Academic literature on the topic 'Nonconvex programming'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nonconvex programming.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nonconvex programming"
Falk, James E., and Ferenc Forgo. "Nonconvex Programming." Mathematics of Computation 53, no. 187 (July 1989): 449. http://dx.doi.org/10.2307/2008379.
Full textMukai, Hiro. "Nonconvex programming." European Journal of Operational Research 42, no. 1 (September 1989): 105–6. http://dx.doi.org/10.1016/0377-2217(89)90064-7.
Full textJiao, Hongwei, and Yongqiang Chen. "A Global Optimization Algorithm for Generalized Quadratic Programming." Journal of Applied Mathematics 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/215312.
Full textScholtes, Stefan. "Nonconvex Structures in Nonlinear Programming." Operations Research 52, no. 3 (June 2004): 368–83. http://dx.doi.org/10.1287/opre.1030.0102.
Full textPardalos, Panos M., and G. M. Guisewite. "Parallel computing in nonconvex programming." Annals of Operations Research 43, no. 2 (February 1993): 87–107. http://dx.doi.org/10.1007/bf02024487.
Full textAntczak, Tadeusz. "Sufficient optimality conditions for semi-infinite multiobjective fractional programming under (Ф,ρ)-V-invexity and generalized (Ф,ρ)-V-invexity." Filomat 30, no. 14 (2016): 3649–65. http://dx.doi.org/10.2298/fil1614649a.
Full textKUMAR, NARENDER, R. K. BUDHRAJA, and APARNA MEHRA. "APPROXIMATE EFFICIENCY FOR n-SET MULTIOBJECTIVE FRACTIONAL PROGRAMMING." Asia-Pacific Journal of Operational Research 21, no. 02 (June 2004): 197–206. http://dx.doi.org/10.1142/s0217595904000199.
Full textMoloshnyuk, A. N. "A duality relation in nonconvex programming." Journal of Soviet Mathematics 41, no. 3 (May 1988): 1050–53. http://dx.doi.org/10.1007/bf01103261.
Full textForsgren, Anders. "Optimality conditions for nonconvex semidefinite programming." Mathematical Programming 88, no. 1 (June 2000): 105–28. http://dx.doi.org/10.1007/pl00011370.
Full textAntczak, Tadeusz. "Saddle point criteria in semi-infinite minimax fractional programming under (Φ,ρ)-invexity." Filomat 31, no. 9 (2017): 2557–74. http://dx.doi.org/10.2298/fil1709557a.
Full textDissertations / Theses on the topic "Nonconvex programming"
Vielma, Centeno Juan Pablo. "Mixed integer programming approaches for nonlinear and stochastic programming." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29624.
Full textCommittee Chair: Nemhauser, George; Committee Co-Chair: Ahmed, Shabbir; Committee Member: Bill Cook; Committee Member: Gu, Zonghao; Committee Member: Johnson, Ellis. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Chen, Jieqiu. "Convex relaxations in nonconvex and applied optimization." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/654.
Full textVandenbussche, Dieter. "Polyhedral approaches to solving nonconvex quadratic programs." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/23385.
Full textWang, Hongjie. "Global Optimization of Nonconvex Factorable Programs with Applications to Engineering Design Problems." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36823.
Full textMaster of Science
Hu, Sha S. M. Massachusetts Institute of Technology. "Semidefinite relaxation based branch-and-bound method for nonconvex quadratic programming." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/39217.
Full textIncludes bibliographical references (leaves 73-75).
In this thesis, we use a semidefinite relaxation based branch-and-bound method to solve nonconvex quadratic programming problems. Firstly, we show an interval branch-and-bound method to calculate the bounds for the minimum of bounded polynomials. Then we demonstrate four SDP relaxation methods to solve nonconvex Box constrained Quadratic Programming (BoxQP) problems and the comparison of the four methods. For some lower dimensional problems, SDP relaxation methods can achieve tight bounds for the BoxQP problem; whereas for higher dimensional cases (more than 20 dimensions), the bounds achieved by the four Semidefinite programming (SDP) relaxation methods are always loose. To achieve tight bounds for higher dimensional BoxQP problems, we combine the branch-and-bound method and SDP relaxation method to develop an SDP relaxation based branch-and-bound (SDPBB) method. We introduce a sensitivity analysis method for the branching process of SDPBB. This sensitivity analysis method can improve the convergence speed significantly.
(cont.) Compared to the interval branch-and-bound method and the global optimization software BARON, SDPBB can achieve better bounds and is also much more efficient. Additionally, we have developed a multisection algorithm for SDPBB and the multisection algorithm has been parallelized using Message Passing Interface (MPI). By parallelizing the program, we can significantly improve the speed of solving higher dimensional BoxQP problems.
by Sha Hu.
S.M.
Mankau, Jan Peter. "A Nonsmooth Nonconvex Descent Algorithm." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-217556.
Full textIn vielen Anwendungen tauchen nichtglatte, nichtkonvexe, Lipschitz-stetige Energie Funktionen in natuerlicher Weise auf. Ein klassische Beispiel bildet die Kontaktmechanik mit Reibung. Ein weiteres Beispiel ist der $1$-Laplace Operator und seine Eigenfunktionen. In dieser Dissertation werden wir ein Abstiegsverfahren angeben, so dass fuer jede lokal Lipschitz-stetige Funktion f jeder Haeufungspunkt einer durch dieses Verfahren erzeugten Folge ein kritischer Punkt von f im Sinne von Clarke ist. Hier ist f auf einem einem reflexiver, strikt konvexem Banachraum definierert, fuer den der Dualraum ebenfalls strikt konvex ist und die Clarkeson Ungleichungen gelten. (Z.B. Sobolevraeume und jeder abgeschlossene Unterraum mit der Sobolevnorm versehen, erfuellt diese Bedingung fuer p>1.) Dieser Algorithmus ist primaer entwickelt worden um Variationsprobleme, bzw. deren hochdimensionalen Diskretisierungen zu loesen. Er kann aber auch fuer eine Vielzahl anderer lokal Lipschitz stetige Funktionen eingesetzt werden. In der elastischen Kontaktmechanik ist die Spannungsenergie oft glatt und nichtkonvex auf einem geeignetem Definitionsbereich, waehrend der Kontakt und die Reibung durch nicht glatte Funktionen modelliert werden, deren Traeger ein Unterraum mit wesentlich kleineren Dimension ist, da alle Punkte im Inneren des Koerpers nur die Spannungsenergie beeinflussen. Fuer solche elastischen Kontaktprobleme schlagen wir eine Spezialisierung unseres Algorithmuses vor, der den glatten Teil mit Newton aehnlichen Methoden behandelt. Falls der Gradient der gesamten Energiefunktion semiglatt in der Naehe der Minimalstelle ist, koennen wir sogar beweisen, dass der Algorithmus superlinear konvergiert. Wir testen den Algorithmus und seine Spezialisierung an mehreren Benchmark Problemen. Ausserdem wenden wir den Algorithmus auf 1-Laplace Minimierungsproblem eingeschraenkt auf eine endlich dimensionalen Unterraum der stueckweise affinen, stetigen Funktionen an. Der hier entwickelte Algorithmus verwendet Ideen des Bundle-Trust-Region-Verfahrens von Schramm, und einen neu entwickelten Verallgemeinerung von Gradienten auf Mengen. Die zentrale Idee hinter den Gradienten auf Mengen ist die, dass wir stabile Abstiegsrichtungen auf einer ganzen Umgebung der Iterationspunkte finden wollen. Auf diese Weise vermeiden wir das Oszillieren der Gradienten und sehr kleine Abstiegsschritte (im glatten, wie im nichtglatten Fall.) Es stellt sich heraus, dass das normkleinste Element dieses Gradienten auf der Umgebung eine stabil Abstiegsrichtung bestimmt. So weit es uns bekannt ist, koennen die hier entwickelten Algorithmen zum ersten Mal lokal Lipschitz-stetige Funktionen in dieser Allgemeinheit behandeln. Insbesondere wurden nichtglatte, nichtkonvexe Funktionen auf derart hochdimensionale Banachraeume bis jetzt nicht behandelt. Wir werden zeigen, dass unser Algorithmus sehr robust und oft schneller als uebliche Algorithmen ist. Des Weiteren, werden wir sehen, dass es mit diesem Algorithmus das erste mal moeglich ist, zuverlaessig die erste Eigenfunktion des 1-Laplace Operators bis auf Diskretisierungsfehler zu bestimmen
Kleniati, Polyxeni M. "Decomposition schemes for polynomial optimisation, semidefinite programming and applications to nonconvex portfolio decisions." Thesis, Imperial College London, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509792.
Full textFraticelli, Barbara M. P. "Semidefinite Cuts and Partial Convexification Techniques with Applications to Continuous Nonconvex Optimization, Stochastic Integer Programming, and Facility Layout Problems." Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/27293.
Full textPh. D.
Yang, Boshi. "A conic optimization approach to variants of the trust region subproblem." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/1938.
Full textCui, Lei. "Topics in image recovery and image quality assessment /Cui Lei." HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/368.
Full textBooks on the topic "Nonconvex programming"
Relaxation and decomposition methods for mixed integer nonlinear programming. Boston, MA: Birkhäuser Verlag, 2005.
Find full textGao, David Yang. Duality principles in nonconvex systems: Theory, methods, and applications. Dordrecht: Kluwer Academic Publishers, 2000.
Find full textGao, David Yang. Duality Principles in Nonconvex Systems: Theory, Methods and Applications. Boston, MA: Springer US, 2000.
Find full textSherali, Hanif D. A reformulation-linearization technique for solving discrete and continuous nonconvex problems. Dordrecht: Kluwer Academic, 1998.
Find full textV, Kalashnikov V., ed. Optimization with multivalued mappings: Theory, applications, and algorithms. New York: Springer, 2006.
Find full textSherali, Hanif D. A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Boston, MA: Springer US, 1999.
Find full textE, Stavroulakis G., ed. Nonconvex optimization in mechanics: Algorithms, heuristics, and engineering applications by the F.E.M. Dordrecht: Kluwer Academic Publishers, 1998.
Find full textXiaoqi, Yang, ed. Lagrange-type functions in constrained non-convex optimization. Boston: Kluwer Academic Publishers, 2003.
Find full textBühlmann, Peter. Statistics for High-Dimensional Data: Methods, Theory and Applications. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textBook chapters on the topic "Nonconvex programming"
Tuy, Hoang. "Nonconvex Quadratic Programming." In Nonconvex Optimization and Its Applications, 277–318. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-2809-5_8.
Full textTuy, Hoang. "Nonconvex Quadratic Programming." In Springer Optimization and Its Applications, 337–90. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31484-6_10.
Full textGlover, B. M., and V. Jeyakumar. "Abstract nonsmooth nonconvex programming." In Lecture Notes in Economics and Mathematical Systems, 186–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-46802-5_16.
Full textHorst, Reiner, Panos M. Pardalos, and Nguyen V. Thoai. "Quadratic Programming." In Nonconvex Optimization and Its Applications, 49–107. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-0015-5_2.
Full textHorst, Reiner, Panos M. Pardalos, and Nguyen V. Thoai. "D.C. Programming." In Nonconvex Optimization and Its Applications, 195–235. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-0015-5_4.
Full textBard, Jonathan F. "Linear Programming." In Nonconvex Optimization and Its Applications, 17–75. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-2836-1_2.
Full textBard, Jonathan F. "Integer Programming." In Nonconvex Optimization and Its Applications, 76–136. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-2836-1_3.
Full textBard, Jonathan F. "Nonlinear Programming." In Nonconvex Optimization and Its Applications, 137–92. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-2836-1_4.
Full textDu, Ding-Zhu, Panos M. Pardalos, and Weili Wu. "Semidefinite Programming." In Nonconvex Optimization and Its Applications, 201–13. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-5795-8_13.
Full textDu, Ding-Zhu, Panos M. Pardalos, and Weili Wu. "Linear Programming." In Nonconvex Optimization and Its Applications, 23–40. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-5795-8_2.
Full textConference papers on the topic "Nonconvex programming"
Sakawa, M., and I. Nishizaki. "Interactive fuzzy programming for two-level nonconvex programming problems through the revised GENOCOP III." In Proceedings of 8th International Fuzzy Systems Conference. IEEE, 1999. http://dx.doi.org/10.1109/fuzzy.1999.790174.
Full textYou, Sixiong, and Ran Dai. "Local Optimization of Nonconvex Mixed-Integer Quadratically Constrained Quadratic Programming Problems." In 2020 59th IEEE Conference on Decision and Control (CDC). IEEE, 2020. http://dx.doi.org/10.1109/cdc42340.2020.9304368.
Full textWu, Pengxia, Hui Ma, and Julian Cheng. "Sparse Channel Reconstruction With Nonconvex Regularizer via DC Programming for Massive MIMO Systems." In GLOBECOM 2020 - 2020 IEEE Global Communications Conference. IEEE, 2020. http://dx.doi.org/10.1109/globecom42002.2020.9347964.
Full textEremeev, A. V., N. N. Tyunin, and A. S. Yurkov. "THE RESEARCH OF ONE PROBLEM NONCONVEX QUADRATIC PROGRAMMING IN SHORTWAVE ANTENNA ARRAY OPTIMIZATION." In V International Scientific and Technical Conference "Radio Engineering, Electronics and Communication". Omsk Scientific-Research Institute of Instrument Engineering, 2019. http://dx.doi.org/10.33286/978-5-6041917-2-9.171-174.
Full textXiuyu Wang, Xingwu Jiang, Taishan Yang, and Qinghuai Liu. "The homotopy interior point method for solving a class of nonlinear nonconvex programming problems." In 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icacte.2010.5579065.
Full textHe Li, Wang Xiu-yu, Jin Jian-lu, and Qing-huai Liu. "A combined homotopy method for nonconvex multi-objective programming problem with equality and inequality constrains." In 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE 2010). IEEE, 2010. http://dx.doi.org/10.1109/cmce.2010.5609630.
Full textLi, Hecheng, and Yuping Wang. "A real-binary coded genetic algorithm for solving nonlinear bilevel programming with nonconvex objective functions." In 2011 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2011. http://dx.doi.org/10.1109/cec.2011.5949927.
Full textXu, Junyan, Qinghuai Liu, and Zhuang Miao. "A Combined Homotopy Method for Solving a Nonconvex Programming with a Class of Pseudo Cone Condition." In 2011 International Conference on Computational and Information Sciences (ICCIS). IEEE, 2011. http://dx.doi.org/10.1109/iccis.2011.22.
Full textSandgren, E., and T. Dworak. "Part Layout Optimization Using a Quadtree Representation." In ASME 1988 Design Technology Conferences. American Society of Mechanical Engineers, 1988. http://dx.doi.org/10.1115/detc1988-0027.
Full textMen, Han, Robert M. Freund, Ngoc C. Nguyen, Joel Saa-Seoane, and Jaime Peraire. "Designing Phononic Crystals With Convex Optimization." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64694.
Full text