Academic literature on the topic 'Nonabelian class field theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nonabelian class field theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nonabelian class field theory"

1

Kim, Kwang-Seob, and John C. Miller. "Class numbers of large degree nonabelian number fields." Mathematics of Computation 88, no. 316 (2018): 973–81. http://dx.doi.org/10.1090/mcom/3335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

BIRÓ, T. S. "CONSERVING ALGORITHMS FOR REAL-TIME NONABELIAN LATTICE GAUGE THEORIES." International Journal of Modern Physics C 06, no. 03 (1995): 327–44. http://dx.doi.org/10.1142/s0129183195000241.

Full text
Abstract:
A class of numerical algorithms for solving the classical equations of motion in lattice gauge field theories which exactly fulfill the constraints imposed by the unitarity of the local group elements, by the local color charge conservation (Gauss law) and by the total energy conservation is constructed. The performance of these constrained algorithms is comparatively discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

BAGIŃSKI, CZESŁAW, and JÁNOS KURDICS. "ON THE CENTER OF THE MODULAR GROUP ALGEBRA OF A FINITE p-GROUP." Journal of Algebra and Its Applications 13, no. 04 (2014): 1350127. http://dx.doi.org/10.1142/s0219498813501272.

Full text
Abstract:
Let G be a finite nonabelian p-group and F a field of characteristic p and let [Formula: see text] be the subalgebra spanned by class sums [Formula: see text], where C runs over all conjugacy classes of noncentral elements of G. We show that all finite p-groups are subgroups and homomorphic images of p-groups for which [Formula: see text]. We also give the description of abelian-by-cyclic groups for which [Formula: see text] is an algebra with zero multiplication or is nil of index 2.
APA, Harvard, Vancouver, ISO, and other styles
4

SBEITY, FARAH, and BOUCHAÏB SODAÏGUI. "CLASSES DE STEINITZ D'EXTENSIONS NON ABÉLIENNES À GROUPE DE GALOIS D'ORDRE 16 OU EXTRASPÉCIAL D'ORDRE 32 ET PROBLÈME DE PLONGEMENT." International Journal of Number Theory 06, no. 08 (2010): 1769–83. http://dx.doi.org/10.1142/s1793042110003794.

Full text
Abstract:
Soient k un corps de nombres et Cl (k) son groupe des classes. Soit Γ un groupe non abélien d'ordre 16, ou un groupe extraspécial d'ordre 32. Soit Rm(k, Γ) le sous-ensemble de Cl (k) formé par les éléments qui sont réalisables par les classes de Steinitz d'extensions galoisiennes de k, modérément ramifiées et dont le groupe de Galois est isomorphe à Γ. Lorsque Γ est le groupe modulaire d'ordre 16, on suppose que k contienne une racine primitive 4ème de l'unité. Dans cet article on montre que Rm(k, Γ) est le groupe Cl (k) tout entier si le nombre des classes de k est impair. On étudie un problè
APA, Harvard, Vancouver, ISO, and other styles
5

Bacon, Michael R. "On the non-albelian tensor square of a nilpotent group of class two." Glasgow Mathematical Journal 36, no. 3 (1994): 291–96. http://dx.doi.org/10.1017/s0017089500030883.

Full text
Abstract:
The nonabelian tensor square G⊗G of a group G is generated by the symbols g⊗h, g, h ∈ G, subject to the relations,for all g, g′, h, h′ ∈ G, where The tensor square is a special case of the nonabelian tensor product which has its origins in homotopy theory. It was introduced by R. Brown and J. L. Loday in [4] and [5], extending ideas of Whitehead in [6].
APA, Harvard, Vancouver, ISO, and other styles
6

Pirashvili, Mariam. "Second cohomotopy and nonabelian cohomology." Journal of K-theory 13, no. 3 (2014): 397–445. http://dx.doi.org/10.1017/is013012015jkt251.

Full text
Abstract:
AbstractThe main difficulty in the theory of non-abelian cohomology is that for cosimplicial groups only zero-th and first dimensional cohomotopy are known. In this article we introduce a new class of cosimplicial groups, called centralised cosimplicial groups, for which we are able to define a second cohomotopy, with all expected properties. The main examples of such cosimplicial groups come from 2-categories.
APA, Harvard, Vancouver, ISO, and other styles
7

Coletti, Erasmo, Ilya Sigalov, and Washington Taylor. "Abelian and nonabelian vector field effective actions from string field theory." Journal of High Energy Physics 2003, no. 09 (2003): 050. http://dx.doi.org/10.1088/1126-6708/2003/09/050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Qian, Guohua, and Yong Yang. "The largest conjugacy class size and the nilpotent subgroups of finite groups." Journal of Group Theory 22, no. 2 (2019): 267–76. http://dx.doi.org/10.1515/jgth-2018-0040.

Full text
Abstract:
AbstractLetHbe a nilpotent subgroup of a finite nonabelian groupG, let{\pi=\pi(|H|)}and let{{\operatorname{bcl}}(G)}be the largest conjugacy class size of the groupG. In the present paper, we show that{|HO_{\pi}(G)/O_{\pi}(G)|<{\operatorname{bcl}}(G)}.
APA, Harvard, Vancouver, ISO, and other styles
9

Bak, Anthony. "Nonabelian K-theory: The nilpotent class of K1 and general stability." K-Theory 4, no. 4 (1991): 363–97. http://dx.doi.org/10.1007/bf00533991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

LÓPEZ PEÑA, J., S. MAJID, and K. RIETSCH. "Lie theory of finite simple groups and the Roth property." Mathematical Proceedings of the Cambridge Philosophical Society 163, no. 2 (2017): 301–40. http://dx.doi.org/10.1017/s030500411600102x.

Full text
Abstract:
AbstractIn noncommutative geometry a ‘Lie algebra’ or bidirectional bicovariant differential calculus on a finite group is provided by a choice of an ad-stable generating subset $\mathcal{C}$ stable under inversion. We study the associated Killing form K. For the universal calculus associated to $\mathcal{C}$ = G \ {e} we show that the magnitude $\mu=\sum_{a,b\in\mathcal{C}}(K^{-1})_{a,b}$ of the Killing form is defined for all finite groups (even when K is not invertible) and that a finite group is Roth, meaning its conjugation representation contains every irreducible, iff μ ≠ 1/(N − 1) wher
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Nonabelian class field theory"

1

Abramov, Gueorgui. "Nilpotent Class Field Theory." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 1999. http://dx.doi.org/10.18452/14361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mukai, Daichi. "Mirror symmetry of nonabelian Landau-Ginzburg orbifolds with loop type potentials." Kyoto University, 2020. http://hdl.handle.net/2433/253068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mohamed, Adam. "Local Class Field Theory via Lubin-Tate Theory /." Thesis, Link to the online version, 2008. http://hdl.handle.net/10019/1936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hofmann, Walter. "Class field theory for arithmetic schemes." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=985500964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rakotoniaina, Tahina. "Explicit class field theory for rational function fields." Thesis, Link to the online version, 2008. http://hdl.handle.net/10019/1993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Newton, Rachel Dominica. "Central simple algebras, cup-products and class field theory." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yoon, Seok Ho. "Explicit class field theory : one dimensional and higher dimensional." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/50367/.

Full text
Abstract:
This thesis investigates class field theory for one dimensional fields and higher dimensional fields. For one dimensional fields we cover the cases of local fields and global fields of positive characteristic. For higher dimensional fields we study the case of higher local fields of positive characteristic. The main content of the thesis is divided into two parts. The first part solves several problems directly related to Neukirch's axiomatic class field theory method. We first prove the famous Hilbert 90 Theorem in the case of tamely ramified extensions of local fields in an explicit way. Thi
APA, Harvard, Vancouver, ISO, and other styles
8

Ellenburg, Michael Glen. "Massless particles in a class of field theories." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/28022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Syder, Kirsty. "Two-dimensional local-global class field theory in positive characteristic." Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/14538/.

Full text
Abstract:
Using the higher tame symbol and Kawada and Satake’s Witt vector method, A.N. Parshin developed class field theory for positive characteristic higher local fields, defining reciprocity maps separately for the tamely ramified and wildly ramified cases. We prove reciprocity laws for these symbols using techniques of Morrow for the Witt symbol and Romo for the higher tame symbol. We then extend this method of defining a reciprocity map to the case of positive characteristic local- global fields associated to points and curves on an algebraic surface over a finite field.
APA, Harvard, Vancouver, ISO, and other styles
10

Rozario, Rebecca. "The Distribution of the Irreducibles in an Algebraic Number Field." Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/RozarioR2003.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Nonabelian class field theory"

1

Gras, Georges. Class Field Theory. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-11323-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Childress, Nancy. Class Field Theory. Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-72490-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Neukirch, Jürgen. Class Field Theory. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35437-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Neukirch, Jürgen. Class Field Theory. Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82465-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tate, John Torrence, 1925- joint author., ed. Class field theory. AMS Chelsea Pub., 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Artin, Emil. Class field theory. Addison-Wesley, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Childress, Nancy. Class field theory. Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Childress, Nancy. Class field theory. Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Iwasawa, Kenkichi. Local class field theory. Oxford University Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Harari, David. Galois Cohomology and Class Field Theory. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43901-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Nonabelian class field theory"

1

Koch, H. "Class Field Theory." In Algebraic Number Theory. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-58095-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Janusz, Gerald. "Class field theory." In Graduate Studies in Mathematics. American Mathematical Society, 1995. http://dx.doi.org/10.1090/gsm/007/05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Roquette, Peter, and Franz Lemmermeyer. "Class Field Theory." In Lecture Notes in Mathematics. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12880-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Serre, Jean-Pierre. "Class Field Theory." In Graduate Texts in Mathematics. Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-1035-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Childress, Nancy. "Ray Class Groups." In Class Field Theory. Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-72490-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Childress, Nancy. "The Idèlic Theory." In Class Field Theory. Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-72490-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Neukirch, Jürgen. "Part I Cohomology of Finite Groups." In Class Field Theory. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35437-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Neukirch, Jürgen. "Part II Local Class Field Theory." In Class Field Theory. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35437-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Neukirch, Jürgen. "Part III Global Class Field Theory." In Class Field Theory. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35437-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Childress, Nancy. "A Brief Review." In Class Field Theory. Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-72490-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nonabelian class field theory"

1

Spieß, Michael. "Generalized class formations and higher class field theory." In Higher local fields. Mathematical Sciences Publishers, 2000. http://dx.doi.org/10.2140/gtm.2000.3.103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kurihara, Masato. "Kato's higher local class field theory." In Higher local fields. Mathematical Sciences Publishers, 2000. http://dx.doi.org/10.2140/gtm.2000.3.53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fesenko, Ivan. "Explicit higher local class field theory." In Higher local fields. Mathematical Sciences Publishers, 2000. http://dx.doi.org/10.2140/gtm.2000.3.95.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Erez, Boas. "Galois modules and class field theory." In Higher local fields. Mathematical Sciences Publishers, 2000. http://dx.doi.org/10.2140/gtm.2000.3.299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fesenko, Ivan. "Higher class field theory without using K–groups." In Higher local fields. Mathematical Sciences Publishers, 2000. http://dx.doi.org/10.2140/gtm.2000.3.137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fesenko, Ivan. "Parshin's higher local class field theory in characteristic p." In Higher local fields. Mathematical Sciences Publishers, 2000. http://dx.doi.org/10.2140/gtm.2000.3.75.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lahtonen, Jyrki. "Dense MIMO Matrix Lattices and Class Field Theoretic Themes in Their Construction." In 2007 IEEE Information Theory Workshop on Information Theory for Wireless Networks. IEEE, 2007. http://dx.doi.org/10.1109/itwitwn.2007.4318040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"HIERARCHICAL CONDITIONAL RANDOM FIELD FOR MULTI-CLASS IMAGE CLASSIFICATION." In International Conference on Computer Vision Theory and Applications. SciTePress - Science and and Technology Publications, 2010. http://dx.doi.org/10.5220/0002877404640469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sorba, Marianna, and Michele Caselle. "Scaling region of the 3D Ising universality class in finite temperature QCD." In The 38th International Symposium on Lattice Field Theory. Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.396.0387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Klein, Bertram. "Finite Size Scaling for the O(N) universality class from Renormalization Group Methods." In The XXV International Symposium on Lattice Field Theory. Sissa Medialab, 2008. http://dx.doi.org/10.22323/1.042.0198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!