systems and Computers. IEEE, 2014. http://dx.doi.org/10.1109/acssc.2014.7094798.
Full textLi, Dongping, and Changliang Liu. "Improved SLIC Superpixel Segmentation Based on HSV Non-uniform Quantization." In 6th International Conference on Information Engineering for Mechanics and Materials. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icimm-16.2016.52.
Full textRowshan, Mohammad, Emanuele Viterbo, Rino Micheloni, and Alessia Marelli. "Logarithmic Non-uniform Quantization for List Decoding of Polar Codes." In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). IEEE, 2021. http://dx.doi.org/10.1109/ccwc51732.2021.9375932.
Full textDong, Yanfei, Kai Niu, and Chao Dong. "Non-Uniform Quantization of Successive Cancellation List Decoder for Polar Codes." In 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications. IEEE, 2020. http://dx.doi.org/10.1109/pimrc48278.2020.9217358.
Full text