To see the other types of publications on this topic, follow the link: Nonasymptotic.

Journal articles on the topic 'Nonasymptotic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nonasymptotic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Berry, Kenneth J., and Paul W. Mielke. "Nonasymptotic Probability Values for Cochran's Q Statistic: A Fortran 77 Program." Perceptual and Motor Skills 82, no. 1 (1996): 303–6. http://dx.doi.org/10.2466/pms.1996.82.1.303.

Full text
Abstract:
A nonasymptotic inference procedure for Cochran's Q test for the equality of matched proportions is described. An algorithm and FORTRAN 77 program are provided to compute Cochran's Q test statistic and the associated nonasymptotic probability value. The nonasymptotic method provides improvement over the usual asymptotic chi-squared analysis procedure whenever the effective number of subjects is small or the number of successes is small.
APA, Harvard, Vancouver, ISO, and other styles
2

Mielke, Paul W., and Kenneth J. Berry. "Categorical Independence Tests for Large Sparse R-Way Contingency Tables." Perceptual and Motor Skills 95, no. 2 (2002): 606–10. http://dx.doi.org/10.2466/pms.2002.95.2.606.

Full text
Abstract:
A nonasymptotic chi-squared technique is shown to have very useful properties for the analysis of large sparse r-way contingency tables. Examples of analyses of 4 × 5, 5 × 6, 6 × 7. and two 2 × 2 × 2 sparse contingency tables provide comparisons of the nonasymptotic chi-squared technique with asymptotic chi-squared and exact chi-squared techniques. The asymptotic chi-squared analyses yield inflated probability values for the five tables. The nonasymptotic chi-squared technique yields probability values much closer to the exact probability values than the asymptotic chi-squared Technique for th
APA, Harvard, Vancouver, ISO, and other styles
3

Mielke, Paul W., and Kenneth J. Berry. "Nonasymptotic Inferences Based on Cochran's Q Test." Perceptual and Motor Skills 81, no. 1 (1995): 319–22. http://dx.doi.org/10.2466/pms.1995.81.1.319.

Full text
Abstract:
A nonasymptotic inference procedure for Cochran's Q test for the equality of matched proportions is presented. The nonasymptotic method provides improvement over the asymptotic method when there is a small number of subjects and/or a relatively small proportion of successes for subjects.
APA, Harvard, Vancouver, ISO, and other styles
4

Tembine, Hamidou. "Nonasymptotic Mean-Field Games." IFAC Proceedings Volumes 47, no. 3 (2014): 8989–94. http://dx.doi.org/10.3182/20140824-6-za-1003.01869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tembine, Hamidou. "Nonasymptotic Mean-Field Games." IEEE Transactions on Cybernetics 44, no. 12 (2014): 2744–56. http://dx.doi.org/10.1109/tcyb.2014.2315171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ibrahim, Sharif, Kevin Sonnanburg, Thomas J. Asaki, and Kevin R. Vixie. "Nonasymptotic Densities for Shape Reconstruction." Abstract and Applied Analysis 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/341910.

Full text
Abstract:
In this work, we study the problem of reconstructing shapes from simple nonasymptotic densities measured only along shape boundaries. The particular density we study is also known as the integral area invariant and corresponds to the area of a disk centered on the boundary that is also inside the shape. It is easy to show uniqueness when these densities are known for all radii in a neighborhood ofr=0, but much less straightforward when we assume that we only know the area invariant and its derivatives for only oner>0. We present variations of uniqueness results for reconstruction (modulo tr
APA, Harvard, Vancouver, ISO, and other styles
7

Kostina, Victoria, and Sergio Verde. "Nonasymptotic Noisy Lossy Source Coding." IEEE Transactions on Information Theory 62, no. 11 (2016): 6111–23. http://dx.doi.org/10.1109/tit.2016.2562008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Wei, Rafael F. Schaefer, and H. Vincent Poor. "Wiretap Channels: Nonasymptotic Fundamental Limits." IEEE Transactions on Information Theory 65, no. 7 (2019): 4069–93. http://dx.doi.org/10.1109/tit.2019.2904500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ben-Yashar, Ruth, and Jacob Paroush. "A nonasymptotic Condorcet jury theorem." Social Choice and Welfare 17, no. 2 (2000): 189–99. http://dx.doi.org/10.1007/s003550050014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tarantino, Angelo Marcello. "Nonasymptotic solution for antiplane cracks." Meccanica 27, no. 4 (1992): 307–10. http://dx.doi.org/10.1007/bf00424371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Farrell, Max H., Tengyuan Liang, and Sanjog Misra. "Deep Neural Networks for Estimation and Inference." Econometrica 89, no. 1 (2021): 181–213. http://dx.doi.org/10.3982/ecta16901.

Full text
Abstract:
We study deep neural networks and their use in semiparametric inference. We establish novel nonasymptotic high probability bounds for deep feedforward neural nets. These deliver rates of convergence that are sufficiently fast (in some cases minimax optimal) to allow us to establish valid second‐step inference after first‐step estimation with deep learning, a result also new to the literature. Our nonasymptotic high probability bounds, and the subsequent semiparametric inference, treat the current standard architecture: fully connected feedforward neural networks (multilayer perceptrons), with
APA, Harvard, Vancouver, ISO, and other styles
12

Panov, M. E. "Nonasymptotic approach to Bayesian semiparametric inference." Doklady Mathematics 93, no. 2 (2016): 155–58. http://dx.doi.org/10.1134/s1064562416020101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bretagnolle, J., and P. Massart. "Hungarian Constructions from the Nonasymptotic Viewpoint." Annals of Probability 17, no. 1 (1989): 239–56. http://dx.doi.org/10.1214/aop/1176991506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Paouris, G., P. Pivovarov, and P. Valettas. "Gaussian Convex Bodies: a Nonasymptotic Approach." Journal of Mathematical Sciences 238, no. 4 (2019): 537–59. http://dx.doi.org/10.1007/s10958-019-04256-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bou-Rabee, N., and M. Hairer. "Nonasymptotic mixing of the MALA algorithm." IMA Journal of Numerical Analysis 33, no. 1 (2012): 80–110. http://dx.doi.org/10.1093/imanum/drs003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Birge, Lucien. "The Grenader Estimator: A Nonasymptotic Approach." Annals of Statistics 17, no. 4 (1989): 1532–49. http://dx.doi.org/10.1214/aos/1176347380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Boffetta, G., A. Celani, M. Cencini, G. Lacorata, and A. Vulpiani. "Nonasymptotic properties of transport and mixing." Chaos: An Interdisciplinary Journal of Nonlinear Science 10, no. 1 (2000): 50–60. http://dx.doi.org/10.1063/1.166475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Schobinger, Markus, Karl Hollaus, and Igor Tsukerman. "Nonasymptotic Homogenization of Laminated Magnetic Cores." IEEE Transactions on Magnetics 56, no. 2 (2020): 1–4. http://dx.doi.org/10.1109/tmag.2019.2943463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Tang, S., J. V. Sengers, and Z. Y. Chen. "Nonasymptotic critical thermodynamical behavior of fluids." Physica A: Statistical Mechanics and its Applications 179, no. 3 (1991): 344–77. http://dx.doi.org/10.1016/0378-4371(91)90084-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hartmann, Carsten, and Lorenz Richter. "Nonasymptotic Bounds for Suboptimal Importance Sampling." SIAM/ASA Journal on Uncertainty Quantification 12, no. 2 (2024): 309–46. http://dx.doi.org/10.1137/21m1427760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kulkarni, Ankur A., and Negar Kiyavash. "Nonasymptotic Upper Bounds for Deletion Correcting Codes." IEEE Transactions on Information Theory 59, no. 8 (2013): 5115–30. http://dx.doi.org/10.1109/tit.2013.2257917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zielinski, Ryszard. "Stable estimation of location parameter -nonasymptotic approach." Statistics 19, no. 2 (1988): 229–31. http://dx.doi.org/10.1080/02331888808802091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Niedzwiecki, M., and L. Guo. "Nonasymptotic results for finite-memory WLS filters." IEEE Transactions on Automatic Control 36, no. 2 (1991): 198–206. http://dx.doi.org/10.1109/9.67295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Polyakov, A. "Discontinuous Lyapunov Functions for Nonasymptotic Stability Analysis." IFAC Proceedings Volumes 47, no. 3 (2014): 5455–60. http://dx.doi.org/10.3182/20140824-6-za-1003.00867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kadalbajoo, M. K., and Y. N. Reddy. "A nonasymptotic method for singular perturbation problems." Journal of Optimization Theory and Applications 55, no. 1 (1987): 73–84. http://dx.doi.org/10.1007/bf00939045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Csáji, Balázs Csanád, and Bálint Horváth. "Improving Kernel-Based Nonasymptotic Simultaneous Confidence Bands." IFAC-PapersOnLine 56, no. 2 (2023): 10357–62. http://dx.doi.org/10.1016/j.ifacol.2023.10.1047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Berry, Kenneth J., and Paul W. Mielke. "Nonasymptotic Significance Tests for Two Measures of Agreement." Perceptual and Motor Skills 93, no. 1 (2001): 109–14. http://dx.doi.org/10.2466/pms.2001.93.1.109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

BERRY, KENNETH. "NONASYMPTOTIC SIGNIFICANCE TESTS FOR TWO MEASURES OF AGREEMENT." Perceptual and Motor Skills 93, no. 5 (2001): 109. http://dx.doi.org/10.2466/pms.93.5.109-114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Yang, En-Hui, and Jin Meng. "New Nonasymptotic Channel Coding Theorems for Structured Codes." IEEE Transactions on Information Theory 61, no. 9 (2015): 4534–53. http://dx.doi.org/10.1109/tit.2015.2449852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Gutkowski, Karin I., Hugo L. Bianchi, and M. Laura Japas. "Nonasymptotic Critical Behavior of a Ternary Ionic System." Journal of Physical Chemistry B 111, no. 10 (2007): 2554–64. http://dx.doi.org/10.1021/jp067069z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Riabiz, Marina, Tohid Ardeshiri, Ioannis Kontoyiannis, and Simon Godsill. "Nonasymptotic Gaussian Approximation for Inference With Stable Noise." IEEE Transactions on Information Theory 66, no. 8 (2020): 4966–91. http://dx.doi.org/10.1109/tit.2020.2996135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ding, Yichuan, Dongdong Ge, Simai He, and Christopher Thomas Ryan. "A Nonasymptotic Approach to Analyzing Kidney Exchange Graphs." Operations Research 66, no. 4 (2018): 918–35. http://dx.doi.org/10.1287/opre.2017.1717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Levrard, Clément. "Nonasymptotic bounds for vector quantization in Hilbert spaces." Annals of Statistics 43, no. 2 (2015): 592–619. http://dx.doi.org/10.1214/14-aos1293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Durmus, Alain, and Éric Moulines. "Nonasymptotic convergence analysis for the unadjusted Langevin algorithm." Annals of Applied Probability 27, no. 3 (2017): 1551–87. http://dx.doi.org/10.1214/16-aap1238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Long, Yin, Zhi Chen, and Jun Fang. "Nonasymptotic Analysis of Capacity in Massive MIMO Systems." IEEE Wireless Communications Letters 4, no. 5 (2015): 541–44. http://dx.doi.org/10.1109/lwc.2015.2454509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zambianchi, Vincenzo, Francesca Bassi, Alex Calisti, Davide Dardari, Michel Kieffer, and Gianni Pasolini. "Distributed Nonasymptotic Confidence Region Computation Over Sensor Networks." IEEE Transactions on Signal and Information Processing over Networks 4, no. 2 (2018): 308–24. http://dx.doi.org/10.1109/tsipn.2017.2695403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Majka, Mateusz B., Aleksandar Mijatović, and Łukasz Szpruch. "Nonasymptotic bounds for sampling algorithms without log-concavity." Annals of Applied Probability 30, no. 4 (2020): 1534–81. http://dx.doi.org/10.1214/19-aap1535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Boyer, E., P. Forster, and P. Larzabal. "Nonasymptotic Performance Analysis of Beamforming With Stochastic Signals." IEEE Signal Processing Letters 11, no. 1 (2004): 23–25. http://dx.doi.org/10.1109/lsp.2003.819358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Boyer, E., P. Forster, and P. Larzabal. "Nonasymptotic Statistical Performance of Beamforming for Deterministic Signals." IEEE Signal Processing Letters 11, no. 1 (2004): 20–22. http://dx.doi.org/10.1109/lsp.2003.819798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Schirotzek, Winfried. "Nonasymptotic necessary conditions for nonsmooth infinite optimization problems." Journal of Mathematical Analysis and Applications 118, no. 2 (1986): 535–46. http://dx.doi.org/10.1016/0022-247x(86)90280-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Berry, Kenneth J., and Paul W. Mielke. "Spearman's Footrule as a Measure of Agreement." Psychological Reports 80, no. 3 (1997): 839–46. http://dx.doi.org/10.2466/pr0.1997.80.3.839.

Full text
Abstract:
Spearman's footrule measure of the relationship between two sets of ranks is shown to be a chance-corrected measure of agreement. The footrule is generalized to include tied ranks and a comparison with Spearman's rank-order correlation coefficient is provided. Procedures to determine the nonasymptotic probability of the footrule with tied ranks are presented.
APA, Harvard, Vancouver, ISO, and other styles
42

Łatuszyński, Krzysztof, Błażej Miasojedow, and Wojciech Niemiro. "Nonasymptotic bounds on the estimation error of MCMC algorithms." Bernoulli 19, no. 5A (2013): 2033–66. http://dx.doi.org/10.3150/12-bej442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Saha, Ankan, and Ambuj Tewari. "On the Nonasymptotic Convergence of Cyclic Coordinate Descent Methods." SIAM Journal on Optimization 23, no. 1 (2013): 576–601. http://dx.doi.org/10.1137/110840054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Liu, Changyu, Yuling Jiao, Junhui Wang, and Jian Huang. "Nonasymptotic Bounds for Adversarial Excess Risk under Misspecified Models." SIAM Journal on Mathematics of Data Science 6, no. 4 (2024): 847–68. http://dx.doi.org/10.1137/23m1598210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Aamari, Eddie, and Clément Levrard. "Nonasymptotic rates for manifold, tangent space and curvature estimation." Annals of Statistics 47, no. 1 (2019): 177–204. http://dx.doi.org/10.1214/18-aos1685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Bayer, Christian, Håkon Hoel, Erik von Schwerin, and Raúl Tempone. "On NonAsymptotic Optimal Stopping Criteria in Monte Carlo Simulations." SIAM Journal on Scientific Computing 36, no. 2 (2014): A869—A885. http://dx.doi.org/10.1137/130911433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Devroye, Luc, and Gábor Lugosi. "Nonasymptotic universal smoothing factors, kernel complexity and Yatracos classes." Annals of Statistics 25, no. 6 (1997): 2626–37. http://dx.doi.org/10.1214/aos/1030741088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Klopp, Olga, and Marianna Pensky. "Sparse high-dimensional varying coefficient model: Nonasymptotic minimax study." Annals of Statistics 43, no. 3 (2015): 1273–99. http://dx.doi.org/10.1214/15-aos1309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Luo, Jingjing, Li Yu, Jinbei Zhang, and Xinbing Wang. "Nonasymptotic Multicast Throughput and Delay in Multihop Wireless Networks." IEEE Transactions on Vehicular Technology 65, no. 7 (2016): 5525–37. http://dx.doi.org/10.1109/tvt.2015.2465963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Datta, Somnath. "Some Nonasymptotic Bounds for $L_1$ Density Estimation using Kernels." Annals of Statistics 20, no. 3 (1992): 1658–67. http://dx.doi.org/10.1214/aos/1176348791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!