Academic literature on the topic 'Nonconforming finite element'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nonconforming finite element.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nonconforming finite element"

1

Shi, Zhong-Ci. "Nonconforming finite element methods." Journal of Computational and Applied Mathematics 149, no. 1 (2002): 221–25. http://dx.doi.org/10.1016/s0377-0427(02)00531-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Youai. "New Error Estimates of Nonconforming Finite Element Methods for the Poisson Problem with Low Regularity Solution." Advances in Applied Mathematics and Mechanics 6, no. 2 (2014): 179–90. http://dx.doi.org/10.4208/aamm.12-m12126.

Full text
Abstract:
AbstractIn this paper, we revisit a priori error analysis of nonconforming finite element methods for the Poisson problem. Based on some techniques developed in the context of the a posteriori error analysis, under two reasonable assumptions on the nonconforming finite element spaces, we prove that, up to some oscillation terms, the consistency error can be bounded by the approximation error. We check these two assumptions for the most used lower order nonconforming finite element methods. Compared with the classical error analysis of the nonconforming finite element method, the a priori analy
APA, Harvard, Vancouver, ISO, and other styles
3

Goldstein, Charles I. "Preconditioning Nonconforming Finite Element Methods." SIAM Journal on Numerical Analysis 31, no. 6 (1994): 1623–44. http://dx.doi.org/10.1137/0731084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Han, Xiaole, Yu Li, and Hehu Xie. "A Multilevel Correction Method for Steklov Eigenvalue Problem by Nonconforming Finite Element Methods." Numerical Mathematics: Theory, Methods and Applications 8, no. 3 (2015): 383–405. http://dx.doi.org/10.4208/nmtma.2015.m1334.

Full text
Abstract:
AbstractIn this paper, a multilevel correction scheme is proposed to solve the Steklov eigenvalue problem by nonconforming finite element methods. With this new scheme, the accuracy of eigenpair approximations can be improved after each correction step which only needs to solve a source problem on finer finite element space and an Steklov eigenvalue problem on the coarsest finite element space. This correction scheme can increase the overall efficiency of solving eigenvalue problems by the nonconforming finite element method. Furthermore, as same as the direct eigenvalue solving by nonconformi
APA, Harvard, Vancouver, ISO, and other styles
5

Lim, Roktaek, and Dongwoo Sheen. "Nonconforming Finite Element Method Applied to the Driven Cavity Problem." Communications in Computational Physics 21, no. 4 (2017): 1012–38. http://dx.doi.org/10.4208/cicp.oa-2016-0039.

Full text
Abstract:
AbstractA cheapest stable nonconforming finite element method is presented for solving the incompressible flow in a square cavity without smoothing the corner singularities. The stable cheapest nonconforming finite element pair based on P1×P0 on rectangularmeshes [29] is employed with a minimal modification of the discontinuous Dirichlet data on the top boundary, where is the finite element space of piecewise constant pressures with the globally one-dimensional checker-board pattern subspace eliminated. The proposed Stokes elements have the least number of degrees of freedom compared to those
APA, Harvard, Vancouver, ISO, and other styles
6

Hu, Jun, and Mira Schedensack. "Two low-order nonconforming finite element methods for the Stokes flow in three dimensions." IMA Journal of Numerical Analysis 39, no. 3 (2018): 1447–70. http://dx.doi.org/10.1093/imanum/dry021.

Full text
Abstract:
Abstract In this paper, we propose two low-order nonconforming finite element methods (FEMs) for the three-dimensional Stokes flow that generalize the nonconforming FEM of Kouhia & Stenberg (1995, A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow. Comput. Methods Appl. Mech. Eng, 124, 195–212). The finite element spaces proposed in this paper consist of two globally continuous components (one piecewise affine and one enriched component) and one component that is continuous at the midpoints of interior faces. We prove that the discrete Korn in
APA, Harvard, Vancouver, ISO, and other styles
7

Dond, Asha K., Thirupathi Gudi, and Neela Nataraj. "A Nonconforming Finite Element Approximation for Optimal Control of an Obstacle Problem." Computational Methods in Applied Mathematics 16, no. 4 (2016): 653–66. http://dx.doi.org/10.1515/cmam-2016-0024.

Full text
Abstract:
AbstractThe article deals with the analysis of a nonconforming finite element method for the discretization of optimization problems governed by variational inequalities. The state and adjoint variables are discretized using Crouzeix–Raviart nonconforming finite elements, and the control is discretized using a variational discretization approach. Error estimates have been established for the state and control variables. The results of numerical experiments are presented.
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, Imbunm, Zhongxuan Luo, Zhaoliang Meng, Hyun Nam, Chunjae Park, and Dongwoo Sheen. "A piecewiseP2-nonconforming quadrilateral finite element." ESAIM: Mathematical Modelling and Numerical Analysis 47, no. 3 (2013): 689–715. http://dx.doi.org/10.1051/m2an/2012044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hu, Jun, and Shangyou Zhang. "A Cubic H3-Nonconforming Finite Element." Communications on Applied Mathematics and Computation 1, no. 1 (2019): 81–100. http://dx.doi.org/10.1007/s42967-019-0009-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Achchab, Boujemâa, Abdellatif Agouzal, and Khalid Bouihat. "A simple nonconforming quadrilateral finite element." Comptes Rendus Mathematique 352, no. 6 (2014): 529–33. http://dx.doi.org/10.1016/j.crma.2014.03.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Nonconforming finite element"

1

Zhang, Xu. "Nonconforming Immersed Finite Element Methods for Interface Problems." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/20380.

Full text
Abstract:
In science and engineering, many simulations are carried out over domains consisting of<br />multiple materials separated by curves/surfaces. If partial differential equations (PDEs)<br />are used to model these simulations, it usually leads to the so-called interface problems of<br />PDEs whose coefficients are discontinuous. In this dissertation, we consider nonconforming<br />immersed "nite element (IFE) methods and error analysis for interface problems.<br /><br />We "first consider the second order elliptic interface problem with a discontinuous diffusion<br />coefficient. We propose new
APA, Harvard, Vancouver, ISO, and other styles
2

KEUM, BANGYONG. "ANALYSIS OF 3-D CONTACT MECHANICS PROBLEMS BY THE FINITE ELEMENT AND BOUNDARY ELEMENT METHODS." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1054815631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rabus, Hella. "On the quasi-optimal convergence of adaptive nonconforming finite element methods in three examples." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2014. http://dx.doi.org/10.18452/16970.

Full text
Abstract:
Eine Vielzahl von Anwendungen in der numerischen Simulation der Strömungsdynamik und der Festkörpermechanik begründen die Entwicklung von zuverlässigen und effizienten Algorithmen für nicht-standard Methoden der Finite-Elemente-Methode (FEM). Um Freiheitsgrade zu sparen, wird in jedem Durchlauf des adaptiven Algorithmus lediglich ein Teil der Gebiete verfeinert. Einige Gebiete bleiben daher möglicherweise verhältnismäßig grob. Die Analyse der Konvergenz und vor allem die der Optimalität benötigt daher über die a priori Fehleranalyse hinausgehende Argumente. Etablierte adaptive Algorithmen
APA, Harvard, Vancouver, ISO, and other styles
4

ZANOTTI, PIETRO. "QUASI-OPTIMAL NONCONFORMING METHODS FOR SYMMETRIC ELLIPTIC PROBLEMS." Doctoral thesis, Università degli Studi di Milano, 2018. http://hdl.handle.net/2434/549113.

Full text
Abstract:
In this PhD thesis we characterize quasi-optimal nonconforming methods for symmetric elliptic linear variational problems and investigate their structure. The abstract analysis is complemented by various applications and numerical tests in the finite element framework. In the first part of the thesis we introduce a rather large class of nonconforming methods, mimicking the variational structure of the model problem. Then, we characterize the subclass of quasi-optimal methods in terms of suitable notions of stability and consistency. We determine also the quasi-optimality constant and obse
APA, Harvard, Vancouver, ISO, and other styles
5

Ōmori, Katsushi. "An upstream nonconforming finite element method and its applications = Jōryūgata hi tekigō yūgen yōsohō to sono ōyō /." Electronic version of summary, 1988. http://www.wul.waseda.ac.jp/gakui/gaiyo/1475.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gallistl, Dietmar. "Adaptive finite element computation of eigenvalues." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2014. http://dx.doi.org/10.18452/17002.

Full text
Abstract:
Gegenstand dieser Arbeit ist die numerische Approximation von Eigenwerten elliptischer Differentialoperatoren vermittels der adaptiven finite-Elemente-Methode (AFEM). Durch lokale Netzverfeinerung können derartige Verfahren den Rechenaufwand im Vergleich zu uniformer Verfeinerung deutlich reduzieren und sind daher von großer praktischer Bedeutung. Diese Arbeit behandelt adaptive Algorithmen für Finite-Elemente-Methoden (FEMs) für drei selbstadjungierte Modellprobleme: den Laplaceoperator, das Stokes-System und den biharmonischen Operator. In praktischen Anwendungen führen Störungen der Koef
APA, Harvard, Vancouver, ISO, and other styles
7

Hellwig, Friederike. "Adaptive Discontinuous Petrov-Galerkin Finite-Element-Methods." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20034.

Full text
Abstract:
Die vorliegende Arbeit "Adaptive Discontinuous Petrov-Galerkin Finite-Element-Methods" beweist optimale Konvergenzraten für vier diskontinuierliche Petrov-Galerkin (dPG) Finite-Elemente-Methoden für das Poisson-Modell-Problem für genügend feine Anfangstriangulierung. Sie zeigt dazu die Äquivalenz dieser vier Methoden zu zwei anderen Klassen von Methoden, den reduzierten gemischten Methoden und den verallgemeinerten Least-Squares-Methoden. Die erste Klasse benutzt ein gemischtes System aus konformen Courant- und nichtkonformen Crouzeix-Raviart-Finite-Elemente-Funktionen. Die zweite Klasse veral
APA, Harvard, Vancouver, ISO, and other styles
8

Rabus, Hella [Verfasser], Carsten [Akademischer Betreuer] Carstensen, Susanne C. [Akademischer Betreuer] Brenner, and Ronald H. W. [Akademischer Betreuer] Hoppe. "On the quasi-optimal convergence of adaptive nonconforming finite element methods in three examples / Hella Rabus. Gutachter: Carsten Carstensen ; Susanne C. Brenner ; Ronald H.W. Hoppe." Berlin : Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2014. http://d-nb.info/1052101992/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chernov, Alexey. "Nonconforming boundary elements and finite elements for interface and contact problems with friction hp-version for mortar, penalty and Nitsche's methods /." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=981952364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ali, Hassan Sarah. "Estimations d'erreur a posteriori et critères d'arrêt pour des solveurs par décomposition de domaine et avec des pas de temps locaux." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066098/document.

Full text
Abstract:
Cette thèse développe des estimations d’erreur a posteriori et critères d’arrêt pour les méthodes de décomposition de domaine avec des conditions de transmission de Robin optimisées entre les interfaces. Différents problèmes sont considérés: l’équation de Darcy stationnaire puis l’équation de la chaleur, discrétisées par les éléments finis mixtes avec un schéma de Galerkin discontinu de plus bas degré en temps pour le second cas. Pour l’équation de la chaleur, une méthode de décomposition de domaine globale en temps, avec mêmes ou différents pas de temps entre les différents sous domaines, est
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Nonconforming finite element"

1

Gu, Jinsheng. Domain decomposition methods for nonconforming finite element discretizations. Nova Science Publishers, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maday, Yvon. Nonconforming mortar element methods: Application to spectral discretizations. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kang, Kab Seok. P1 nonconforming finite element method for the solution of radiation transport problems. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nonconforming finite element"

1

Yin, Hongwu, Buying Zhang, and Qiumei Liu. "Nonconforming Finite Element Method for Nonlinear Parabolic Equations." In Communications in Computer and Information Science. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16339-5_65.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Andreev, A. B., and M. R. Racheva. "On a Type of Nonconforming Morley Rectangular Finite Element." In Numerical Methods and Applications. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15585-2_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Roos, H. G., D. Adam, and A. Felgenhauer. "A Nonconforming Uniformly Convergent Finite Element Method in Two Dimensions." In Numerical methods for the Navier-Stokes equations. Vieweg+Teubner Verlag, 1994. http://dx.doi.org/10.1007/978-3-663-14007-8_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Turek, Stefan. "Tools for Predicting Incompressible Flows via Nonconforming Finite Element Models." In Computational Methods in Water Resources X. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-010-9204-3_152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Andreev, A. B., and M. R. Racheva. "Properties and Estimates of an Integral Type Nonconforming Finite Element." In Large-Scale Scientific Computing. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29843-1_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Eymard, Robert, Danielle Hilhorst, and Martin Vohralík. "Combined Nonconforming/Mixed-hybrid Finite Element-Finite Volume Scheme for Degenerate Parabolic Problems." In Numerical Mathematics and Advanced Applications. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18775-9_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Zhimin. "Nonconforming, Enhanced Strain, and Mixed Finite Element Methods — A Unified Approach." In Lecture Notes in Computational Science and Engineering. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59721-3_49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

El Moutea, Omar, and Hassan El Amri. "Combined Mixed Finite Element, Nonconforming Finite Volume Methods for Flow and Transport -Nitrate- in Porous Media." In Advances in Intelligent Systems and Computing. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11928-7_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chernov, Alexey, and Peter Hansbo. "An hp-Nitsche’s Method for Interface Problems with Nonconforming Unstructured Finite Element Meshes." In Lecture Notes in Computational Science and Engineering. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15337-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhao, Yanmin, Dongwei Shi, and Liang Wu. "Nonconforming H 1-Galerkin Mixed Finite Element Method for Dispersive-Dissipative Wave Equation." In Communications in Computer and Information Science. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24999-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nonconforming finite element"

1

Liuchao Xiao, Yongqin Yang, and Huixia Sun. "A stable nonconforming finite element method for Darcy-Stokes flow." In 2011 International Conference on Electric Information and Control Engineering (ICEICE). IEEE, 2011. http://dx.doi.org/10.1109/iceice.2011.5777241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Jingzhou, Charlie Yongpravat, Marc D. Dyrszka, William N. Levine, Thomas R. Gardner, and Christopher S. Ahmad. "Effect of Implant Shape and Material Properties on Stresses in the Glenoid Components of Total Shoulder Arthroplasties: A Finite Element Analysis." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19494.

Full text
Abstract:
The geometry of the glenohumeral joint is osseous, naturally nonconforming and minimally constrained, thus the essential requirement of a glenohumeral prosthesis in total shoulder arthroplasty (TSA) is prevention of joint degeneration and glenoid loosening. A variety of glenoid prostheses have been developed. Nonconforming glenohumeral implants are common for TSA. However, the nonconforming shape increases the instability when the humeral head is in the central region, where motion frequently occurs. Conforming implants can increase joint stability, but the “rocking-horse” effect [1] caused by
APA, Harvard, Vancouver, ISO, and other styles
3

Noyes, David, and Itzhak Green. "Finite Element Analysis of Structural and Electromagnetic Effects on Asperity Contacts." In ASME/STLE 2009 International Joint Tribology Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/ijtc2009-15104.

Full text
Abstract:
This work presents a combination of two dimensional (2D) and three dimensional (3D) finite element analysis (FEA) of structural and electrical contact between two nonconforming hemispheres at various vertical interferences. Items of particular interest include contact forces, current densities, and magnetic forces. The results are normalized to be applicable to micro and macro-scaled contact models. To test the validity of the analysis, the results are compared to another work focusing on contact between a hemisphere and rigid flat.
APA, Harvard, Vancouver, ISO, and other styles
4

Vagin, D. V. "Usage of nonconforming meshes for solving geoelectric tasks by nodal finite element method." In 2008 9th International Scientific-Technical Conference on Actual Problems of Electronic Instrument Engineering (APEIE). IEEE, 2008. http://dx.doi.org/10.1109/apeie.2008.4897182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xiao, Yuhui, Jianping Zhao, and Yanren Hou. "Nonconforming finite element scheme for constrained optimal control problems governed by Maxwell’s equations." In 2023 3rd International Conference on Applied Mathematics, Modelling and Intelligent Computing (CAMMIC 2023), edited by Xuebin Chen and Hari Mohan Srivastava. SPIE, 2023. http://dx.doi.org/10.1117/12.2686145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vacek, K., and P. Sváček. "On Finite Element Approximation of Incompressible Flow Problems: Comparison of Pressure Correction Methods and Coupled Approach." In Topical Problems of Fluid Mechanics 2022. Institute of Thermomechanics of the Czech Academy of Sciences, 2022. http://dx.doi.org/10.14311/tpfm.2022.023.

Full text
Abstract:
The article focuses on comparison of discretizations of the Navier-Stokes equations using the nite element method. Several choices of nite element spaces are discussed. First, the conforming spaces (TH, SV) are used. Second, the nonconforming equal order choice of P1/P1 elements is made. For the latter case the discrete equations are solved by a pressure correction scheme for the Taylor-Hood and Scott-Vogelius elements, the arising system is solved by a direct solver. The numerical results are compared to experimental and reference data. Methods are applied for the flow over the backward-facin
APA, Harvard, Vancouver, ISO, and other styles
7

Nasser, Huda Karem, Asaad Shakir Hameed, Modhi Lafta Mutar, Haiffa Muhsan B. Alrikabi, and Abeer A. Abdul–Razaq. "Superconvergence of conforming and nonconforming finite element approximation for elliptic problems by L2-projection." In AL-KADHUM 2ND INTERNATIONAL CONFERENCE ON MODERN APPLICATIONS OF INFORMATION AND COMMUNICATION TECHNOLOGY. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0121984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fan, Mingzhi, and Fenling Wang. "Nonconforming H1-Galerkin mixed finite element method for nonlinear sine-Gordon equations." In 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, 2012. http://dx.doi.org/10.1109/cecnet.2012.6202068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhao, Yanpu, Chen Zhang, Changzhi Peng, and Xuzhu Dong. "Fast Inductance Extraction for Sweeping Coil Positions Based on Nonconforming Finite Element Method and Dual Formulations." In 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2020. http://dx.doi.org/10.1109/ei250167.2020.9346597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dongwei Shi, Lifang Pei, Rui Dong, and Changzai Zhao. "Convergence analysis of the modified P1 - nonconforming finite element for a class of nonlinear parabolic equation." In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!