Dissertations / Theses on the topic 'Nonconvex programming'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 28 dissertations / theses for your research on the topic 'Nonconvex programming.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Vielma, Centeno Juan Pablo. "Mixed integer programming approaches for nonlinear and stochastic programming." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29624.
Full textCommittee Chair: Nemhauser, George; Committee Co-Chair: Ahmed, Shabbir; Committee Member: Bill Cook; Committee Member: Gu, Zonghao; Committee Member: Johnson, Ellis. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Chen, Jieqiu. "Convex relaxations in nonconvex and applied optimization." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/654.
Full textVandenbussche, Dieter. "Polyhedral approaches to solving nonconvex quadratic programs." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/23385.
Full textWang, Hongjie. "Global Optimization of Nonconvex Factorable Programs with Applications to Engineering Design Problems." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36823.
Full textMaster of Science
Hu, Sha S. M. Massachusetts Institute of Technology. "Semidefinite relaxation based branch-and-bound method for nonconvex quadratic programming." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/39217.
Full textIncludes bibliographical references (leaves 73-75).
In this thesis, we use a semidefinite relaxation based branch-and-bound method to solve nonconvex quadratic programming problems. Firstly, we show an interval branch-and-bound method to calculate the bounds for the minimum of bounded polynomials. Then we demonstrate four SDP relaxation methods to solve nonconvex Box constrained Quadratic Programming (BoxQP) problems and the comparison of the four methods. For some lower dimensional problems, SDP relaxation methods can achieve tight bounds for the BoxQP problem; whereas for higher dimensional cases (more than 20 dimensions), the bounds achieved by the four Semidefinite programming (SDP) relaxation methods are always loose. To achieve tight bounds for higher dimensional BoxQP problems, we combine the branch-and-bound method and SDP relaxation method to develop an SDP relaxation based branch-and-bound (SDPBB) method. We introduce a sensitivity analysis method for the branching process of SDPBB. This sensitivity analysis method can improve the convergence speed significantly.
(cont.) Compared to the interval branch-and-bound method and the global optimization software BARON, SDPBB can achieve better bounds and is also much more efficient. Additionally, we have developed a multisection algorithm for SDPBB and the multisection algorithm has been parallelized using Message Passing Interface (MPI). By parallelizing the program, we can significantly improve the speed of solving higher dimensional BoxQP problems.
by Sha Hu.
S.M.
Mankau, Jan Peter. "A Nonsmooth Nonconvex Descent Algorithm." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-217556.
Full textIn vielen Anwendungen tauchen nichtglatte, nichtkonvexe, Lipschitz-stetige Energie Funktionen in natuerlicher Weise auf. Ein klassische Beispiel bildet die Kontaktmechanik mit Reibung. Ein weiteres Beispiel ist der $1$-Laplace Operator und seine Eigenfunktionen. In dieser Dissertation werden wir ein Abstiegsverfahren angeben, so dass fuer jede lokal Lipschitz-stetige Funktion f jeder Haeufungspunkt einer durch dieses Verfahren erzeugten Folge ein kritischer Punkt von f im Sinne von Clarke ist. Hier ist f auf einem einem reflexiver, strikt konvexem Banachraum definierert, fuer den der Dualraum ebenfalls strikt konvex ist und die Clarkeson Ungleichungen gelten. (Z.B. Sobolevraeume und jeder abgeschlossene Unterraum mit der Sobolevnorm versehen, erfuellt diese Bedingung fuer p>1.) Dieser Algorithmus ist primaer entwickelt worden um Variationsprobleme, bzw. deren hochdimensionalen Diskretisierungen zu loesen. Er kann aber auch fuer eine Vielzahl anderer lokal Lipschitz stetige Funktionen eingesetzt werden. In der elastischen Kontaktmechanik ist die Spannungsenergie oft glatt und nichtkonvex auf einem geeignetem Definitionsbereich, waehrend der Kontakt und die Reibung durch nicht glatte Funktionen modelliert werden, deren Traeger ein Unterraum mit wesentlich kleineren Dimension ist, da alle Punkte im Inneren des Koerpers nur die Spannungsenergie beeinflussen. Fuer solche elastischen Kontaktprobleme schlagen wir eine Spezialisierung unseres Algorithmuses vor, der den glatten Teil mit Newton aehnlichen Methoden behandelt. Falls der Gradient der gesamten Energiefunktion semiglatt in der Naehe der Minimalstelle ist, koennen wir sogar beweisen, dass der Algorithmus superlinear konvergiert. Wir testen den Algorithmus und seine Spezialisierung an mehreren Benchmark Problemen. Ausserdem wenden wir den Algorithmus auf 1-Laplace Minimierungsproblem eingeschraenkt auf eine endlich dimensionalen Unterraum der stueckweise affinen, stetigen Funktionen an. Der hier entwickelte Algorithmus verwendet Ideen des Bundle-Trust-Region-Verfahrens von Schramm, und einen neu entwickelten Verallgemeinerung von Gradienten auf Mengen. Die zentrale Idee hinter den Gradienten auf Mengen ist die, dass wir stabile Abstiegsrichtungen auf einer ganzen Umgebung der Iterationspunkte finden wollen. Auf diese Weise vermeiden wir das Oszillieren der Gradienten und sehr kleine Abstiegsschritte (im glatten, wie im nichtglatten Fall.) Es stellt sich heraus, dass das normkleinste Element dieses Gradienten auf der Umgebung eine stabil Abstiegsrichtung bestimmt. So weit es uns bekannt ist, koennen die hier entwickelten Algorithmen zum ersten Mal lokal Lipschitz-stetige Funktionen in dieser Allgemeinheit behandeln. Insbesondere wurden nichtglatte, nichtkonvexe Funktionen auf derart hochdimensionale Banachraeume bis jetzt nicht behandelt. Wir werden zeigen, dass unser Algorithmus sehr robust und oft schneller als uebliche Algorithmen ist. Des Weiteren, werden wir sehen, dass es mit diesem Algorithmus das erste mal moeglich ist, zuverlaessig die erste Eigenfunktion des 1-Laplace Operators bis auf Diskretisierungsfehler zu bestimmen
Kleniati, Polyxeni M. "Decomposition schemes for polynomial optimisation, semidefinite programming and applications to nonconvex portfolio decisions." Thesis, Imperial College London, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509792.
Full textFraticelli, Barbara M. P. "Semidefinite Cuts and Partial Convexification Techniques with Applications to Continuous Nonconvex Optimization, Stochastic Integer Programming, and Facility Layout Problems." Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/27293.
Full textPh. D.
Yang, Boshi. "A conic optimization approach to variants of the trust region subproblem." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/1938.
Full textCui, Lei. "Topics in image recovery and image quality assessment /Cui Lei." HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/368.
Full textRong, Du. "Wireless Sensor Networks in Smart Cities : The Monitoring of Water Distribution Networks Case." Licentiate thesis, KTH, Reglerteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-185453.
Full textQC 20160419
Liu, Yufeng. "Multicategory psi-learning and support vector machine." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1085424065.
Full textTitle from first page of PDF file. Document formatted into pages; contains x, 71 p.; also includes graphics Includes bibliographical references (p. 69-71). Available online via OhioLINK's ETD Center
Ho, Vinh Thanh. "Techniques avancées d'apprentissage automatique basées sur la programmation DC et DCA." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0289/document.
Full textIn this dissertation, we develop some advanced machine learning techniques in the framework of online learning and reinforcement learning (RL). The backbones of our approaches are DC (Difference of Convex functions) programming and DCA (DC Algorithm), and their online version that are best known as powerful nonsmooth, nonconvex optimization tools. This dissertation is composed of two parts: the first part studies some online machine learning techniques and the second part concerns RL in both batch and online modes. The first part includes two chapters corresponding to online classification (Chapter 2) and prediction with expert advice (Chapter 3). These two chapters mention a unified DC approximation approach to different online learning algorithms where the observed objective functions are 0-1 loss functions. We thoroughly study how to develop efficient online DCA algorithms in terms of theoretical and computational aspects. The second part consists of four chapters (Chapters 4, 5, 6, 7). After a brief introduction of RL and its related works in Chapter 4, Chapter 5 aims to provide effective RL techniques in batch mode based on DC programming and DCA. In particular, we first consider four different DC optimization formulations for which corresponding attractive DCA-based algorithms are developed, then carefully address the key issues of DCA, and finally, show the computational efficiency of these algorithms through various experiments. Continuing this study, in Chapter 6 we develop DCA-based RL techniques in online mode and propose their alternating versions. As an application, we tackle the stochastic shortest path (SSP) problem in Chapter 7. Especially, a particular class of SSP problems can be reformulated in two directions as a cardinality minimization formulation and an RL formulation. Firstly, the cardinality formulation involves the zero-norm in objective and the binary variables. We propose a DCA-based algorithm by exploiting a DC approximation approach for the zero-norm and an exact penalty technique for the binary variables. Secondly, we make use of the aforementioned DCA-based batch RL algorithm. All proposed algorithms are tested on some artificial road networks
Samir, Sara. "Approches coopératives pour certaines classes de problèmes d'optimisation non convexe : Algorithmes parallèles / distribués et applications." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0039.
Full textIn this thesis, we are interested in developing new cooperative approaches for solving some classes of nonconvex problems which play a very important role to model real-world problems. To design the schemes of our approaches, we combine several algorithms which we call the component (participant) algorithms. The combination is mainly based on DC (Difference of Convex Functions) and DCA (DC Algorithm) with metaheuristics. To develop our solution methods, we use the paradigm of parallel and distributed programming. Therefore, each process deals with an algorithm and communicates with the others by calling the functions of the MPI (Message Passing Interface) library which is a communication protocol in parallel and distributed programming. Besides the introduction and conclusion, this thesis is composed of four chapters. Chapter 1 concerns the theoretical and algorithmic tools serving as a methodological basis for the following chapters. Chapter 2 is about the mixed binary linear programs. To solve these problems, we propose a cooperative approach between DCA and VNS (Variable Neighborhood Search). Since the scheme is constituted by two algorithms, we use the point to point communication between the processes. As an application, we adapt our scheme to solve the capacitated facility location problem. Concerning chapter 3, we study the class of binary quadratic problems. Regarding the solution methods, we develop a cooperation between DCA-like which is a new version of DCA and two other metaheuristics: GA (Genetic Algorithm) and MBO (Migrating Birds Optimization). The exchange of information between the processes is expressed by using collective communication's function. More precisely, we call a function which allows broadcasting information of a process to all the others at the same time. This cooperative approach is adapted to the quadratic assignment problem. In chapter 4, we solve the MSSC (Minimum-Sum-of-Squares Clustering) using two cooperative approaches. The first combines DCA, VNS, and TS (Tabu Search). As for the second, it combines the MBO with the other three algorithms cited before. In these two approaches, we use a function of communication that allows a process to access the memories of the others and save the information there without blocking the work of the receiving processes
Belghiti, Moulay Tayeb. "Modélisation et techniques d'optimisation en bio-informatique et fouille de données." Thesis, Rouen, INSA, 2008. http://www.theses.fr/2008ISAM0002.
Full textThis Ph.D. thesis is particularly intended to treat two types of problems : clustering and the multiple alignment of sequence. Our objective is to solve efficiently these global problems and to test DC Programming approach and DCA on real datasets. The thesis is divided into three parts : the first part is devoted to the new approaches of nonconvex optimization-global optimization. We present it a study in depth of the algorithm which is used in this thesis, namely the programming DC and the algorithm DC ( DCA). In the second part, we will model the problem clustering in three nonconvex subproblems. The first two subproblems are distinguished compared to the choice from the norm used, (clustering via norm 1 and 2). The third subproblem uses the method of the kernel, (clustering via the method of the kernel). The third part will be devoted to bioinformatics, one goes this focused on the modeling and the resolution of two subproblems : the multiple alignment of sequence and the alignment of sequence of RNA. All the chapters except the first end in numerical tests
Chiou, Shuenn-Yn, and 邱順吟. "Study On Nonconvex Nondifferentiable Programming Problems." Thesis, 1995. http://ndltd.ncl.edu.tw/handle/79518170651445499314.
Full text東海大學
應用數學研究所
83
In this thesis, we introduce vector tau-connected set,rc- connected convex set and semi-connected set. We discussemi- preinvex map which include preinvex map and arc-connectedonvex map on a semi-connected set. Any locally minimum islso a global minimum for semi-preinvex maps, so we only toiscuss the local minimum point. Alternative theorem foronvex-like is also valid for a semi-preinvex mapping on aemi-connected set. If the mappings are arc-directionallyifferentiable corresponding to a continuous map, then theritz John type Theorem is derived for semi-preinvex programmingroblems. We discuss multiobjective functions which is d-invexnd find necessary and sufficient conditions. The variationalnequality problem plays very important relation with optimizationroblem, so we introduce the pre-variational inequality ( PVI )roblem. If a mapping is invex, then x_o solves the ( PVI )roblem if and only if x_o is an optimal solution fornconstrained optimization problem. Finally, we prove there-variational problem is solvable under some conditions.
Chuang, Sheng-Yuan, and 莊勝淵. "A Global Optimization System for Nonconvex Programming Problems." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/spj23m.
Full text國立臺北科技大學
商業自動化與管理研究所
95
Although many algorithms and packages which can solve generalized geometric programming problems have been proposed, most of them are too time consuming and cannot guarantee to obtain a global optimum. To overcome the difficulties, this study would like to improve current optimization approaches and attempt to merge these ideas to suit the needs of strategic models. Theoretically, this study utilizes convexification strategies and convex underestimation to convert the source problem into a convex program. A global optimum can then be found by a branch-and-bound algorithm. Computationally, this study develops a global optimizer with embedded LINGO NLP Solver capable of deriving solutions with better quality. Moreover, several numerical examples are used to demonstrate the effectiveness of the developed optimizer. The results of experiments show: (1) compared with Tsai’s methods, this study uses convex underestimation instead of piecewise linearization technique to alleviate the difficulty in deciding the number of break points in advance; (2) the developed optimizer can yield tighter convex relaxations than BARON for solving some generalized geometric programming problems.
Qu, Qing. "Nonconvex Recovery of Low-complexity Models." Thesis, 2018. https://doi.org/10.7916/D8TJ04K8.
Full textSun, Ju. "When Are Nonconvex Optimization Problems Not Scary?" Thesis, 2016. https://doi.org/10.7916/D8251J7H.
Full textJoe-MeiFeng and 馮若梅. "Solutions to Nonconvex Quadratic Programming over One Non-Homogeneous Quadratic Constraint." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/10306571462987979794.
Full text國立成功大學
數學系應用數學碩博士班
98
In this thesis, we discuss the minimum of a quadratic object function with one nonconvex quadratic constraint. We want to find the primal optimal solution via its corresponding canonical dual solution. We propose the relaxed assumption, simultaneously diagonalization via congruence (SDC), rather than traditional Slater condition. Under this relaxed assumption, we prove that we can still use information from dual problem to find the primal optimal solution. The key point is when the primal solution we found via its corresponding dual solution is not the optimal solution, we can apply ``boundirification technique' to find another solution with no duality gap, and this is also the primal optimal solution. With further analysis, this primal nonconvex problem in fact equals a linearly constrained convex problem, which means a quadratic object function with one quadratic constraint is a nice-structured nonconvex problem. Finally, we have a related review and comparison to Stern and Wolkowicz's result in 1995.
"High performance continuous/discrete global optimization methods." 2003. http://library.cuhk.edu.hk/record=b6073516.
Full text"May 2003."
Thesis (Ph.D.)--Chinese University of Hong Kong, 2003.
Includes bibliographical references (p. 175-187).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Mode of access: World Wide Web.
Abstracts in English and Chinese.
"Some nonconvex geometric results in variational analysis and optimization." Thesis, 2007. http://library.cuhk.edu.hk/record=b6074444.
Full textVariational arguments are classical techniques whose use can be traced back to the early development of the calculus of variations. Rooted in the physical principle of least action they have evolved greatly in connection with applications in optimization theory and optimal control. Recently, the discovery of modern variational principles and nonsmooth analysis further expand the range of applications of these techniques and give a new way for extending some geometric results in linear functional analysis and convex analysis.
Li, Guoyin.
"August 2007."
Adviser: Kung-Fu Ng.
Source: Dissertation Abstracts International, Volume: 69-02, Section: B, page: 1043.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2007.
Includes bibliographical references (p. 80-86).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstract in English and Chinese.
School code: 1307.
Mankau, Jan Peter. "A Nonsmooth Nonconvex Descent Algorithm." Doctoral thesis, 2016. https://tud.qucosa.de/id/qucosa%3A30118.
Full textIn vielen Anwendungen tauchen nichtglatte, nichtkonvexe, Lipschitz-stetige Energie Funktionen in natuerlicher Weise auf. Ein klassische Beispiel bildet die Kontaktmechanik mit Reibung. Ein weiteres Beispiel ist der $1$-Laplace Operator und seine Eigenfunktionen. In dieser Dissertation werden wir ein Abstiegsverfahren angeben, so dass fuer jede lokal Lipschitz-stetige Funktion f jeder Haeufungspunkt einer durch dieses Verfahren erzeugten Folge ein kritischer Punkt von f im Sinne von Clarke ist. Hier ist f auf einem einem reflexiver, strikt konvexem Banachraum definierert, fuer den der Dualraum ebenfalls strikt konvex ist und die Clarkeson Ungleichungen gelten. (Z.B. Sobolevraeume und jeder abgeschlossene Unterraum mit der Sobolevnorm versehen, erfuellt diese Bedingung fuer p>1.) Dieser Algorithmus ist primaer entwickelt worden um Variationsprobleme, bzw. deren hochdimensionalen Diskretisierungen zu loesen. Er kann aber auch fuer eine Vielzahl anderer lokal Lipschitz stetige Funktionen eingesetzt werden. In der elastischen Kontaktmechanik ist die Spannungsenergie oft glatt und nichtkonvex auf einem geeignetem Definitionsbereich, waehrend der Kontakt und die Reibung durch nicht glatte Funktionen modelliert werden, deren Traeger ein Unterraum mit wesentlich kleineren Dimension ist, da alle Punkte im Inneren des Koerpers nur die Spannungsenergie beeinflussen. Fuer solche elastischen Kontaktprobleme schlagen wir eine Spezialisierung unseres Algorithmuses vor, der den glatten Teil mit Newton aehnlichen Methoden behandelt. Falls der Gradient der gesamten Energiefunktion semiglatt in der Naehe der Minimalstelle ist, koennen wir sogar beweisen, dass der Algorithmus superlinear konvergiert. Wir testen den Algorithmus und seine Spezialisierung an mehreren Benchmark Problemen. Ausserdem wenden wir den Algorithmus auf 1-Laplace Minimierungsproblem eingeschraenkt auf eine endlich dimensionalen Unterraum der stueckweise affinen, stetigen Funktionen an. Der hier entwickelte Algorithmus verwendet Ideen des Bundle-Trust-Region-Verfahrens von Schramm, und einen neu entwickelten Verallgemeinerung von Gradienten auf Mengen. Die zentrale Idee hinter den Gradienten auf Mengen ist die, dass wir stabile Abstiegsrichtungen auf einer ganzen Umgebung der Iterationspunkte finden wollen. Auf diese Weise vermeiden wir das Oszillieren der Gradienten und sehr kleine Abstiegsschritte (im glatten, wie im nichtglatten Fall.) Es stellt sich heraus, dass das normkleinste Element dieses Gradienten auf der Umgebung eine stabil Abstiegsrichtung bestimmt. So weit es uns bekannt ist, koennen die hier entwickelten Algorithmen zum ersten Mal lokal Lipschitz-stetige Funktionen in dieser Allgemeinheit behandeln. Insbesondere wurden nichtglatte, nichtkonvexe Funktionen auf derart hochdimensionale Banachraeume bis jetzt nicht behandelt. Wir werden zeigen, dass unser Algorithmus sehr robust und oft schneller als uebliche Algorithmen ist. Des Weiteren, werden wir sehen, dass es mit diesem Algorithmus das erste mal moeglich ist, zuverlaessig die erste Eigenfunktion des 1-Laplace Operators bis auf Diskretisierungsfehler zu bestimmen.
Gilboa, Dar. "When Can Nonconvex Optimization Problems be Solved with Gradient Descent? A Few Case Studies." Thesis, 2020. https://doi.org/10.7916/d8-9v41-2n47.
Full text"Non-convex power control and scheduling in wireless ad hoc networks." Thesis, 2010. http://library.cuhk.edu.hk/record=b6074891.
Full textIn interference-limited wireless networks where simultaneous transmissions on nearby links heavily interfere with each other, however, power control alone is not sufficient to eliminate strong levels of interference between close-by links. In this case, scheduling, which allows close-by links to take turns to be active, plays a crucial role for achieving high system performance. Joint power control and scheduling that maximizes the system utility has long been a challenging problem. The complicated coupling between the signal-to-interference ratio of concurrently active links as well as the flexibility to vary power allocation over time gives rise to a series of non-convex optimization problems, for which the global optimal solution is hard to obtain. The second goal of this thesis is to solve the non-convex joint power control and scheduling problems efficiently in a global optimal manner. In particular, it is the monotonicity rather than the convexity of the problem that we exploit to devise an efficient algorithm, referred to as S-MAPEL, to obtain the global optimal solution. To further reduce the complexity, we propose an accelerated algorithm, referred to as A-S-MAPEL, based on the inherent symmetry of the optimal solution. The optimal joint-power-control-and-scheduling solution obtained by the proposed algorithms serves as a useful benchmark for evaluating other existing schemes. With the help of this benchmark, we find that on-off scheduling is of much practical value in terms of system utility maximization if "off-the-shelf' wireless devices are to be used.
Maximizing a system-wide utility through power control is an NP-hard problem in general due to the complicated coupling interference between links. Thus, it is difficult to solve despite its paramount importance. The first goal of this thesis is to find global optimal power allocations to a variety of system utility maximization (SUM) problems based on the recent advances in monotonic optimization. Instead of tackling the non-convexity issue head on, we bypass non-convexity by exploiting the monotonic nature of the power control problem. In particular, we establish a monotonic optimization framework to maximize a system utility through power control in single-carrier or multi-carrier wireless networks. Furthermore, MAPEL and M-MAPEL are respectively proposed to obtain the global optimal power allocation efficiently in single-carrier or multi-carrier wireless networks. The main benefit of MAPEL and M-MAPEL is to provide an important benchmark for performance evaluation of other heuristic algorithms targeting the same problem. With the help of MAPEL or M-MAPEL, we evaluate the performance of several existing algorithms through extensive simulations. On the other hand, by tuning the approximation factor in MAPEL and M-MAPEL, we could engineer a desirable tradeoff between optimality and convergence time.
With the proliferation of wireless infrastructureless networks such as ad hoc and sensor networks, it is increasingly crucial to devise an algorithm that solves the power control problem in a distributed fashion. In general, distributed power control is more complicated due to the lack of centralized infrastructure. As the third goal of this thesis, we consider a distributed power control algorithm for infrastructureless ad hoc wireless networks, where each link distributively and asynchronously updates its transmission power with limited message passing among links. This algorithm provably converges to the optimal strategy that picks global optimal solutions with probability 1 despite the non-convexity of the power control problem. In contrast with existing distributed power control algorithms, our algorithm makes no stringent assumptions on the system utility functions. In particular, the utility function is allowed to be concave or non-concave, differentiable or non-differentiable, continuous or discontinuous, and monotonic or non-monotonic.
Qian, Liping.
Adviser: Yingjun (Angela) Zhang.
Source: Dissertation Abstracts International, Volume: 72-04, Section: B, page: .
Thesis (Ph.D.)--Chinese University of Hong Kong, 2010.
Includes bibliographical references (leaves 133-139).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstract also in Chinese.
Oliveira, I. B., and Anthony T. Patera. "Reliable Real-Time Optimization of Nonconvex Systems Described by Parametrized Partial Differential Equations." 2003. http://hdl.handle.net/1721.1/3707.
Full textSingapore-MIT Alliance (SMA)
Juma, Raymond Wekesa. "An optimisation approach for capacity enhancement in third generation (3G) mobile networks." Thesis, 2012. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1000570.
Full textThis study proposes a mathematical optimisation approach which invokes Genetic Algorithm (GA) for initialisation and application of Tabu Search (TS) algorithm in finding the sites of node Bs in the network to enable it have the potential to support an increased number of users requiring the increased number of services. The global optimisation can be obtained in terms of great probability as GA is applied to global search and TS is applied to the local search. The particular memory ability of TS can be integrated to GA and the prematurity of GA can be avoided by virtue of the hill-climbing ability of TS. The problem to be addressed is the determination of optimal locations of node Bs in the network based on the user distribution, while improving the QoS. The proposed approach considers the site selection as an integer problem and the site placement as a continuous problem. The two problems are focused on concurrently - finding the optimal number of node Bs that satisfies the capacity requirements in the network and hence QoS improvement. The proposed algorithm combines the strength of Genetic and Tabu Search algorithms in successive elimination of node Bs after their random distribution in the area of study. The results showed that the proposed approach produced fewer number of node Bs sites in the network that provided the required QoS. In addition, it exhibited high fitness function in the simulations meaning that it has the higher ability of achieving the objective function when it was compared to TS and GA.
Dan, Teodora. "Algorithmic contributions to bilevel location problems with queueing and user equilibrium : exact and semi-exact approaches." Thèse, 2018. http://hdl.handle.net/1866/21587.
Full text