Academic literature on the topic 'Nonlinear lattice'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nonlinear lattice.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nonlinear lattice"
Toda, Morikazu, Yoshiko Okada, and Shinsuke Watanabe. "Nonlinear Dual Lattice." Journal of the Physical Society of Japan 59, no. 12 (December 15, 1990): 4279–85. http://dx.doi.org/10.1143/jpsj.59.4279.
Full textShi, Xianling, Fangwei Ye, Boris Malomed, and Xianfeng Chen. "Nonlinear surface lattice coupler." Optics Letters 38, no. 7 (March 21, 2013): 1064. http://dx.doi.org/10.1364/ol.38.001064.
Full textSuárez, Alberto, and Jean Pierre Boon. "Nonlinear lattice gas hydrodynamics." Journal of Statistical Physics 87, no. 5-6 (June 1997): 1123–30. http://dx.doi.org/10.1007/bf02181275.
Full textHaq, S., A. B. Movchan, and G. J. Rodin. "Lattice Green’s Functions in Nonlinear Analysis of Defects." Journal of Applied Mechanics 74, no. 4 (August 20, 2006): 686–90. http://dx.doi.org/10.1115/1.2710795.
Full textSerra-Garcia, Marc, Miguel Molerón, and Chiara Daraio. "Tunable, synchronized frequency down-conversion in magnetic lattices with defects." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, no. 2127 (July 23, 2018): 20170137. http://dx.doi.org/10.1098/rsta.2017.0137.
Full textPal, Raj Kumar, Federico Bonetto, Luca Dieci, and Massimo Ruzzene. "A study of deformation localization in nonlinear elastic square lattices under compression." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, no. 2127 (July 23, 2018): 20170140. http://dx.doi.org/10.1098/rsta.2017.0140.
Full textFlint, Christopher, Armen Oganesov, George Vahala, Linda Vahala, and Min Soe. "Lattice algorithms for nonlinear physics." Radiation Effects and Defects in Solids 172, no. 9-10 (October 3, 2017): 737–41. http://dx.doi.org/10.1080/10420150.2017.1398251.
Full textKe-pu, Lü, Duan Wen-shan, Zhao Jin-bao, Wang Ben-ren, and Wei Rong-jue. "Particular solitons in nonlinear lattice." Chinese Physics 9, no. 2 (February 2000): 81–85. http://dx.doi.org/10.1088/1009-1963/9/2/001.
Full textWatanabe, Shinsuke. "Wave Modulation in Nonlinear Lattice." Journal of the Physical Society of Japan 58, no. 6 (June 15, 1989): 1935–43. http://dx.doi.org/10.1143/jpsj.58.1935.
Full textAlwani, Fairuz, and Franco Vivaldi. "Nonlinear rotations on a lattice." Journal of Difference Equations and Applications 24, no. 7 (April 23, 2018): 1074–104. http://dx.doi.org/10.1080/10236198.2018.1459592.
Full textDissertations / Theses on the topic "Nonlinear lattice"
Piazza, Francesco. "Nonlinear lattice dynamics in high-Tc superconductors." Thesis, Heriot-Watt University, 2002. http://hdl.handle.net/10399/446.
Full textJason, Peter. "Comparisons between classical and quantum mechanical nonlinear lattice models." Licentiate thesis, Linköpings universitet, Teoretisk Fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-105817.
Full textAtchley, Mary L. "Observations of breather solitons in a nonlinear vibratory lattice." Thesis, Monterey, Calif. : Naval Postgraduate School, 1992. http://handle.dtic.mil/100.2/ADA252936.
Full textThesis Advisors: Denardo, B.C. ; Garrett, Steven L. "March 1992." Includes bibliographical references (p. 74-76). Also available in print.
Huang, Chiung-Yu. "Geometrically nonlinear finite element analysis of a lattice dome." Thesis, Virginia Tech, 1989. http://hdl.handle.net/10919/44650.
Full textThe geometry and the finite element method modelling of a lattice dome is presented.
Linear analyses and geometrically nonlinear analyses of the dome are performed. In
addition, a buckling load prediction method is studied and extended to the multiple
load distributions.
The results obtained from linear analyses are checked against the requirements of
NDS, National Design Standard.
Master of Science
Ahnert, Karsten. "Compactons in strongly nonlinear lattices." Phd thesis, Universität Potsdam, 2010. http://opus.kobv.de/ubp/volltexte/2010/4853/.
Full textIn der hier vorliegenden Arbeit werden Wellenphänomene in stark nichtlinearen Gittern untersucht. Diese Gitter zeichnen sich vor allem durch die Abwesenheit von klassischen linearen Wellen aus. Es wird gezeigt, dass Kompaktonen – stark lokalisierte solitäre Wellen, mit Ausläufern welche schneller als exponentiell abfallen – existieren, und dass sie eine entscheidende Rolle in der Dynamik dieser Gitter spielen. Kompaktonen treten in verschiedenen diskreten physikalischen Systemen auf. Ein Teil der Arbeit behandelt dabei Gitter von dispersiv gekoppelten Oszillatoren, welche beispielsweise Anwendung in gekoppelten Josephsonkontakten oder gekoppelten Ginzburg-Landau-Gleichungen finden. Ein weiterer Teil beschäftigt sich mit Hamiltongittern, wobei die granulare Kette das bekannteste Beispiel ist, in dem Kompaktonen beobachtet werden können. Im dritten Teil werden Systeme, welche im Zusammenhang mit der Diskreten Nichtlinearen Schrödingergleichung stehen, studiert. Diese Gleichung beschreibt beispielsweise Arrays von optischen Wellenleitern oder die Dynamik von Bose-Einstein-Kondensaten in optischen Gittern. Das Studium der Kompaktonen basiert hier hauptsächlich auf dem numerischen Lösen der dazugehörigen Wellengleichung. Dies mündet in einer quasi-exakten Lösung, dem Kompakton, welches bis auf numerische Fehler genau bestimmt werden kann. Ein anderer Ansatz, der in dieser Arbeit mehrfach verwendet wird, ist die Approximation des Gitters durch ein kontinuierliches Medium. Die daraus resultierenden Kompaktonen besitzen einen im mathematischen Sinne kompakten Definitionsbereich. Beide Methoden liefern qualitativ und quantitativ gut übereinstimmende Ergebnisse. Zusätzlich werden die dynamischen Eigenschaften von Kompaktonen mit Hilfe von direkten numerischen Simulationen der Gittergleichungen untersucht. Dabei wird ein Hauptaugenmerk auf die Entstehung von Kompaktonen unter physikalisch realisierbaren Anfangsbedingungen und ihre Kollisionen gelegt. Es wird gezeigt, dass die Wechselwirkung nicht exakt elastisch ist, sondern dass ein Teil ihrer Energie an der Position der Kollision verharrt. In endlichen Gittern führt dies zu einem multiplen Streuprozess, welcher in einem chaotischen Zustand endet.
Della, Corte Alessandro. "Lattice structures with pivoted beams : Homogenization and nonlinear elasticity results." Thesis, Toulon, 2017. http://www.theses.fr/2017TOUL0019/document.
Full textThis thesis focuses on the mathematical modeling of fibrous structures having somepeculiar properties (high strength-to-weight ratio and very good toughness infracture), whose mechanical behavior escapes from standard Cauchy elasticity. Inparticular, it addresses cases in which the presence of a microstructure, consisting ofregularly spaced pivoted beams, entails effects that are well described by generalizedcontinuum models, i.e. models in which the deformation energy density depends notonly on the gradient of the placement but also on the second (and possibly higher)gradients of it. In the Introduction, the state of the art concerning generalizedcontinua and their applications for the description of fibrous structures is describedand some relevant open problems are highlighted. In Chapter 1 and 2 a rigoroushomogenization procedure based on Gamma-convergence arguments is performedfor a lattice (truss-like) structure and for a discrete 1D system (Hencky-type beammodel). In Chapter 3, a variational treatment is employed to formulate acomputationally convenient approach. In Chapter 4 some experimental resultsconcerning the behavior of the structure in various kinds of deformation arediscussed. This motivated the investigation performed in Chapter 5, in which DirectMethods of Calculus of Variations are applied to Euler beams in large deformationsunder distributed load
Runa, Eris [Verfasser]. "Mathematical Analysis of Lattice gradient models & Nonlinear Elasticity / Eris Runa." Bonn : Universitäts- und Landesbibliothek Bonn, 2015. http://d-nb.info/1079273298/34.
Full textPyykkönen, A. (Ari). "Parity symmetry-breaking phase transition in a nonlinear Rabi-Hubbard lattice." Master's thesis, University of Oulu, 2015. http://urn.fi/URN:NBN:fi:oulu-201512082290.
Full textReichert, Thomas. "Development of 3D lattice models for predicting nonlinear timber joint behaviour." Thesis, Edinburgh Napier University, 2009. http://researchrepository.napier.ac.uk/Output/2827.
Full textShi, Guangyu. "Nonlinear static and dynamic analyses of large-scale lattice-type structures and nonlinear active control by piezo actuators." Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/19176.
Full textBooks on the topic "Nonlinear lattice"
Zhu, K. Nonlinear dynamic analysis of lattice structures. Brisbane: Universityof Queensland, Dept. of Civil Engineering, 1990.
Find full textZhu, K. Nonlinear dynamic analysis of lattice structures. Brisbane: Department of Civil Engineering, University of Queensland, 1992.
Find full textG, Velarde Manuel, ed. Synergetic phenomena in active lattices: Patterns, waves, solitons, chaos. Berlin: Springer, 2002.
Find full textNATO Advanced Research Workshop on Nonlinear Coherent Structures in Physics and Biology (1993 Bayreuth, Germany). Nonlinear coherent structures in physics and biology. New York: Plenum Press, 1994.
Find full textClassical and quantum field theory of exactly soluble nonlinear systems. Singapore: World Scientific, 1985.
Find full textConstellation shaping, nonlinear precoding, and trellis coding for voiceband telephone channel modems with emphasis on ITU-T recommendation V.34. Boston: Kluwer Academic Publishers, 2002.
Find full textTretter, Steven A. Constellation Shaping, Nonlinear Precoding, and Trellis Coding for Voiceband Telephone Channel Modems: With Emphasis on ITU-T Recommendation V.34. Boston, MA: Springer US, 2002.
Find full textToda, Morikazu. Theory of Nonlinear Lattices. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Find full textToda, Morikazu. Theory of Nonlinear Lattices. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83219-2.
Full textBook chapters on the topic "Nonlinear lattice"
Capel, H. W., and F. Nijhoff. "Integrable Lattice Equations." In Springer Series in Nonlinear Dynamics, 38–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-58045-1_4.
Full textManktelow, Kevin L., Massimo Ruzzene, and Michael J. Leamy. "Wave Propagation in Nonlinear Lattice Materials." In Dynamics of Lattice Materials, 107–37. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118729588.ch5.
Full textToda, Morikazu. "The Lattice with Exponential Interaction." In Theory of Nonlinear Lattices, 14–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83219-2_2.
Full textSaitoh, N. "Three-Dimensional Lattice Model Based on Soliton Theory." In Nonlinear Physics, 205–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84148-4_20.
Full textMa, Zhongshui, and Shuohong Guo. "Two-Dimensional Chiral Gauge Theories on a Lattice." In Nonlinear Physics, 221–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84148-4_22.
Full textKleiber, Michał, and Czesław Woźniak. "Trusses, frames, lattice-type shells." In Nonlinear Mechanics of Structures, 251–362. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-009-0577-1_6.
Full textClayton, John D. "Residual Deformation from Lattice Defects." In Nonlinear Mechanics of Crystals, 337–78. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-007-0350-6_7.
Full textPopowicz, Z. "Recent Results in Toda Lattice." In Springer Series in Nonlinear Dynamics, 212–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73193-8_14.
Full textLiu, Qiming. "Transformation for the Solutions of the Two-Dimensional Toda Lattice." In Nonlinear Physics, 227–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84148-4_23.
Full textPapageorgiou, V. G., F. W. Nijhoff, and H. W. Capel. "Lattice Equations and Integrable Mappings." In Nonlinear Evolution Equations and Dynamical Systems, 182–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84039-5_35.
Full textConference papers on the topic "Nonlinear lattice"
Jia, Shu, Wenjie Wan, and Jason W. Fleischer. "Lattice shock waves in nonlinear waveguide arrays." In Nonlinear Photonics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/np.2007.nwb5.
Full textEgorov, O., U. Peschel, and F. Lederer. "Dissipative quadratic lattice solitons." In Nonlinear Guided Waves and Their Applications. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/nlgw.2005.fb3.
Full textCampbell, Russell, and Gian-Luca Oppo. "Lattice Solitons Stabilized by Localized Losses in Ring Configurations." In Nonlinear Photonics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/np.2016.nth1a.5.
Full textCramer, N. F., José Tito Mendonça, David P. Resendes, and Padma K. Shukla. "Nonlinear dust-lattice waves: a modified Toda lattice." In MULTIFACETS OF DUSTRY PLASMAS: Fifth International Conference on the Physics of Dusty Plasmas. AIP, 2008. http://dx.doi.org/10.1063/1.2996832.
Full textKoerner, Daniel, Björn Hendrik Wellegehausen, and Andreas Wipf. "MCRG Flow for the Nonlinear Sigma Model." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0052.
Full textPezer, Robert, Hrvoje Buljan, Jason W. Fleischer, Guy Bartal, Oren Cohen, and Mordechai Segev. "Gap random-phase lattice solitons." In Nonlinear Guided Waves and Their Applications. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/nlgw.2005.wd31.
Full textSooriyagoda, Rishmali, Herath P. Piyathilaka, Kevin T. Zawilski, Peter G. Schunemann, and Alan D. Bristow. "Electronic and electron-lattice properties of the nonlinear chalcopyrite crystal CdGeP2." In Nonlinear Photonics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/np.2020.nptu2e.7.
Full textWang, Kai, Lukas J. Maczewsky, Alexander A. Dovgiy, Andrey E. Miroshnichenko, Alexander Moroz, Demetrios N. Christodoulides, Alexander Szameit, and Andrey A. Sukhorukov. "High-dimensional synthetic lattice with enhanced defect sensitivity in planar photonic structures." In Nonlinear Photonics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/np.2018.npth3i.3.
Full textChekhovskoy, I. S., A. M. Rubenchik, O. V. Shtyrina, S. K. Turitsyn, and M. P. Fedoruk. "Nonlinear pulse combining and compression in multi-core fibers with hexagonal lattice." In Nonlinear Photonics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/np.2016.nth4a.5.
Full textEfremidis, Nikolaos K., Jared Hudock, Demetrios N. Christodoulides, Jason W. Fleischer, Oren Cohen, and Mordechai Segev. "Two-dimensional optical discrete/lattice solitons." In Nonlinear Guided Waves and Their Applications. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/nlgw.2004.ma8.
Full textReports on the topic "Nonlinear lattice"
Elton, B. H., G. H. Rodrigue, and C. D. Levermore. Lattice Boltzmann methods for some 2-D nonlinear diffusion equations:Computational results. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6226434.
Full textElton, A. B. H. A numerical theory of lattice gas and lattice Boltzmann methods in the computation of solutions to nonlinear advective-diffusive systems. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6480937.
Full textOstendorp, Markus. Improved Methodology for Limit States Finite Element Analysis of Lattice Type Structures using Nonlinear Post-Buckling Member Performance. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.1178.
Full textSegletes, Steven B. Application of Force and Energy Approaches to the Problem of a One-Dimensional, Fully Connected, Nonlinear-Spring Lattice Structure. Fort Belvoir, VA: Defense Technical Information Center, August 2015. http://dx.doi.org/10.21236/ada626102.
Full textBathon, Leander. Probabilistic Determination of Failure Load Capacity Variations for Lattice Type Structures Based on Yield Strength Variations including Nonlinear Post-Buckling Member Performance. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.1224.
Full textYang, Jianke. Theory and Applications of Nonlinear Optics in Optically-Induced Photonic Lattices. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada565296.
Full text