Journal articles on the topic 'Nonlinear convolution'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nonlinear convolution.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Garcia, Hernando, and Ramki Kalyanaraman. "Convolution theorem for nonlinear optics." Applied Physics Letters 91, no. 11 (September 10, 2007): 111114. http://dx.doi.org/10.1063/1.2780082.
Full textORAVECZ, FERENC. "THE NUMBER OF PURE CONVOLUTIONS ARISING FROM CONDITIONALLY FREE CONVOLUTION." Infinite Dimensional Analysis, Quantum Probability and Related Topics 08, no. 03 (September 2005): 327–55. http://dx.doi.org/10.1142/s0219025705002001.
Full textNavascués, María, Ram N. Mohapatra, and Arya K. B. Chand. "Some properties of the fractal convolution of functions." Fractional Calculus and Applied Analysis 24, no. 6 (November 22, 2021): 1735–57. http://dx.doi.org/10.1515/fca-2021-0075.
Full textArabadzhyan, L. G., and N. B. Engibaryan. "Convolution equations and nonlinear functional equations." Journal of Soviet Mathematics 36, no. 6 (March 1987): 745–91. http://dx.doi.org/10.1007/bf01085507.
Full textLooney, Carl G. "Nonlinear Rule-based Convolution for Refocusing." Real-Time Imaging 6, no. 1 (February 2000): 29–37. http://dx.doi.org/10.1006/rtim.1998.0154.
Full textKRYSTEK, ANNA DOROTA, and ŁUKASZ JAN WOJAKOWSKI. "ASSOCIATIVE CONVOLUTIONS ARISING FROM CONDITIONALLY FREE CONVOLUTION." Infinite Dimensional Analysis, Quantum Probability and Related Topics 08, no. 03 (September 2005): 515–45. http://dx.doi.org/10.1142/s0219025705002104.
Full textStašová, Ol’ga, and Zuzana Krivá. "Regularized Coherence Enhancing Filtering." Tatra Mountains Mathematical Publications 72, no. 1 (December 1, 2018): 107–21. http://dx.doi.org/10.2478/tmmp-2018-0024.
Full textHu, Xiao, Daheng Zhang, Ruijun Tan, and Qian Xie. "Controlled Cooling Temperature Prediction of Hot-Rolled Steel Plate Based on Multi-Scale Convolutional Neural Network." Metals 12, no. 9 (August 30, 2022): 1455. http://dx.doi.org/10.3390/met12091455.
Full textBushell, P. J., and W. Okrasinski. "Nonlinear Volterra Integral Equations with Convolution Kernel." Journal of the London Mathematical Society s2-41, no. 3 (June 1990): 503–10. http://dx.doi.org/10.1112/jlms/s2-41.3.503.
Full textMYDLARCZYK, W., and W. OKRASINSKI. "NONLINEAR VOLTERRA INTEGRAL EQUATIONS WITH CONVOLUTION KERNELS." Bulletin of the London Mathematical Society 35, no. 04 (June 9, 2003): 484–90. http://dx.doi.org/10.1112/s0024609303002170.
Full textYakubov, A. Ya. "On nonlinear Volterra equations of convolution type." Differential Equations 45, no. 9 (September 2009): 1326–36. http://dx.doi.org/10.1134/s0012266109090080.
Full textvon Wolfersdorf, Lothar, and Jaan Janno. "On a Class of Nonlinear Convolution Equations." Zeitschrift für Analysis und ihre Anwendungen 14, no. 3 (1995): 497–508. http://dx.doi.org/10.4171/zaa/635.
Full textAskhabov, S. N. "Nonlinear convolution-type equations in Lebesgue spaces." Mathematical Notes 97, no. 5-6 (May 2015): 659–68. http://dx.doi.org/10.1134/s0001434615050016.
Full textLin, Yuanhua, and Liping He. "Existence of Traveling Wave Fronts for a Generalized Nonlinear Schrodinger Equation." Advances in Mathematical Physics 2022 (August 16, 2022): 1–6. http://dx.doi.org/10.1155/2022/9638150.
Full textJiang, Chao, Canchen Jiang, Dongwei Chen, and Fei Hu. "Densely Connected Neural Networks for Nonlinear Regression." Entropy 24, no. 7 (June 25, 2022): 876. http://dx.doi.org/10.3390/e24070876.
Full textLiu, Shao Gang, and Qiu Jin. "Tolerance Analysis Method Using Improved Convolution Method." Applied Mechanics and Materials 271-272 (December 2012): 1463–66. http://dx.doi.org/10.4028/www.scientific.net/amm.271-272.1463.
Full textYin, Jian Jun, and Jian Qiu Zhang. "Convolution PHD Filtering for Nonlinear Non-Gaussian Models." Advanced Materials Research 213 (February 2011): 344–48. http://dx.doi.org/10.4028/www.scientific.net/amr.213.344.
Full textBanjai, Lehel, and Christian Lubich. "Runge–Kutta convolution coercivity and its use for time-dependent boundary integral equations." IMA Journal of Numerical Analysis 39, no. 3 (June 7, 2018): 1134–57. http://dx.doi.org/10.1093/imanum/dry033.
Full textHuang, Feizhen, Jinfang Zeng, Yu Zhang, and Wentao Xu. "Convolutional recurrent neural networks with multi-sized convolution filters for sound-event recognition." Modern Physics Letters B 34, no. 23 (April 25, 2020): 2050235. http://dx.doi.org/10.1142/s0217984920502358.
Full textAskhabov, Sultan Nazhmudinovich. "Nonlinear convolution type integral equations in complex spaces." Ufimskii Matematicheskii Zhurnal 13, no. 1 (2021): 17–30. http://dx.doi.org/10.13108/2021-13-1-17.
Full textFilippucci, Roberta, and Marius Ghergu. "Higher order evolution inequalities with nonlinear convolution terms." Nonlinear Analysis 221 (August 2022): 112881. http://dx.doi.org/10.1016/j.na.2022.112881.
Full textAskhabov, Sultan N. "Nonlinear convolution integro-differential equation with variable coefficient." Fractional Calculus and Applied Analysis 24, no. 3 (June 1, 2021): 848–64. http://dx.doi.org/10.1515/fca-2021-0036.
Full textComets, F., Th Eisele, and M. Schatzman. "On secondary bifurcations for some nonlinear convolution equations." Transactions of the American Mathematical Society 296, no. 2 (February 1, 1986): 661. http://dx.doi.org/10.1090/s0002-9947-1986-0846602-7.
Full textErraoui, Mohamed, Habib Ouerdiane, and José Luís da Silva. "Stochastic Convolution-Type Heat Equations with Nonlinear Drift." Stochastic Analysis and Applications 25, no. 1 (January 2007): 237–54. http://dx.doi.org/10.1080/07362990600753478.
Full textHairer, E., Ch Lubich, and M. Schlichte. "Fast Numerical Solution of Nonlinear Volterra Convolution Equations." SIAM Journal on Scientific and Statistical Computing 6, no. 3 (July 1985): 532–41. http://dx.doi.org/10.1137/0906037.
Full textSORAVIA, PIERPAOLO. "ON NONLINEAR CONVOLUTION AND UNIQUENESS OF VISCOSITY SOLUTIONS." Analysis 20, no. 4 (December 2000): 373–86. http://dx.doi.org/10.1524/anly.2000.20.4.373.
Full textWu, Teng, and Ahsan Kareem. "A nonlinear convolution scheme to simulate bridge aerodynamics." Computers & Structures 128 (November 2013): 259–71. http://dx.doi.org/10.1016/j.compstruc.2013.06.004.
Full textZolfaghari, Reza. "Lubich-Collocation Method for Solving a System of Nonlinear Integral Equations of Convolution Type." International Journal of Applied Physics and Mathematics 4, no. 2 (2014): 121–25. http://dx.doi.org/10.7763/ijapm.2014.v4.267.
Full textWang, Zheng-Xin. "Nonlinear Grey Prediction Model with Convolution Integral NGMC(1,n)and Its Application to the Forecasting of China’s Industrial SO2Emissions." Journal of Applied Mathematics 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/580161.
Full textWan, Renzhuo, Chengde Tian, Wei Zhang, Wendi Deng, and Fan Yang. "A Multivariate Temporal Convolutional Attention Network for Time-Series Forecasting." Electronics 11, no. 10 (May 10, 2022): 1516. http://dx.doi.org/10.3390/electronics11101516.
Full textToft, Joachim, Karoline Johansson, Stevan Pilipović, and Nenad Teofanov. "Sharp convolution and multiplication estimates in weighted spaces." Analysis and Applications 13, no. 05 (June 29, 2015): 457–80. http://dx.doi.org/10.1142/s0219530514500523.
Full textGuo, Jianxin, Zhen Wang, and Shanwen Zhang. "FESSD: Feature Enhancement Single Shot MultiBox Detector Algorithm for Remote Sensing Image Target Detection." Electronics 12, no. 4 (February 14, 2023): 946. http://dx.doi.org/10.3390/electronics12040946.
Full textHe, Chu, Zishan Shi, Tao Qu, Dingwen Wang, and Mingsheng Liao. "Lifting Scheme-Based Deep Neural Network for Remote Sensing Scene Classification." Remote Sensing 11, no. 22 (November 13, 2019): 2648. http://dx.doi.org/10.3390/rs11222648.
Full textKheshgi, Haroon S., and Benjamin S. White. "Modelling ocean carbon cycle with a nonlinear convolution model." Tellus B: Chemical and Physical Meteorology 48, no. 1 (January 1996): 3–12. http://dx.doi.org/10.3402/tellusb.v48i1.15660.
Full textKHESHGI, HAROON S., and BENJAMIN S. WHITE. "Modelling ocean carbon cycle with a nonlinear convolution model." Tellus B 48, no. 1 (February 1996): 3–12. http://dx.doi.org/10.1034/j.1600-0889.1996.00002.x.
Full textBodizs, Arpad, Ferenc Szeifert, and Tibor Chovan. "Convolution Model Based Predictive Controller for a Nonlinear Process." Industrial & Engineering Chemistry Research 38, no. 1 (January 1999): 154–61. http://dx.doi.org/10.1021/ie980338q.
Full textHu, H., and J. H. Tang. "A convolution integral method for certain strongly nonlinear oscillators." Journal of Sound and Vibration 285, no. 4-5 (August 2005): 1235–41. http://dx.doi.org/10.1016/j.jsv.2004.11.023.
Full textAskhabov, S. N. "Approximate Solution of Nonlinear Discrete Equations of Convolution Type." Journal of Mathematical Sciences 201, no. 5 (August 19, 2014): 566–80. http://dx.doi.org/10.1007/s10958-014-2012-y.
Full textAskhabov, Sultan Nazhmudinovich, and Akhmed Lechaevich Dzhabrailov. "Approximate solutions of nonlinear convolution type equations on segment." Ufimskii Matematicheskii Zhurnal 5, no. 2 (2013): 3–11. http://dx.doi.org/10.13108/2013-5-2-3.
Full textGomez, Carlos, Humberto Prado, and Sergei Trofimchuk. "Separation dichotomy and wavefronts for a nonlinear convolution equation." Journal of Mathematical Analysis and Applications 420, no. 1 (December 2014): 1–19. http://dx.doi.org/10.1016/j.jmaa.2014.05.064.
Full textHuang, Meixiang, Chongfei Huang, Jing Yuan, and Dexing Kong. "A Semiautomated Deep Learning Approach for Pancreas Segmentation." Journal of Healthcare Engineering 2021 (July 2, 2021): 1–10. http://dx.doi.org/10.1155/2021/3284493.
Full textMartindale, John, Jason Berwick, Chris Martin, Yazhuo Kong, Ying Zheng, and John Mayhew. "Long Duration Stimuli and Nonlinearities in the Neural–Haemodynamic Coupling." Journal of Cerebral Blood Flow & Metabolism 25, no. 5 (February 9, 2005): 651–61. http://dx.doi.org/10.1038/sj.jcbfm.9600060.
Full textG. GAL, SORIN, and IONUT T. IANCU. "Quantitative approximation by nonlinear convolution operators of Landau-Choquet type." Carpathian Journal of Mathematics 36, no. 3 (September 30, 2020): 415–22. http://dx.doi.org/10.37193/cjm.2020.03.09.
Full textZhemchuzhnikov, Dmitrii, Ilia Igashov, and Sergei Grudinin. "6DCNN with Roto-Translational Convolution Filters for Volumetric Data Processing." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 4 (June 28, 2022): 4707–15. http://dx.doi.org/10.1609/aaai.v36i4.20396.
Full textHuang, Qingqing, Di Wu, Hao Huang, Yan Zhang, and Yan Han. "Tool Wear Prediction Based on a Multi-Scale Convolutional Neural Network with Attention Fusion." Information 13, no. 10 (October 18, 2022): 504. http://dx.doi.org/10.3390/info13100504.
Full textLi, Yishi, Kunran Xu, Rui Lai, and Lin Gu. "Towards an Effective Orthogonal Dictionary Convolution Strategy." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 2 (June 28, 2022): 1473–81. http://dx.doi.org/10.1609/aaai.v36i2.20037.
Full textWang, Xiaomin. "A Coiflets-Based Wavelet Laplace Method for Solving the Riccati Differential Equations." Journal of Applied Mathematics 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/257049.
Full textChiang, I. F., and S. T. Noah. "A Convolution Approach for the Transient Analysis of Locally Nonlinear Rotor Systems." Journal of Applied Mechanics 57, no. 3 (September 1, 1990): 731–37. http://dx.doi.org/10.1115/1.2897084.
Full textLindsay, J. Martin, and Adam G. Skalski. "Quantum Stochastic Convolution Cocycles II." Communications in Mathematical Physics 280, no. 3 (April 22, 2008): 575–610. http://dx.doi.org/10.1007/s00220-008-0465-x.
Full textHilal, Eman M. A., and Tarig M. Elzaki. "Solution of Nonlinear Partial Differential Equations by New Laplace Variational Iteration Method." Journal of Function Spaces 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/790714.
Full text