To see the other types of publications on this topic, follow the link: Nonlinear lattice.

Dissertations / Theses on the topic 'Nonlinear lattice'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Nonlinear lattice.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Piazza, Francesco. "Nonlinear lattice dynamics in high-Tc superconductors." Thesis, Heriot-Watt University, 2002. http://hdl.handle.net/10399/446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jason, Peter. "Comparisons between classical and quantum mechanical nonlinear lattice models." Licentiate thesis, Linköpings universitet, Teoretisk Fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-105817.

Full text
Abstract:
In the mid-1920s, the great Albert Einstein proposed that at extremely low temperatures, a gas of bosonic particles will enter a new phase where a large fraction of them occupy the same quantum state. This state would bring many of the peculiar features of quantum mechanics, previously reserved for small samples consisting only of a few atoms or molecules, up to a macroscopic scale. This is what we today call a Bose-Einstein condensate. It would take physicists almost 70 years to realize Einstein's idea, but in 1995 this was finally achieved. The research on Bose-Einstein condensates has since taken many directions, one of the most exciting being to study their behavior when they are placed in optical lattices generated by laser beams. This has already produced a number of fascinating results, but it has also proven to be an ideal test-ground for predictions from certain nonlinear lattice models. Because on the other hand, nonlinear science, the study of generic nonlinear phenomena, has in the last half century grown out to a research field in its own right, influencing almost all areas of science and physics. Nonlinear localization is one of these phenomena, where localized structures, such as solitons and discrete breathers, can appear even in translationally invariant systems. Another one is the (in)famous chaos, where deterministic systems can be so sensitive to perturbations that they in practice become completely unpredictable. Related to this is the study of different types of instabilities; what their behavior are and how they arise. In this thesis we compare classical and quantum mechanical nonlinear lattice models which can be applied to BECs in optical lattices, and also examine how classical nonlinear concepts, such as localization, chaos and instabilities, can be transfered to the quantum world.
APA, Harvard, Vancouver, ISO, and other styles
3

Atchley, Mary L. "Observations of breather solitons in a nonlinear vibratory lattice." Thesis, Monterey, Calif. : Naval Postgraduate School, 1992. http://handle.dtic.mil/100.2/ADA252936.

Full text
Abstract:
Thesis (M.S. in Physics) Naval Postgraduate School, March 1992.
Thesis Advisors: Denardo, B.C. ; Garrett, Steven L. "March 1992." Includes bibliographical references (p. 74-76). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Chiung-Yu. "Geometrically nonlinear finite element analysis of a lattice dome." Thesis, Virginia Tech, 1989. http://hdl.handle.net/10919/44650.

Full text
Abstract:

The geometry and the finite element method modelling of a lattice dome is presented. Linear analyses and geometrically nonlinear analyses of the dome are performed. In addition, a buckling load prediction method is studied and extended to the multiple load distributions. The results obtained from linear analyses are checked against the requirements of NDS, National Design Standard.
Master of Science

APA, Harvard, Vancouver, ISO, and other styles
5

Ahnert, Karsten. "Compactons in strongly nonlinear lattices." Phd thesis, Universität Potsdam, 2010. http://opus.kobv.de/ubp/volltexte/2010/4853/.

Full text
Abstract:
In the present work, we study wave phenomena in strongly nonlinear lattices. Such lattices are characterized by the absence of classical linear waves. We demonstrate that compactons – strongly localized solitary waves with tails decaying faster than exponential – exist and that they play a major role in the dynamics of the system under consideration. We investigate compactons in different physical setups. One part deals with lattices of dispersively coupled limit cycle oscillators which find various applications in natural sciences such as Josephson junction arrays or coupled Ginzburg-Landau equations. Another part deals with Hamiltonian lattices. Here, a prominent example in which compactons can be found is the granular chain. In the third part, we study systems which are related to the discrete nonlinear Schrödinger equation describing, for example, coupled optical wave-guides or the dynamics of Bose-Einstein condensates in optical lattices. Our investigations are based on a numerical method to solve the traveling wave equation. This results in a quasi-exact solution (up to numerical errors) which is the compacton. Another ansatz which is employed throughout this work is the quasi-continuous approximation where the lattice is described by a continuous medium. Here, compactons are found analytically, but they are defined on a truly compact support. Remarkably, both ways give similar qualitative and quantitative results. Additionally, we study the dynamical properties of compactons by means of numerical simulation of the lattice equations. Especially, we concentrate on their emergence from physically realizable initial conditions as well as on their stability due to collisions. We show that the collisions are not exactly elastic but that a small part of the energy remains at the location of the collision. In finite lattices, this remaining part will then trigger a multiple scattering process resulting in a chaotic state.
In der hier vorliegenden Arbeit werden Wellenphänomene in stark nichtlinearen Gittern untersucht. Diese Gitter zeichnen sich vor allem durch die Abwesenheit von klassischen linearen Wellen aus. Es wird gezeigt, dass Kompaktonen – stark lokalisierte solitäre Wellen, mit Ausläufern welche schneller als exponentiell abfallen – existieren, und dass sie eine entscheidende Rolle in der Dynamik dieser Gitter spielen. Kompaktonen treten in verschiedenen diskreten physikalischen Systemen auf. Ein Teil der Arbeit behandelt dabei Gitter von dispersiv gekoppelten Oszillatoren, welche beispielsweise Anwendung in gekoppelten Josephsonkontakten oder gekoppelten Ginzburg-Landau-Gleichungen finden. Ein weiterer Teil beschäftigt sich mit Hamiltongittern, wobei die granulare Kette das bekannteste Beispiel ist, in dem Kompaktonen beobachtet werden können. Im dritten Teil werden Systeme, welche im Zusammenhang mit der Diskreten Nichtlinearen Schrödingergleichung stehen, studiert. Diese Gleichung beschreibt beispielsweise Arrays von optischen Wellenleitern oder die Dynamik von Bose-Einstein-Kondensaten in optischen Gittern. Das Studium der Kompaktonen basiert hier hauptsächlich auf dem numerischen Lösen der dazugehörigen Wellengleichung. Dies mündet in einer quasi-exakten Lösung, dem Kompakton, welches bis auf numerische Fehler genau bestimmt werden kann. Ein anderer Ansatz, der in dieser Arbeit mehrfach verwendet wird, ist die Approximation des Gitters durch ein kontinuierliches Medium. Die daraus resultierenden Kompaktonen besitzen einen im mathematischen Sinne kompakten Definitionsbereich. Beide Methoden liefern qualitativ und quantitativ gut übereinstimmende Ergebnisse. Zusätzlich werden die dynamischen Eigenschaften von Kompaktonen mit Hilfe von direkten numerischen Simulationen der Gittergleichungen untersucht. Dabei wird ein Hauptaugenmerk auf die Entstehung von Kompaktonen unter physikalisch realisierbaren Anfangsbedingungen und ihre Kollisionen gelegt. Es wird gezeigt, dass die Wechselwirkung nicht exakt elastisch ist, sondern dass ein Teil ihrer Energie an der Position der Kollision verharrt. In endlichen Gittern führt dies zu einem multiplen Streuprozess, welcher in einem chaotischen Zustand endet.
APA, Harvard, Vancouver, ISO, and other styles
6

Della, Corte Alessandro. "Lattice structures with pivoted beams : Homogenization and nonlinear elasticity results." Thesis, Toulon, 2017. http://www.theses.fr/2017TOUL0019/document.

Full text
Abstract:
Cette thèse est consacrée à la modélisation des structures fibreuses avec des milieuxcontinus généralisés. Dans l’Introduction, l'état de l'art concernant les milieuxcontinus généralisée et applications aux structures fibreuses sont décrits et lesproblèmes ouverts pertinents sont mis en évidence. Dans le Chapitre 1 et 2, uneprocédure d'homogénéisation rigoureuse basée sur des arguments de Gammaconvergenceest appliquée à une structure en treillis et à un model de poutrediscrétisé. Dans le Chapitre 3, un traitement variationnel est utilisé pour formuler unapproche favorable du point de vue numérique. Dans le Chapitre 4 sont discutées lesrésultats expérimentaux concernant le comportement de la structure dans différentstypes de déformation. Cela à motivé les études effectuées dans le Chapitre 5, ou lesMéthodes directes de calcul des variations sont appliquées à poutres d’Euler engrandes déformations
This thesis focuses on the mathematical modeling of fibrous structures having somepeculiar properties (high strength-to-weight ratio and very good toughness infracture), whose mechanical behavior escapes from standard Cauchy elasticity. Inparticular, it addresses cases in which the presence of a microstructure, consisting ofregularly spaced pivoted beams, entails effects that are well described by generalizedcontinuum models, i.e. models in which the deformation energy density depends notonly on the gradient of the placement but also on the second (and possibly higher)gradients of it. In the Introduction, the state of the art concerning generalizedcontinua and their applications for the description of fibrous structures is describedand some relevant open problems are highlighted. In Chapter 1 and 2 a rigoroushomogenization procedure based on Gamma-convergence arguments is performedfor a lattice (truss-like) structure and for a discrete 1D system (Hencky-type beammodel). In Chapter 3, a variational treatment is employed to formulate acomputationally convenient approach. In Chapter 4 some experimental resultsconcerning the behavior of the structure in various kinds of deformation arediscussed. This motivated the investigation performed in Chapter 5, in which DirectMethods of Calculus of Variations are applied to Euler beams in large deformationsunder distributed load
APA, Harvard, Vancouver, ISO, and other styles
7

Runa, Eris [Verfasser]. "Mathematical Analysis of Lattice gradient models & Nonlinear Elasticity / Eris Runa." Bonn : Universitäts- und Landesbibliothek Bonn, 2015. http://d-nb.info/1079273298/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pyykkönen, A. (Ari). "Parity symmetry-breaking phase transition in a nonlinear Rabi-Hubbard lattice." Master's thesis, University of Oulu, 2015. http://urn.fi/URN:NBN:fi:oulu-201512082290.

Full text
Abstract:
Lattices consisting of cavity QED and circuit QED elements have come under focus as a platform for studying several novel quantum phenomena. In particular, a lattice of Rabi systems described by the Rabi-Hubbard model is expected to display a new Z2 parity symmetry-breaking phase transition of light between a Rabi insulator and a delocalized superradiant phase. In this thesis, we examine a superconducting circuit called the artificial trapped ion as a means to realize a nonlinear Rabi-Hubbard lattice. We use mean field theory and second-order perturbation theory to derive an expression for the boundary of the phase transition and calculate it numerically. We show that nonlinearity in the light-matter coupling results in nontrivial behavior for the phase boundary, in the form of a peak arising at a certain strength of the nonlinearity. We also see a behavior of oscillation followed by saturation as the nonlinearity increases.
APA, Harvard, Vancouver, ISO, and other styles
9

Reichert, Thomas. "Development of 3D lattice models for predicting nonlinear timber joint behaviour." Thesis, Edinburgh Napier University, 2009. http://researchrepository.napier.ac.uk/Output/2827.

Full text
Abstract:
This work presents the development of a three-dimensional lattice material model for wood and its application to timber joints including the potential strengthening benefit of second order effects. A lattice of discrete elements was used to capture the heterogeneity and fracture behaviour and the model results compared to tested Sitka spruce (Picea sitchensis) specimens. Despite the general applicability of lattice models to timber, they are computationally demanding, due to the nonlinear solution and large number of degrees of freedom required. Ways to reduce the computational costs are investigated. Timber joints fail due to plastic deformation of the steel fastener(s), embedment, or brittle fracture of the timber. Lattice models, contrary to other modelling approaches such as continuum finite elements, have the advantage to take into account brittle fracture, crack development and material heterogeneity by assigning certain strength and stiffness properties to individual elements. Furthermore, plastic hardening is considered to simulate timber embedment. The lattice is an arrangement of longitudinal, lateral and diagonal link elements with a tri-linear load-displacement relation. The lattice is used in areas with high stress gradients and normal continuum elements are used elsewhere. Heterogeneity was accounted for by creating an artificial growth ring structure and density profile upon which the mean strength and stiffness properties were adjusted. Solution algorithms, such as Newton-Raphson, encounter problems with discrete elements for which 'snap-back' in the global load-displacement curves would occur. Thus, a specialised solution algorithm, developed by Jirasek and Bazant, was adopted to create a bespoke FE code in MATLAB that can handle the jagged behaviour of the load displacement response, and extended to account for plastic deformation. The model's input parameters were calibrated by determining the elastic stiffness from literature values and adjusting the strength, post-yield and heterogeneity parameters of lattice elements to match the load-displacement from laboratory tests under various loading conditions. Although problems with the modified solution algorithm were encountered, results of the model show the potential of lattice models to be used as a tool to predict load-displacement curves and fracture patterns of timber specimens.
APA, Harvard, Vancouver, ISO, and other styles
10

Shi, Guangyu. "Nonlinear static and dynamic analyses of large-scale lattice-type structures and nonlinear active control by piezo actuators." Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/19176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Laptyeva, Tetyana V. "Nonlinear waves in random lattices: localization and spreading." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-107881.

Full text
Abstract:
Heterogeneity in lattice potentials (like random or quasiperiodic) can localize linear, non-interacting waves and halt their propagation. Nonlinearity induces wave interactions, enabling energy exchange and leading to chaotic dynamics. Understanding the interplay between the two is one of the topical problems of modern wave physics. In particular, one questions whether nonlinearity destroys localization and revives wave propagation, whether thresholds in wave energy/norm exist, and what the resulting wave transport mechanisms and characteristics are. Despite remarkable progress in the field, the answers to these questions remain controversial and no general agreement is currently achieved. This thesis aims at resolving some of the controversies in the framework of nonlinear dynamics and computational physics. Following common practice, basic lattice models (discrete Klein-Gordon and nonlinear Schroedinger equations) were chosen to study the problem analytically and numerically. In the disordered linear case all eigenstates of such lattices are spatially localized manifesting Anderson localization, while nonlinearity couples them, enabling energy exchange and chaotic dynamics. For the first time we present a comprehensive picture of different subdiffusive spreading regimes and self-trapping phenomena, explain the underlying mechanisms and derive precise asymptotics of spreading. Moreover, we have successfully generalized the theory to models with spatially inhomogeneous nonlinearity, quasiperiodic potentials, higher lattice dimensions and arbitrary nonlinearity index. Furthermore, we have revealed a remarkable similarity to the evolution of wave packets in the nonlinear diffusion equation. Finally, we have studied the limits of strong disorder and small nonlinearities to discover the probabilistic nature of Anderson localization in nonlinear disordered systems, demonstrating the finite probability of its destruction for arbitrarily small nonlinearity and exponentially small probability of its survival above a certain threshold in energy. Our findings give a new dimension to the theory of wave packet spreading in localizing environments, explain existing experimental results on matter and light waves dynamics in disordered and quasiperiodic lattice potentials, and offer experimentally testable predictions.
APA, Harvard, Vancouver, ISO, and other styles
12

Chen, Ding. "Spatiotemporal Properties of Coupled Nonlinear Oscillators." Thesis, University of North Texas, 1996. https://digital.library.unt.edu/ark:/67531/metadc278564/.

Full text
Abstract:
Spatiotemporal properties of classical coupled nonlinear oscillators are investigated in this thesis. Chapter 1 gives an introduction to nonlinear lattices and to the concept of breathers, that are spatially localized and temporally periodic excitation in nonlinear lattices. The concept of anti-continuous limit that provides the basic methodology in probing spatiotemporal breather properties is discussed. In Chapter 2, the general approach for finding exact breather solutions from the anti-continuous limit is examined, and the rotating wave approximation(RWA) is applied to probe the spatial structure of static breathers. Numerical evidence reveals that the RWA relates the spatial structure of stable multi-breathers to a single breather of the same frequency. Chapter 3 presents linear stability analysis of static breathers and gives a systematic way to construct mobile breathers. Formation and collision properties of this moving breathers are also studied. Chapter 4 discusses dynamics of kinks and anti-kinks in hydrogen-bonded chains in the context of two-component soliton model. From molecular dynamics simulations with finite temperature, it is observed that, in a real system (eg. ice), a pair of kink and anti-kink can evolve into a moving-breather-like excitation. Chapter 5 is devoted to the understand of the effects of disorder in the Holstein model. The summary is given in Chapter 6.
APA, Harvard, Vancouver, ISO, and other styles
13

Attal, Maher. "Lattice optimization and nonlinear beam dynamical studies on SESAME and SOLEIL storage rings." Paris 11, 2009. http://www.theses.fr/2009PA112095.

Full text
Abstract:
Les méthodes employées pour optimiser les sources de rayonnement synchroton sont discutées et utilisées pour le design de la future maille de l’anneau de stockage de SESAME. La stratégie adoptée pour l’optimisation linéaire et non-linéaire a conduit à l’obtention de grandes ouvertures dynamiques, ce qui garantira théoriquement une bonne efficacité d’injection et une bonne duré de vie. Il a été aussi montré dans cette thèse l’importance et la nécessité d’inclure les dimensions de la chambre à vide dans les calculs de l’ouverture dynamique lors de l’optimisation non-linéaire de la maille de SESAME. En effet, des résonances destructives n’ont pu être mises en évidence lors du calcul de l’ouverture dynamique sans chambre à vide. Cette étude a été corroborée en utilisant de façon exhaustive l’analyse en fréquence (FMA). Une nouvelle méthode a été adoptée pour la réduction du premier ordre du momentum compaction factor (α1) tout en gardant une émittance faible. Cette technique a été appliquée théoriquement et expérimentalement avec succès sur l’anneau de stockage de SOLEIL. Le but étant d’obtenir des parquets très courts. Le rayonnement cohérent (CSR) provenant de la ligne IR, AILES, de SOLEIL a pu être observé pas loin du domaine du THz. Pendant l’une de ces expériences, trois faisceaux distincts ont pu être stockés de façon simultanée. C’est pour la première fois qu’une observation de ce type a pu être faite. Une analyse utilisant un développement théorique jusqu’au troisième ordre du momentum compaction factor a permis d’expliquer les conditions d’apparition de ces trois faisceaux. La dernière partie de cette thèse concerne l’installation, les tests de réhabilitation de l’ancien Microtron de BESSY 1 comme pré-injecteur pour la machine de SESAME
Some aspects in designing a lattice for synchrotron light sources have been discussed and used to design the future lattice for SESAME storage ring. The adopted strategy for the linear and nonlinear optimization resulted in large dynamic apertures which guarantees good injection efficiency and beam lifetime. It has been shown that including the vacuum chamber in the dynamic aperture calculations was a necessary tool in the nonlinear optimization of SESAME lattice since it was possible to see inner destructive nonlinearities wich couldn’t be seen in case of absolute dynamic aperture calculations. This idea has been supported by the Frequency Map Analysis (FMA) method. A new method has been adopted to reduce the first order momentum compaction factor (α1) keeping a low emittance. This technique has been applied to SOLEIL machine to have extremely short bunches theoretically and experimentally. The Coherent Synchrotron Radiation (CSR) from the infrared beam line AILES could be observed in the Tera Hertz region. During one of these experiments three beams have been stored simultaneously in the storage ring. It is, to our knowledge, the first observation of such event. A trial to explain this event is done by deriving analytical formulas to evaluate α1, α2 and α3 experimentally. An experience is shown in rehabilitating the old BESSY I Microtron in order to be used as a pre-injector for SESALME machine
APA, Harvard, Vancouver, ISO, and other styles
14

Saad-Bin-Alam, Md. "Analysis of Plasmonic Metastructures for Engineered Nonlinear Nanophotonics." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39120.

Full text
Abstract:
This Master’s dissertation focuses on engineering artificial nanostructures, namely, arrays of metamolecules on a substrate (metasurfaces), with the goal to achieve the desired linear and nonlinear optical responses. Specifically, a simple analytical model capable of predicting optical nonlinearity of an individual metamolecule has been developed. The model allows one to estimate the nonlinear optical response (linear polarizability and nonlinear hyperpolarizabilities) of a metamolecule based on the knowledge of its shape, dimensions, and material. In addition, a new experimental approach to measure hyperpolarizability has also been investigated. As another research effort, a 2D plasmonic metasurface with the collective behaviour of the metamolecules known as hybrid plasmonic-Fabry-Perot cavity and surface lattice resonances was designed, fabricated and optically characterized. We experimentally discovered a novel way of coupling the microcavity resonances and the diffraction orders of the plasmonic metamolecule arrays with the low-quality plasmon resonance to generate multiple sharp resonances with the higher quality factors. Finally, we experimentally observed and demonstrated a record ultra-high-Q surface lattice resonance from a plasmonic metasurface. These novel results can be used to render highly efficient nonlinear optical responses relying on high optical field localization, and can serve as the stepping stone towards achieving practical artificial nanophotonic devices with tailored linear and nonlinear optical responses.
APA, Harvard, Vancouver, ISO, and other styles
15

Parks, Michael Lawrence. "Efficient Numeric Computation of a Phase Diagram in Biased Diffusion of Two Species." Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/32896.

Full text
Abstract:
A lattice gas with equal numbers of oppositely charged particles, diffusing under the influence of a uniform electric field and an excluded volume condition undergoes an order-disorder phase transition, controlled by the particle density and the field strength. This transition may be continuous (second order) or continuous (first order). Results from previous discrete simulations are shown, and a theoretical continuum model is developed. As this is a nonequilibrium system, there is no associated free energy to determine the location of a first order transition. Instead, the model equations for this system are evolved in time numerically, and the locus of this transition is determined via the presence of a stable state with coexisting regions of order and disorder. The Crank-Nicholson, nonlinear Gauss-Seidel, and GMRES algorithms used to solve the model equations are discussed. Performance enhancements and limits on convergence are considered.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
16

Mehrem, Issa Mohamed Mehrem Ahmed. "Nonlinear acoustics in periodic media: from fundamental effects to applications." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/80289.

Full text
Abstract:
The natural dynamics are not ideal or linear. To understand their complex behavior, we needs to study the nonlinear dynamics in more simple models. This thesis is consist of two main setups. Both setups are simplified models for the behavior occurs in the complex systems. We studied in both systems the same nonlinear dynamics such as higher-harmonics, sub-harmonics, solitary waves,...etc. In Chapter (2), the propagation of nonlinear waves in a lattice of repelling particles is studied theoretically and experimentally. A simple experimental setup is proposed, consisting in an array of coupled magnetic dipoles. By driving harmonically the lattice at one boundary, we excite propagating waves and demonstrate different regimes of mode conversion into higher harmonics, strongly in influenced by dispersion. The phenomenon of acoustic dilatation of the chain is also predicted and discussed. The results are compared with the theoretical predictions of FPU equation, describing a chain of masses connected by nonlinear quadratic springs. The results can be extrapolated to other systems described by this equation. We studied theoretically and experimentally the generation and propagation of kinks in the system. We excite pulses at one boundary of the system and demonstrate the existence of kinks, whose properties are in very good agreement with the theoretical predictions, that is the equation that approaches, under the conditions of our experiments, the one corresponding to full model describing a chain of masses connected by magnetic forces. The results can be extrapolated to other systems described by this equation. Also, In the case of a lattice of finite length, where standing waves are formed, we report the observation of subharmonics of the driving wave. In chapter (3), we studied the propagation of intense acoustic waves in a multilayer crystal. The medium consists in a structured fluid, formed by a periodic array of fluid layerswith alternating linear acoustic properties and quadratic nonlinearity coefficient. We presents the results for different mathematicalmodels (NonlinearWave Equation,Westervelt Equation and Constitutive equations). We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g. cubic) nonlinearities, or extremely linear media. In chapter (4), the oscillatory behavior of a microbubble is investigated through an acousto-mechanical analogy based on a ring-shaped chain of coupled pendula. Observation of parametric vibration modes of the pendula ring excited at frequencies between 1 and 5 Hz is considered. Simulations have been carried out and show spatial mode, mixing and localization phenomena. The relevance of the analogy between a microbubble and the macroscopic acousto-mechanical setup is discussed and suggested as an alternative way to investigate the complexity of microbubble dynamics.
La dinámica natural no es ideal ni lineal. Para entender su comportamiento complejo, necesitamos estudiar la dinámica no lineal en modelos más simples. Esta tesis consta de dos configuraciones principales. Ambas configuraciones son modelos simplificados de el comportamiento que se produce en los sistemas complejos. Estudiamos en ambos sistemas la misma dinámica no lineal como son la generación de armónicos superiores, los sub-armónicos, las ondas solitarias, etc. En elCapítulo (2), se estudia, tanto teórica comoexperimentalmente, la propagación de ondas no lineales en sistemas periodicos de partículas acopladas mediante fuerzas repulsivas. Se propone una configuración experimental simple, que consiste en una matriz de dipolos magnéticos acoplados. Inyectando armónicamente la señal en un extremo, excitamos ondas de propagación y demostramos diferentes regímenes de conversión de modos en armónicos, fuertemente influenciados por la dispersión. También se predice y se discute el fenómeno de dilatación acústica de la cadena. Los resultados se comparan con las predicciones teóricas de la ecuación FPU, describiendo una cadena de masas conectadas por muelles cuadráticos no lineales. Los resultados pueden ser extrapolados a otros sistemas descritos por esta ecuación. Estudiamos también teórica y experimentalmente la generación y propagación de kinks. Excitamos pulsos en la frontera del sistema y demostramos la existencia de kinks cuyas propiedades están en muy buen acuerdo con las predicciones teóricas, es decir, con la ecuación que aproxima bajo las condiciones de nuestros experimentos la correspondiente al modelo completo que describe un cadena de masas conectadas por fuerzas magnéticas. Los resultados pueden ser extrapolados a otros sistemas descritos por esta ecuación. Además, en el caso de una red finita, donde se forman ondas estacionarias, describimos la observación de subarmónicos del armónico principal. En el capítulo (3), estudiamos la propagación de ondas acústicas intensas en un cristal multicapa. El medio consiste en un fluido estructurado, formado por un conjunto periódico de capas fluidas con propiedades acústicas lineales alternas y coeficiente de no linealidad cuadrática. Presentamos los resultados de diferentes modelos matemáticos (ecuación de ondas no lineal, ecuación de Westervelt y ecuaciones constitutivas). Mostramos que la interacción entre la fuerte dispersión y la no linealidad conduce a nuevos escenarios de propagaciónde ondas. El proceso de distorsión de la onda clásica, típico de las ondas acústicas intensas en medios homogéneos, puede ser alterado de forma importante cuando los armónicos generados no linealmente se encuentran dentro o cerca del gap. Esto permite la posibilidad de diseñar un medio con el fin de obtener una forma de onda en particular. Ejemplos de esto incluyen el diseño demedios con no linealidad efectiva (por ejemplo, cúbica) o medios extremadamente lineales. En el capítulo (4), el comportamiento oscilatorio de una microburbuja se investiga a través de una analogía acusto-mecánica basada en una cadena en forma de anillo de péndulos acoplados. Se estudian los modos de vibración paramétrica del anillo pendular excitado a frecuencias entre 1 y 5 Hz. Se han llevado a cabo simulaciones que muestran la presencia de modos espaciales, mixtos y fenómenos de localización. Se discute la relevancia de la analogía entre una microburbuja y la configuración macroscópica acústico-mecánica y se sugiere como una vía alternativa para investigar la complejidad de la dinàmica de microburbujas.
La dinàmica natural no és ideal ni tampoc lineal. Per entendre el seu comportament complex, es necessita estudiar la dinàmica no lineal dels models més simples. Aquesta tesi consisteix en l'estudi de dues configuracions principals, que són models simplificats del comportament que es produeix en els sistemes complexos. Estudiem en ambdós sistemes la mateixa dinàmica no lineal, com és la generació d'harmònics superiors, sub-harmònics, ones solitàries, etc. En el capítol (2), estudiem, tant teòrica com experimentalment, la propagació de les ones no lineals en sistemes periòdics de partícules acoblades mitjançant forces repulsives. Es proposa una configuració experimental simple, que consisteixen en una matriu de dipols magnètics acoblats. En conduint harmònicament la xarxa en un límit, excitemla propagació de les ones i demostrem diferents règims de conversió de modes en harmònics més alts, força influenciada per la dispersió. El fenomen de la dilatació acústica de la cadena també es prediu i es discuteix. Els resultats es comparen amb les prediccions teòriques que descriu una cadena de masses conectades per molls quadràtics no lineals. Els resultats es poden extrapolar a altres sistemes descrits per aquesta equació. Hem estudiat teòrica i experimentalment la generació i propagació de Kinks. Excitem polsos a la frontera del sistema i demostrem l'existència d'Kinks, les propietats desl quals estan en molt bon acord amb les prediccions teòriques, és a dir, de l'equació que aproxima sota les condicions dels nostres experiments la corresponent al model complet que descriu un cadena demasses connectades per forcesmagnètiques. Els resultats es poden extrapolar a altres sistemes descrits per aquesta equació. A més, en el cas d'una xarxa finita, on es formen ones estacionàries, descrivim l'observació de subarmónicos de l'harmònic principal. En el capítol (3), s'estudia la propagació d'ones acústiques intenses en un medi multicapa. El medi consisteix en un fluid estructurat, format per una matriu periòdica de capes de fluid amb l'alternança de propietats acústiques lineals i coeficient de no linealitat de segon grau. Es presenten els resultats per a diferents models matemàtics no lineals (equació d'ones no lineal, equació de Westervelt i les equacions constitutives). Es demostra que la interacciò entre la forta dispersió i no linealitat condueix a nous escenaris de propagació de l'ona. El procés de distorsió en formad'ona clàssica, típica de les ones acústiques intenses en medis homogenis, es pot alterar de manera significativa quan els harmònics generats de forma no lineal es troben dins o a prop del gap. Això obri la possibilitat de dissenyar unmedi per tal d'obtenir una forma d'ona particular. Exemples d'això inclouen el disseny delsmedis amb una no linealitat efectiva (per exemple cúbica), o medis extremadament lineals. En el capítol (4), el comportament oscilatori d'una micro-bombolla és investigat a través d' una analogia acústica-mecànica basada en una cadena en forma d'anell de pèndols acoblats. Es considera l'observació dels modes de vibració paramètriques de l'anell pendular excitat amb freqüències entre 1 i 5 Hz. S'han dut a terme simulacions que mostren la presència de moes espacilas, mixtes i fenòmens de localització. Es discuteix la relevància de l'analogia entre les microbambolles i la configuració macroscòpica acústica-mecànica i es suggereix una formaalternativa per a investigar la complexitat de la dinàmica demicrobombolles.
Mehrem Issa Mohamed Mehrem, A. (2017). Nonlinear acoustics in periodic media: from fundamental effects to applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/80289
TESIS
APA, Harvard, Vancouver, ISO, and other styles
17

Bichiou, Youssef. "Modeling Analysis and Control of Nonlinear Aeroelastic Systems." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/71760.

Full text
Abstract:
Airplane wings, turbine blades and other structures subjected to air or water flows, can undergo motions depending on their flexibility. As such, the performance of these systems depends strongly on their geometry and material properties. Of particular importance is the contribution of different nonlinear aspects. These aspects can be of two types: aerodynamic and structural. Examples of aerodynamic aspects include but are not lomited to flow separation and wake effects. Examples of structural aspects include but not limited to large deformations (geometric nonlinearities), concentrated masses or elements (inertial nonlinearities) and freeplay. In some systems, and depending on the parameters, the nonlinearities can cause multiple solutions. Determining the effects of nonlinearities of an aeroelastic system on its response is crucial. In this dissertation, different aeroelastic configurations where nonlinear aspects may have significant effects on their performance are considered. These configurations include: the effects of the wake on the flutter speed of a wing placed under different angles of attack, the impacts of the wing rotation as well as the aerodynamic and structural nonlinearities on the flutter speed of a rotating blade, and the effects of the recently proposed nonlinear energy sink on the flutter and ensuing limit cycle oscillations of airfoils and wings. For the modeling and analysis of these systems, we use models with different levels of fidelity as required to achieve the stated goals. We also use nonlinear dynamic analysis tools such as the normal form to determine specific effects of nonlinearities on the type of instability.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
18

Radu, Ilie Elian. "Ultrafast electron, lattice and spin dynamics on rare earth metal surfaces investigated with linear and nonlinear optical techniques /." [S.l.] : [s.n.], 2006. http://www.diss.fu-berlin.de/2006/342/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ostendorp, Markus. "Improved Methodology for Limit States Finite Element Analysis of Lattice Type Structures using Nonlinear Post-Buckling Member Performance." PDXScholar, 1992. https://pdxscholar.library.pdx.edu/open_access_etds/1179.

Full text
Abstract:
In an attempt to achieve more efficient designs, the technological frontier is pushed further and further. Every year science probes for a better understanding of natural phenomena, discovering new and improved methods to perform the same task more efficiently and with better results. One of the new technologies is the nonlinear analysis of structural systems using inelastic post-buckling member performance. Inelastic post-buckling member performance is defined as the constitutive relationship between axial load and displacement after the ultimate member capacity has been exceeded. A nonlinear analysis is able to predict the failure behavior of a structural system under ultimate loads more accurately than the traditionally used linear elastic analysis. Consequently, designs can be improved and become more efficient, which reduces the realization cost of a project. An improved nonlinear analysis solution algorithm has been developed, that allows the analyst to perform a nonlinear analysis using post-buckling member performances faster than previously possible. Furthermore, the original post-buckling member performance database was expanded using results obtained from physical member compression tests. Based on the experimental results, new post-buckling member performance model curves were developed to be used together with the improved nonlinear solution algorithm. In addition, a program was developed that allows the analyst to perform a valid nonlinear analysis using a finite element program (LIMIT). The program combines a numerical pre-processor, and input and output data evaluation modules based on human expertise together with the LIMIT analysis package. Extensive on-line help facilities together with graphical pre- and post-processors were also integrated into the program. The resulting analysis package essentially combines all of the necessary components required to perform a nonlinear analysis using post-buckling member performances into one complete analysis package.
APA, Harvard, Vancouver, ISO, and other styles
20

Jiménez, González Noe. "Nonlinear Acoustic Waves in Complex Media." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/53237.

Full text
Abstract:
[EN] Nature is nonlinear. The linear description of physical phenomena is useful for explain observations with the simplest mathematical models, but they are only accurate for a limited range of input values. In the case of intense acoustics waves, linear models obviate a wide range of physical phenomena that are necessary for accurately describe such high-amplitude waves, indispensable for explain other exotic acoustic waves and mandatory for developing new applied techniques based on nonlinear processes. In this Thesis we study the interactions between nonlinearity and other basic wave phenomena such as non-classical attenuation, anisotropic dispersion and periodicity, and diffraction in specific configurations. First, we present intense strain waves in a chain of cations coupled by realistic interatomic potentials. Here, the nonlinear ionic interactions and lattice dispersion lead to the formation of supersonic kinks. These intrinsically-nonlinear localized dislocations travel long distances without changing its properties and explain the formation of dark traces in mica crystals. Then, we analyze nonlinear wave processes in a system composed of multilayered acoustic media. The rich nonlinear dynamics of this system is characterized by its strong dispersion. Here, harmonic generation processes and the relation with its band structure are presented, showing that the nonlinear processes can be enhanced, strongly minimized or simply modified by tuning the layer parameters. In this way, we show how the dynamics of intense monochromatic waves and acoustic solitons can be controlled by artificial layered materials. In a second part, we include diffraction and analyze four types of singular beams. First, we study nonlinear beams in two dimensional sonic crystals. In this system, the inclusion of anisotropic dispersion is tuned for obtain simultaneous self-collimation for fundamental and second harmonic beams. The conditions for optimal second harmonic generation are presented. Secondly, we present limited diffraction beam generation using equispaced axisymmetric diffraction gratings. The obtained beams are truncated version of zero-th order Bessel beams. Third, the grating spacing can be modified to achieve focusing, where the generated nonlinear beams presents high gain, around 30 dB, with a focal width which is between the diffraction limit and the sub-wavelength regime, but with its characteristic high amplitude side lobes strongly reduced. Finally, we observe that waves diffracted by spiral-shaped gratings generate high-order Bessel beams, conforming nonlinear acoustic vortex. The conditions to obtain arbitrary-order Bessel beams by these passive elements are presented. Finally, the interplay of nonlinearity and attenuation in biological media is studied in the context of medical ultrasound. First, a numerical method is developed. The method solves the constitutive relations for nonlinear acoustics and the frequency power law attenuation of biological media is modeled as a sum of relaxation processes. A new technique for reducing numerical dispersion based on artificial relaxation is included. Second, this method is used to study the harmonic balance as a function of the power law, showing the role of weak dispersion and its impact on the efficiency of the harmonic generation in soft-tissues. Finally, the study concerns the nonlinear behavior of acoustic radiation forces in frequency power law attenuation media. We present how the interplay between nonlinearity and the specific frequency power law of biological media can modify the value for acoustic radiation forces. The relation of the nonlinear acoustic radiation force with thermal effects are also discussed. The broad range of nonlinear processes analyzed in this Thesis contributes to understanding the behavior of intense acoustic waves traveling trough complex media, while its implications for enhancing existent applied acoustics techniques are presented.
[ES] La Naturaleza es no lineal. La descripción lineal de los fenómenos físicos es de gran utilidad para explicar nuestras observaciones con modelos matemáticos simples, pero éstos sólo son precisos en un limitado rango de validez. En el caso de onda acústica de alta intensidad, los modelos lineales obvian un amplio rango de fenómenos físicos que son necesarios para describir con precisión las ondas de gran amplitud, pero además son necesarios para explicar otros procesos más exóticos e indispensables para desarrollar nuevas aplicaciones basadas en propagación no lineal. En esta Tesis, estudiamos las interacciones entre no linealidad y otros procesos complejos como atenuación no-clásica, dispersión anisotrópica y periodicidad, y difracción en configuraciones específicas. En primer lugar, presentamos ondas de deformación en una cadena de cationes acoplados por potenciales realísticas. Aquí, las interacciones no lineales entre iones, producen la conformación de kinks supersónicos. Estas dislocaciones localizadas intrínsecamente no lineales viajan por la red largas distancias sin variar sus propiedades, y pueden explicar la formación de trazas en minerales como la mica. Aumentando la escala del problema, estudiamos los procesos acústicos no lineales en medios multicapa. La rica dinámica de estos medios está caracterizada por la fuerte dispersión debido a la periodicidad del sistema. Aquí, estudiamos los procesos de generación de harmónicos, mostrando como modificando la estructura podemos potenciar, minimizar, o simplemente modificar artificialmente la transferencia de energía entre las componentes espectrales, y de esta manera controlar la dinámica de las ondas y solitones en el interior de la estructura. En la segunda parte, incluimos difracción y analizamos cuatro tipos de haces singulares. En primer lugar, analizamos haces ultrasónicos no lineales en cristales de sonido bidimensionales. En este sistema, las propiedades de anisotropía del medio son ajustadas para obtener la auto-colimación simultánea del primer y segundo harmónico. Así, se obtiene la propagación no difractiva para las dos componentes. En segundo lugar, presentamos haces de difracción limitada empleando rejillas de difracción axisimétricas. Por último, demostramos la generación de haces de Bessel de orden superior mediante estructuras en espiral. En la última parte, estudiamos la competición entre no linealidad y la atenuación y dispersión observable en medios biológicos en el contexto de las aplicaciones de biomédicas de los ultrasonidos. En primer lugar desarrollamos un nuevo método computacional para la dependencia frecuencial en forma de ley de potencia de la absorción característica de los tejidos. Este método en dominio temporal es usado posteriormente para revisar los procesos básicos no lineales prestando especial interés en el paper de la dispersión del tejido. Por último, la resolución de las ecuaciones constitutivas nos permite abordar la descripción no lineal de la fuerza de radiación acústica producida en tejidos biológicos, y las implicaciones existentes con la deposición de energía y transferencia de momento para ondas ultrasónicas de alta intensidad. El amplio abanico de procesos no lineales analizados en esta tesis contribuye a una mejor comprensión de la dinámica de las ondas acústicas de alta intensidad en medios complejos, donde las implicaciones existentes en cuanto a la mejora de sus aplicaciones prácticas son puestas de manifiesto.
[CAT] La Naturalesa és no lineal. La descripció lineal dels fenòmens físics és de gran utilitat per a explicar les nostres observacions amb models matemàtics simples, però aquests sol són precisos en un limitat rang de validesa. En el cas d'ona acústica d'alta intensitat, els models lineals obvien un ampli rang de fenòmens físics que són necessaris per a descriure amb precisió les ones de gran amplitud, però a més són necessaris per a explicar altres processos més exòtics i indispensables per a desenvolupar noves aplicacions basades en propagació no lineal. En aquesta Tesi, estudiem les interaccions entre no-linealitat i altres processos complexos com atenuació no-clàssica, dispersió anisotròpica i periodicitat, i difracció en configuracions específiques. En primer lloc, presentem ones de deformació en una cadena de cations acoblats per potencials realistes. Ací, les interaccions no lineals entre ions, produeixen la conformació de kinks supersònics. Aquestes dislocacions localitzades intrínsecament no lineals viatgen per la xarxa llargues distàncies sense variar les seues propietats, i poden explicar la formació de traces en minerals com la mica. Augmentant l'escala del problema, estudiem els processos acústics no lineals en mitjans multicapa. La rica dinàmica d'aquests mitjans es caracteritza per la forta dispersió a causa de la periodicitat del sistema. Ací, estudiem els processos de generació d'harmònics, mostrant com modificant l'estructura podem potenciar, minimitzar, o simplement modificar artificialment la transferència d'energia entre les components espectrals, i d'aquesta manera controlar la dinàmica de les ones i solitons a l'interior de l'estructura. En la segona part, incloem difracció i analitzem quatre tipus de feixos singulars. En primer lloc, analitzem feixos ultrasònics no lineals en cristalls de so bidimensionals. En aquest sistema, les propietats d'anisotropia del medi són ajustades per a obtenir l'acte-col·limació simultània del primer i segon harmònic. Així, s'obté la propagació no difractiva per a les dues components. En segon lloc, presentem feixos de difracció limitada emprant reixetes de difracció axisimètriques. Per últim, vam demostrar la generació de feixos de Bessel d'ordre superior mitjançant estructures en espiral. En l'última part, estudiem la competició entre no linealitat i l'atenuació i dispersió observable en medis biològics en el context de les aplicacions biomèdiques dels ultrasons. En primer lloc desenvolupem un nou mètode computacional per a la dependència freqüencial en forma de llei de potència de l'absorció característica dels teixits biològics. Aquest mètode en domini temporal és usat posteriorment per a revisar els processos bàsics no lineals prestant especial interés en el paper de la dispersió del teixit. Per últim, la resolució de les equacions constitutives ens permet abordar la descripció no lineal de la força de radiació acústica produïda en teixits biològics, i les implicacions existents amb la deposició d'energia i transferència de moment per a ones ultrasòniques d'alta intensitat. L'ampli ventall de processos no lineals analitzats en aquesta tesi contribueix a una millor comprensió de la dinàmica de les ones acústiques d'alta intensitat en medis complexos, on les implicacions existents quant a la millora de les seues aplicacions practiques són posades de manifest.
Jiménez González, N. (2015). Nonlinear Acoustic Waves in Complex Media [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/53237
TESIS
Premiado
APA, Harvard, Vancouver, ISO, and other styles
21

Simmons, Benjamin Mason. "System Identification of a Nonlinear Flight Dynamics Model for a Small, Fixed-Wing UAV." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/95324.

Full text
Abstract:
This thesis describes the development of a nonlinear flight dynamics model for a small, fixed-wing unmanned aerial vehicle (UAV). Models developed for UAVs can be used for many applications including risk analysis, controls system design and flight simulators. Several challenges exist for system identification of small, low-cost aircraft including an increased sensitivity to atmospheric disturbances and decreased data quality from a cost-appropriate instrumentation system. These challenges result in difficulties in development of the model structure and parameter estimation. The small size may also limit the scope of flight test experiments and the consequent information content of the data from which the model is developed. Methods are presented to improve the accuracy of system identification which include data selection, data conditioning, incorporation of information from computational aerodynamics and synthesis of information from different flight test maneuvers. The final parameter estimation and uncertainty analysis was developed from the time domain formulation of the output-error method using the fully nonlinear aircraft equations of motion and a nonlinear aerodynamic model structure. The methods discussed increased the accuracy of parameter estimates and lowered the uncertainty in estimates compared to standard procedures for parameter estimation from flight test data. The significant contributions of this thesis are a detailed explanation of the entire system identification process tailored to the needs of a small UAV and incorporation of unique procedures to enhance identification results. This work may be used as a guide and list of recommendations for future system identification efforts of small, low-cost, minimally instrumented, fixed-wing UAVs.
MS
APA, Harvard, Vancouver, ISO, and other styles
22

Bullara, Domenico. "Nonlinear reactive processes in constrained media." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209073.

Full text
Abstract:
In this thesis we show how reactive processes can be affected by the presence of different types of spatial constraints, so much so that their nonlinear dynamics can be qualitatively altered or that new and unexpected behaviors can be produced. To understand how this interplay can occur in general terms, we theoretically investigate four very different examples of this situation.

The first system we study is a reversible trimolecular chemical reaction which is taking place in closed one-dimensional lattices. We show that the low dimensionality may or may not prevent the reaction from reaching its equilibrium state, depending on the microscopic properties of the molecular reactive mechanism.

The second reactive process we consider is a network of biological interactions between pigment cells on the skin of zebrafish. We show that the combination of short-range and long-range contact-mediated feedbacks can promote a Turing instability which gives rise to stationary patterns in space with intrinsic wavelength, without the need of any kind of motion.

Then we investigate the behavior of a typical chemical oscillator (the Brusselator) when it is constrained in a finite space. We show that molecular crowding can in such cases promote new nonlinear dynamical behaviors, affect the usual ones or even destroy them.

Finally we look at the situation where the constraint is given by the presence of a solid porous matrix that can react with a perfect gas in an exothermic way. We show on one hand that the interplay between reaction, heat flux and mass transport can give rise to the propagation of adsorption waves, and on the other hand that the coupling between the chemical reaction and the changes in the structural properties of the matrix can produce sustained chemomechanical oscillations.

These results show that spatial constraints can affect the kinetics of reactions, and are able to produce otherwise absent nonlinear dynamical behaviors. As a consequence of this, the usual understanding of the nonlinear dynamics of reactive systems can be put into question or even disproved. In order to have a better understanding of these systems we must acknowledge that mechanical and structural feedbacks can be important components of many reactive systems, and that they can be the very source of complex and fascinating phenomena.


Doctorat en Sciences
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
23

Amar, Luc. "Contrôle passif non linéaire d’un profil aéroélastique, simulations et expérimentations." Thesis, Toulouse, ISAE, 2017. http://www.theses.fr/2017ESAE0009/document.

Full text
Abstract:
L’objectif de cette thèse est de contrôler passivement une instabilité dynamique appliquée au flottement d’un profil aéroélastique à l’aide de différents types d’Amortisseurs à Masse Accordés (AMA). Un profil 2D appelé Section Typique est utilisé tout au long de l’étude. En première partie, une étude comparative de trois modèles mathématiques d’interaction fluide/structure appliqués à la Section Typique (Theodorsen, LUVLM et UVLM) met en valeur les forces et faiblesses de chacun. Le banc d’essai aéroélastique en soufflerie, utilisé par la suite, est présenté puis identifié avec et sans vent (GVT). En deuxième partie, les calculs des vitesses critiques de Divergence, d’Inversion des Gouvernes et de Flottement sont automatisés avec le modèle Theodorsen afin de réaliser une étude paramétrique du banc d’essai et mettre en lumière les variables de conception les plus influentes. L’analyse modale présente différentes bifurcations liées au changement soudain du mode instable. Ensuite, le même algorithme est utilisé afin d’analyser la suppression du flottement à l’aide de trois géométries d’AMAs linéaires. La dernière partie présente l’étude expérimentale et numérique d’un AMA non linéaire de type Nonlinear Energy Sink (NES). La singularité de cette configuration est d’utiliser le volet en tant qu’amortisseur et ainsi, ne pas ajouter de masse (FSI-VA). En soufflerie, six comportements non linéaires sous-critiques (en deçà de la vitesse de flottement dans la configuration linéaire) sont observés, identifiés et analysés : cinq Cycles Limites d’Oscillations (LCO) et un battement non linéaire chaotique
The aim of this thesis is to passively control a dynamic instability applied to an aeroelastic profile’s flutter using different types of Tuned Mass Dampers (TMD). A 2D profile called Typical Section is used throughout the study. In the first part, a comparative study of three mathematical models of fluid-structure interaction applied to the Typical Section (Theodorsen, LUVLM and UVLM) highlights the strengths and weaknesses of each code. The aeroelastic test bench, used subsequently, is presented and identified with and without wind (Ground Vibration Test, GVT). In the second part, critical velocities computations (Divergence, Control Surface Reversal and flutter) are automated while using the Theodorsen model in order to carry out the test bench parametrical study to highlight most influential variables. The modal analysis presents different bifurcations linked to the sudden change of the unstable mode. The last part presents the experimental and numerical studies of a nonlinear TMD called Nonlinear Energy Sink (NES). The uniqueness of this configuration consists in recycling flap’s vibrations as a flutter damper and thus, get a zero added mass. A nonlinear restoring force can be achieved by a highly nonlinear mechanism. The nonlinear structural behavior is derived analyticaly and is in good agreement with experimental torsion tests. In the wind tunnel, six subcritical nonlinear behaviors (below the flutter velocity in the linear configuration case) are observed, identified and then analyzed : five Limit Cycle Oscillations (LCO) and a chaotic nonlinear beating
APA, Harvard, Vancouver, ISO, and other styles
24

Bathon, Leander Anton. "Probabilistic Determination of Failure Load Capacity Variations for Lattice Type Structures Based on Yield Strength Variations including Nonlinear Post-Buckling Member Performance." PDXScholar, 1992. https://pdxscholar.library.pdx.edu/open_access_etds/1225.

Full text
Abstract:
With the attempt to achieve the optimum in analysis and design, the technological global knowledge base grows more and more. Engineers all over the world continuously modify and innovate existing analysis methods and design procedures to perform the same task more efficiently and with better results. In the field of complex structural analysis many researchers pursue this challenging task. The complexity of a lattice type structure is caused by numerous parameters: the nonlinear member performance of the material, the statistical variation of member load capacities, the highly indeterminate structural composition, etc. In order to achieve a simulation approach which represents the real world problem more accurately, it is necessary to develop technologies which include these parameters in the analysis. One of the new technologies is the first order nonlinear analysis of lattice type structures including the after failure response of individual members. Such an analysis is able to predict the failure behavior of a structural system under ultimate loads more accurately than the traditionally used linear elastic analysis or a classical first order nonlinear analysis. It is an analysis procedure which can more accurately evaluate the limit-state of a structural system. The Probability Based Analysis (PBA) is a new technology. It provides the user with a tool to analyze structural systems based on statistical variations in member capacities. Current analysis techniques have shown that structural failure is sensitive to member capacity. The combination of probability based analysis and the limit-state analysis will give the engineer the capability to establish a failure load distribution based on the limit-state capacity of the structure. This failure load distribution which gives statistical properties such as mean and variance improves the engineering judgment. The mean shows the expected value or the mathematical expectation of the failure load. The variance is a tool to measure the variability of the failure load distribution. Based on a certain load case, a small variance will indicate that a few members cause the tower failure over and over again; the design is unbalanced. A large variance will indicate that many different members caused the tower failure. The failure load distribution helps in comparing and evaluating actual test results versus analytical results by locating an actual test among the possible failure loads of a tower series. Additionally, the failure load distribution allows the engineer to calculate exclusion limits which are a measure of the probability of success, or conversely the probability of failure for a given load condition. The exclusion limit allows engineers to redefine their judgement on safety and usability of transmission towers. Existing transmission towers can be reanalyzed using this PBA and upgraded based on a given exclusion limit for a chosen tower capacity increase according to the elastic analysis from which the tower was designed. New transmission towers can be analyzed based on the actual yield strength data and their nonlinear member performances. Based on this innovative analysis the engineer is able to improve tower design by using a tool which represents the real world behavior of steel transmission towers more accurately. Consequently it will improve structural safety and reduce cost.
APA, Harvard, Vancouver, ISO, and other styles
25

Hall, Benjamin D. "Numerical Simulations of the Aeroelastic Response of an Actively Controlled Flexible Wing." Thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/34087.

Full text
Abstract:
A numerical simulation for evaluating methods of predicting and controlling the response of an elastic wing in an airstream is discussed. The technique employed interactively and simultaneously solves for the response in the time domain by considering the air, wing, and controller as elements of a single dynamical system. The method is very modular, allowing independent modifications to the aerodynamic, structural, or control subsystems and it is not restricted to periodic motions or simple geometries. To illustrate the technique, we use a High Altitude, Long Endurance aircraft wing. The wing is modeled structurally as a linear Euler-Bernoulli beam that includes dynamic coupling between the bending and torsional oscillations. The governing equations of motion are derived and extended to allow for rigid-body motions of the wing. The exact solution to the unforced linear problem is discussed as well as a Galerkin and finite-element approximations. The finite-element discretization is developed and used for the simulations. A general, nonlinear, unsteady vortex-lattice method, which is capable of simulating arbitrary subsonic maneuvers of the wing and accounts for the history of the motion, is employed to model the flow around the wing and provide the aerodynamic loads. Two methods of incorporating gusts in the aerodynamic model are also discussed. Control of the wing is effected via a distributed torque actuator embedded in the wing and two strategies for actuating the wing are described: a classical linear proportional integral strategy and a novel nonlinear feedback strategy based on the phenomenon of saturation that may exist in nonlinear systems with two-to-one internal resonances. Both control strategies can suppress the flutter oscillations of the wing, but the nonlinear controller must be actively tuned to be effective; gust control proved to be more difficult.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
26

Liut, Daniel Armando. "Neural-Network and Fuzzy-Logic Learning and Control of Linear and Nonlinear Dynamic Systems." Diss., Virginia Tech, 1999. http://hdl.handle.net/10919/29163.

Full text
Abstract:
The goal of this thesis is to develop nontraditional strategies to provide motion control for different engineering applications. We focus our attention on three topics: 1) roll reduction of ships in a seaway; 2) response reduction of buildings under seismic excitations; 3) new training strategies and neural-network configurations. The first topic of this research is based on a multidisciplinary simulation, which includes ship-motion simulation by means of a numerical model called LAMP, the modeling of fins and computation of the hydrodynamic forces produced by them, and a neural-network/fuzzy-logic controller. LAMP is based on a source-panel method to model the flowfield around the ship, whereas the fins are modeled by a general unsteady vortex-lattice method. The ship is considered to be a rigid body and the complete equations of motion are integrated numerically in the time domain. The motion of the ship and the complete flowfield are calculated simultaneously and interactively. The neural-network/fuzzy-logic controller can be progressively trained. The second topic is the development of a neural-network-based approach for the control of seismic structural response. To this end, a two-dimensional linear model and a hysteretic model of a multistory building are used. To control the response of the structure a tuned mass damper is located on the roof of the building. Such devices provide a good passive reduction. Once the mass damper is properly tuned, active control is added to improve the already efficient passive controller. This is achieved by means of a neural network. As part of the last topic, two new flexible and expeditious training strategies are developed to train the neural-network and fuzzy-logic controllers for both naval and civil engineering applications. The first strategy is based on a load-matching procedure, which seeks to adjust the controller in order to counteract the loads (forces and moments) which generate the motion that is to be reduced. A second training strategy provides training by means of an adaptive gradient search. This technique provides a wide flexibility in defining the parameters to be optimized. Also a novel neural-network approach called modal neural network is designed as a suitable controller for multiple-input multiple output control systems (MIMO).
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
27

Thakore, Vaibhav. "Nonlinear dynamic modeling, simulation and characterization of the mesoscale neuron-electrode interface." Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5529.

Full text
Abstract:
Extracellular neuroelectronic interfacing has important applications in the fields of neural prosthetics, biological computation and whole-cell biosensing for drug screening and toxin detection. While the field of neuroelectronic interfacing holds great promise, the recording of high-fidelity signals from extracellular devices has long suffered from the problem of low signal-to-noise ratios and changes in signal shapes due to the presence of highly dispersive dielectric medium in the neuron-microelectrode cleft. This has made it difficult to correlate the extracellularly recorded signals with the intracellular signals recorded using conventional patch-clamp electrophysiology. For bringing about an improvement in the signal-to-noise ratio of the signals recorded on the extracellular microelectrodes and to explore strategies for engineering the neuron-electrode interface there exists a need to model, simulate and characterize the cell-sensor interface to better understand the mechanism of signal transduction across the interface. Efforts to date for modeling the neuron-electrode interface have primarily focused on the use of point or area contact linear equivalent circuit models for a description of the interface with an assumption of passive linearity for the dynamics of the interfacial medium in the cell-electrode cleft. In this dissertation, results are presented from a nonlinear dynamic characterization of the neuroelectronic junction based on Volterra-Wiener modeling which showed that the process of signal transduction at the interface may have nonlinear contributions from the interfacial medium. An optimization based study of linear equivalent circuit models for representing signals recorded at the neuron-electrode interface subsequently proved conclusively that the process of signal transduction across the interface is indeed nonlinear. Following this a theoretical framework for the extraction of the complex nonlinear material parameters of the interfacial medium like the dielectric permittivity, conductivity and diffusivity tensors based on dynamic nonlinear Volterra-Wiener modeling was developed. Within this framework, the use of Gaussian bandlimited white noise for nonlinear impedance spectroscopy was shown to offer considerable advantages over the use of sinusoidal inputs for nonlinear harmonic analysis currently employed in impedance characterization of nonlinear electrochemical systems. Signal transduction at the neuron-microelectrode interface is mediated by the interfacial medium confined to a thin cleft with thickness on the scale of 20-110 nm giving rise to Knudsen numbers (ratio of mean free path to characteristic system length) in the range of 0.015 and 0.003 for ionic electrodiffusion. At these Knudsen numbers, the continuum assumptions made in the use of Poisson-Nernst-Planck system of equations for modeling ionic electrodiffusion are not valid. Therefore, a lattice Boltzmann method (LBM) based multiphysics solver suitable for modeling ionic electrodiffusion at the mesoscale neuron-microelectrode interface was developed. Additionally, a molecular speed dependent relaxation time was proposed for use in the lattice Boltzmann equation. Such a relaxation time holds promise for enhancing the numerical stability of lattice Boltzmann algorithms as it helped recover a physically correct description of microscopic phenomena related to particle collisions governed by their local density on the lattice. Next, using this multiphysics solver simulations were carried out for the charge relaxation dynamics of an electrolytic nanocapacitor with the intention of ultimately employing it for a simulation of the capacitive coupling between the neuron and the planar microelectrode on a microelectrode array (MEA). Simulations of the charge relaxation dynamics for a step potential applied at t = 0 to the capacitor electrodes were carried out for varying conditions of electric double layer (EDL) overlap, solvent viscosity, electrode spacing and ratio of cation to anion diffusivity. For a large EDL overlap, an anomalous plasma-like collective behavior of oscillating ions at a frequency much lower than the plasma frequency of the electrolyte was observed and as such it appears to be purely an effect of nanoscale confinement. Results from these simulations are then discussed in the context of the dynamics of the interfacial medium in the neuron-microelectrode cleft. In conclusion, a synergistic approach to engineering the neuron-microelectrode interface is outlined through a use of the nonlinear dynamic modeling, simulation and characterization tools developed as part of this dissertation research.
Ph.D.
Doctorate
Physics
Sciences
Physics
APA, Harvard, Vancouver, ISO, and other styles
28

Pinto, Rengifo Ricardo Alberto. "Quantum breathers in small networks: Dynamics, tunneling, correlations, and application to Josephson cells." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1216216146408-01075.

Full text
Abstract:
We address the excitation of quantum breathers in small nonlinear networks of two and three degrees of freedom, in order to study their properties. The invariance under permutation of two sites of these networks substitutes the translation invariance that is present in nonlinear lattices, where (classical) discrete breathers are time periodic space localized solutions of the underlying classical equations of motion. We do a systematic analysis of the spectrum and eigenstates of such small systems, characterizing quantum breather states by their tunnelling rate (energy splitting), site correlations, fluctuations of the number of quanta, and entanglement. We observe how these properties are reflected in the time evolution of initially localized excitations. Quantum breathers manifest as pairs of nearly degenerate eigenstates that show strong site correlation of quanta, and are characterized by a strong excitation of quanta on one site of the network which perform slow coherent tunnelling motion from one site to another. They enhance the fluctuations of quanta, and are the least entangled states among the group of eigenstates in the same range of the energy spectrum. We use our analysis methods to consider the excitation of quantum breathers in a cell of two coupled Josephson junctions, and study their properties as compared with those in the previous cases. We describe how quantum breathers could be experimentally observed by employing the already developed techniques for quantum information processing with Josephson junctions.
APA, Harvard, Vancouver, ISO, and other styles
29

Mulansky, Mario. "Localization properties of nonlinear disordered lattices." Master's thesis, Universität Potsdam, 2009. http://opus.kobv.de/ubp/volltexte/2009/3146/.

Full text
Abstract:
In this thesis, the properties of nonlinear disordered one dimensional lattices is investigated. Part I gives an introduction to the phenomenon of Anderson Localization, the Discrete Nonlinear Schroedinger Equation and its properties as well as the generalization of this model by introducing the nonlinear index α. In Part II, the spreading behavior of initially localized states in large, disordered chains due to nonlinearity is studied. Therefore, different methods to measure localization are discussed and the structural entropy as a measure for the peak structure of probability distributions is introduced. Finally, the spreading exponent for several nonlinear indices is determined numerically and compared with analytical approximations. Part III deals with the thermalization in short disordered chains. First, the term thermalization and its application to the system in use is explained. Then, results of numerical simulations on this topic are presented where the focus lies especially on the energy dependence of the thermalization properties. A connection with so-called breathers is drawn.
In dieser Arbeit wird das Verhalten nichtlinearer Ketten mit Zufallspotential untersucht. Teil I enthaelt eine Einfuehrung in das Phaenomen der Anderson Lokalisierung, die Diskrete Nichtlineare Schroedinger Gleichung und ihren Eigenschaften sowie die verwendete Verallgemeinerung des Modells durch Einfuehrung eines Nichtlinearitaets-Indizes α. In Teil II wird das Ausbreitungsverhalten von lokalisierten Zustaenden in langen, ungeordneten Ketten durch die Nichtlinearitaet untersucht. Dazu werden zuerst verschiedene Lokalisierungsmaße besprochen und außerdem die strukturelle Entropie als Messgroeße der Peakstruktur eingefuehrt. Im Anschluss wird der Ausbreitungskoeffzient fuer verschiedene Nichtlinearitaets-Indizes bestimmt und mit analytischen Absch¨tzungen verglichen. Teil III behandelt schließlich die Thermalisierung in kurzen, ungeordneten Ketten. Dabei wird zuerst der Begriff Thermalisierung in dem verwendeten Zusammenhang erklaert. Danach erfolgt eine numerische Analyse von Thermalisierungseigenschaften lokalisierter Anfangszustaende, wobei die Energieabhaengigkeit besondere Beachtung genießt. Eine Verbindung mit sogenannten Breathers wird dargelegt.
APA, Harvard, Vancouver, ISO, and other styles
30

Stensson, Katarina. "Quantum Optics in 2D Nonlinear Lattices." Thesis, KTH, Tillämpad fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Senyange, Bob. "Chaotic behaviour of disordered nonlinear lattices." Doctoral thesis, Faculty of Science, 2021. http://hdl.handle.net/11427/34029.

Full text
Abstract:
In this work we systematically investigate the chaotic energy spreading in prototypical models of disordered nonlinear lattices, the so-called disordered Klein-Gordon (DKG) system, in one (1D) and two (2D) spatial dimensions. The normal modes' exponential localization in 1D and 2D heterogeneous linear media explains the phenomenon of Anderson Localization. Using a modified version of the 1D DKG model, we study the changes in the properties of the system's normal modes as we move from an ordered version to the disordered one. We show that for the ordered case, the probability density distribution of the normal modes' frequencies has a ‘U'-shaped profile that gradually turns into a plateau for a more disordered system, and determine the dependence of two estimators of the modes' spatial extent (the localization volume and the participation number) on the width of the interval from which the strengths of the on-site potentials are randomly selected. Furthermore, we investigate the numerical performance of several integrators (mainly based on the two part splitting approach) for the 1D and 2D DKG systems, by performing extensive numerical simulations of wave packet evolutions in the various dynamical regimes exhibited by these models. In particular, we compare the computational efficiency of the integrators considered by checking their ability to correctly reproduce the time evolution of the systems' finite time maximum Lyapunov exponent estimator Λ and of various features of the propagating wave packets, and determine the best-performing ones. Finally we perform a numerical investigation of the characteristics of chaos evolution for a spreading wave packet in the 1D and 2D nonlinear DKG lattices. We confirm the slowing down of the chaotic dynamics for the so-called weak, strong and selftrapping chaos dynamical regimes encountered in these systems, without showing any signs of a crossover to regular behaviour. We further substantiate the dynamical dissimilarities between the weak and strong chaos regimes by establishing different, but rather general, values for the time decay exponents of Λ. In addition, the spatio-temporal evolution of the deviation vector associated with Λ reveals the meandering of chaotic seeds inside the wave packets, supporting the assumptions for chaotic spreading theories of energy.
APA, Harvard, Vancouver, ISO, and other styles
32

Silva, Cícero Rita da. "Efeito da não linearidade na dinâmica das oscilações de rabi em uma rede óptica unidimensional." Universidade Federal de Alagoas, 2013. http://www.repositorio.ufal.br/handle/riufal/1690.

Full text
Abstract:
The linear propagation of optical beams through a transvers al periodic pattern, such as an optically induced lattice, have been reported to induce power oscillations between a pair of Fourier modes related by the Bragg resonance condition. These are Bloch modes with frequency within the band gap and thus, confined to the transversal plane (x,y), but otherwise traveling freely in the z-direction. Stemming from the coupling between the light beam and the periodic lattice, these twin-mode power oscillations have been referred as Rabi optical oscillations, due to the analogy with matter Rabi oscillations. In this work, investigates numerically investigate the behavior of such Rabi-type oscillations, under the influence of a selfdefocusing nonlinearity along the propagation direction. Is considered the incidence of a light pulse characterized by a Gaussian spectrum centered in one of the modes of the twin pair, into a one-dimensional photonic structure, with a periodic modulation of the optical refractive index lying in a transversal direction x. For a weak nonlinearities, observed an interesting interplay between linear twin coupling and selfdefocusing: the selfdefocusing effect spread energy of the central frequency to new neighboring modes occurring within the Gaussian spectrum input, centered in one mode of the pair, and transfer proportion of this energy to the correspondent resonant mode. In this way the center mode or frequency component of the spectrum in the presence of selfdefocusing effect, oscillates from one extreme to ano ther within the Brillouin zone. By increasing the nonlinearity, one finds a balanced combination of both effects, that is, Bragg resonance and selfdefocusing, which promotes the transference of the nonlinear reshaping of a Gaussian spectrum, occurring around the central frequency at the input, to the neighborhood of its twin mode. Thus, the nonlinear Rabi oscillations might reveal itself quite useful for optical techniques and optical devices in the sense that, by suitably tailoring the electromagnetic space one could allow the tuning of the nonlinear frequency spreading.
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
A propagação linear de feixes ópticos através de um padrão periódico transversal, como uma rede induzida opticamente, é conhecida por induzir as oscilações de potência entre um par de modos de Fourier relacionados pela condição de ressonância de Bragg. Estes são os modos de Bloch com frequência dentro do band gap, por conseguinte, confinados no plano transversal (x,y), mas viajam livrementena direção z. Partindo do acoplamento entre um feixe óptico e a rede periódica,essas oscilações das potências dos modos acoplados têm sido referidas como as oscilações de Rabi ópticas, devido à analogia com as oscilações de Rabi na matéria. Neste trabalho, investiga-se numericamente o comportamento de tais oscilações tipo Rabi, sob a influência da não linearidade de autodesfocalização ao longo da direção de propagação. Considera-se a incidência de um pulso de luz caracterizado por um espectro Gaussiano, centrado em um dos modos do par acoplado, em uma estrutura fotônica unidimensional com uma modulação periódica do índice de refração na direção transversal x. Para uma não linearidade fraca, pode-se observar uma interessante interação entre os dois modos acoplados em regime linear e o efeito de autodesfocalização: O efeito de autodesfocalização distribui energia da frequência central para os novos modos vizinhos, dentro do espectro inicialmente Gaussiano, centrado em dos modos acoplados, e transfere parte dessa energia para o modo ressonante correspondente. Desta forma, o modo ou a componente de frequência central do espectro na presença do efeito de autodesfocalização oscila de um extremo a outro dentro da zona de Brillouin. Ao aumentar a não linearidade, encontra-se uma combinação balanceada de ambos os efeitos, que são, ressonância de Bragg e autodesfocalização, que promovem a transferência não linear remodelando o espectro Gaussiano, que ocorre na entrada em torno de uma frequência central, para seu modo vizinho. Assim, as oscilações de Rabi não lineares podem revelar-se bastante proveitosas para técnicas ópticas e dispositivos ópticos no sentido de que, atravésde um espaço eletromagnético adequado permitir a sintonia de espalhamento não linear da frequência.
APA, Harvard, Vancouver, ISO, and other styles
33

Flores, Callisaya Hector 1980. "Empacotamento em quadráticas." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307468.

Full text
Abstract:
Orientador: José Mario Martínez Pérez
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-20T05:08:42Z (GMT). No. of bitstreams: 1 FloresCallisaya_Hector_D.pdf: 2324904 bytes, checksum: e15e7624ccad0fdf64ce3c4d8095c20a (MD5) Previous issue date: 2012
Resumo: Neste trabalho, serão propostos modelos matemáticos para problemas de empacotamento não reticulado de esferas em regiões limitadas por quadráticas no plano e no espaço. Uma técnica para construir representações ou parametrizações será introduzida, mediante a qual será possível encontrar um sistema de desigualdades que determinam o empacotamento de um número fixo de esferas. Desta forma, resolvemos o problema de empacotamento de esferas através de uma sequência de sistemas de desigualdades. Finalmente, para obter resultados eficientes, minimizaremos a função de sobreposição, usando o método do Lagrangiano Aumentado
Abstract: In this work, we will propose mathematical models for not latticed packing of spheres problems in regions bounded by quadratic in the plane and in the space. A technique to construct representations or parameterizations will be introduced, by which it will be possible to find a system of inequalities which determine the packing of a fixed number of spheres. Thus, we solve the problem of packing spheres through a sequence of systems of inequalities. Finally, to obtain effective results, we will minimize the overlay function using the Augmented Lagrangian Method
Doutorado
Matematica Aplicada
Doutor em Matemática Aplicada
APA, Harvard, Vancouver, ISO, and other styles
34

Hays, Mark Hanna IV. "Classical and quantum mechanical studies of nonlinear lattices." Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/187122.

Full text
Abstract:
A class of nonlinear Hamiltonian lattice models that includes both the nonintegrable discrete nonlinear Schrodinger and the integrable Ablowitz-Ladik models is investigated classically and quantum mechanically. In general, the model under consideration is nonintegrable and its Hamiltonian structure is derived from a nonstandard Poisson bracket. It is shown that solutions of the classical model can, under appropriate and well-defined conditions, become infinite in finite time (blowup). Under suitable restrictions, it is demonstrated that an associated quantum lattice does not exhibit this singular behavior. In this sense, quantum mechanics can regularize a singular classical phenomenon. A fully nonlinear modulation theory for plane wave solutions of the classical lattice is developed. For cases of the model exhibiting blowup, numerical evidence is presented that suggests the existence of both stable and unstable modulated wavetrains. At the present time, it is unclear the extent to which one may relate the onset of instability to blowup. The Hartree approximation is applied to a generalized discrete self-trapping equation (GDST), with the result that the effective Hartree dynamics are described by a rescaled version of the GDST itself. In this manner, the Hartree approximation gives a direct connection between classical and quantum lattice models. Finally, Weyl's ordering prescription is shown to reproduce perturbative results for a weakly nonlinear oscillator. These results are extended to Hamiltonians that are nonpolynomial functions of the number operator. Extensions to the methodology that permit the treatment of other ordering prescriptions are given and compared with Weyl's rule.
APA, Harvard, Vancouver, ISO, and other styles
35

Walden, Cleon A. "Numerical investigations of breather solitons in nonlinear vibratory lattices." Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/28405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Galvin, Brian Russell. "Numerical studies of localized vibrating structures in nonlinear lattices." Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/28408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Xu, Zhiyong. "All-optical soliton control in photonic lattices." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/6907.

Full text
Abstract:
Los solitones ópticos son paquetes de luz (haces y/o pulsos) que no se dispersan gracias al balance entre difracción/dispersión y no linealidad. Al propagarse e interactuar los unos con los otros muestran propiedades que normalmente se asocian a partículas. Las propiedades de los solitones ópticos en fibras ópticas y cristales han sido investigadas en profundidad durante las últimas dos décadas. Sin embargo, los solitones en mallas, o redes, ópticas, que podrían ser usados para procesado y direccionamiento totalmente óptico de señales, se han convertido en una nueva área de investigación. El principal objetivo de esta tesis es el estudio de nuevas técnicas para controlar solitotes en medios no lineales en mallas ópticas.
El capítulo 2 se centra en ciertas propiedades de los solitones ópticos en medios no lineales cuadráticos. La primera sección presenta en detalle la existencia y estabilidad de tres familias representativas de solitones espacio temporales en dos dimensiones en series de frentes de onda cuadráticos no lineales. Se asume, además de la dispersión temporal del pulso, la combinación de difracción discreta que surge debido al acoplamiento débil entre frentes de onda vecinos. La otra sección da cuenta de la existencia y estabilidad de vórtices de solitones multicolores en retículo, consistentes en cuatro jorobas principales dispuestas en una configuración cuadrada. También se investiga la posibilidad de generarlos dinámicamente a partir de haces de entrada Gaussianos con vórtices anidados.
La técnica de inducción de mallas ópticas ofrece un sinfín de posibilidades para la creación de configuraciones de guía de ondas con varios haces de luz no difractantes. El capítulo 3 presenta el concepto de estructuras reconfigurables ópticamente inducidas por haces no difractantes de Bessel mutuamente incoherentes en medios no lineales de tipo Kerr. Los acopladores de dos nucleos son introducidos y se muestra cómo calibrar las propiedades de conmutación de estas estructuras variando la intensidad de los haces de Bessel. El capítulo también discute varios escenarios de conmutación para solitones lanzados al interior de acopladores direccionales multinucleares ópticamente inducidos por apropiadas series de haces de Bessel. Es más, la propagación de solitones es investigada en redes reconfigurables bidimensionales inducidas ópticamente por series de haces de Bessel no difractantes. Se muestra que los haces anchos de solitones pueden moverse a través de redes con diferentes topologías casi sin pérdidas por radiación. Finalmente, se estudian las propiedades de las uniones X, que se crean a partir de dos haces de Bessel intersectantes.
La respuesta no local de los medios no lineales puede jugar un papel importante en las propiedades de los solitones. El capítulo 4 trata el impacto de la no localidad en las características físicas exhibidas por los solitones que permiten los medios no lineales de tipo Kerr con una retícula óptica integrada. El capítulo investiga propiedades de diferentes familias de solitones en mallas en medios no lineales no locales. Se muestra que la no localidad de la respuesta no lineal puede afectar profundamente la movilidad de los solitones. Las propiedades de los solitones de gap también se discuten en el caso de cristales fotorefractivos con una respuesta de difusión no local asimétrica y en presencia de una malla inducida.
El capítulo 5 trata del impacto de la no localidad en la estabilidad de complejos de solitones en medios no lineales de tipo Kerr uniformes. En primer lugar, se muestra que la diferente respuesta no local de los materiales tiene distinta influencia en la estabilidad de los complejos de solitones en el caso escalar. En segundo lugar, se da cuenta de una serie de resultados experimentales sobre solitones multipolares escalares en medios no lineales fuertemente no locales en 2D, incluyendo solitones dipolares, tripolares y de tipo pajarita, organizados en series de puntos brillantes fuera de fase. Finalmente, el capítulo estudia la interacción entre la no linealidad no local y el acoplamiento vectorial, enfatizando especialmente la estabilización de efectos vectoriales en complejos de solitones en medios no lineales no locales.
Por último, el capítulo 6 resume los principales resultados obtenidos en la tesis y discute algunas cuestiones abiertas.
Optical solitons are light packets (beams and/or pulses) that do not broaden because of the proper balance between diffraction/dispersion and nonlinearity. They propagate and interact with one another while displaying properties that are normally associated with real particles. The properties of optical solitons in optical fibers and crystals have been investigated comprehensively during the last two decades. However, solitons in optical lattices, which might be used for all-optical signal processing and routing have recently emerged a new area of research. The main objective of this thesis is the investigation of new techniques for soliton control in nonlinear media with/without an imprinted optical lattice.
Chapter 2 focuses on properties of optical solitons in quadratic nonlinear media. The first section presents in detail the existence and stability of three representative families of two-dimensional spatiotemporal solitons in quadratic nonlinear waveguide arrays. It is assumed in addition to the temporal dispersion of the pulse, the combination of discrete diffraction that arises because of the weak coupling between neighboring waveguides. The other section reports on the existence and stability of multicolor lattice vortex solitons, which comprise four main humps arranged in a square configuration. It is also investigated the possibility of their dynamical generation from Gaussian-type input beams with nested vortices.
The technique of optical lattice induction opens a wealth of opportunities for creation of waveguiding configurations with various nondiffracting light beams. Chapter 3 puts forward the concept of reconfigurable structures optically induced by mutually incoherent nondiffracting Bessel beams in Kerr-type nonlinear media. Two-core couplers are introduced and it is shown how to tune the switching properties of such structures by varying the intensity of the Bessel beams. The chapter also discusses various switching scenarios for solitons launched into the multi core directional couplers optically-induced by suitable arrays of Bessel beams. Furthermore, propagation of solitons is investigated in reconfigurable two-dimensional networks induced optically by arrays of nondiffracting Bessel beams. It is shown that broad soliton beams can move across networks with different topologies almost without radiation losses. Finally, properties of X-junctions are studied, which are created with two intersecting Bessel beams.
Nonlocal response of nonlinear media can play an important role in properties of solitons. Chapter 4 treats the impact of nonlocality in the physical features exhibited by solitons supported by Kerr-type nonlinear media with an imprinted optical lattice. The chapter investigates properties of different families of lattice solitons in nonlocal nonlinear media. It is shown that the nonlocality of the nonlinear response can profoundly affect the soliton mobility. The properties of gap solitons are also discussed for photorefractive crystals with an asymmetric nonlocal diffusion response and in the presence of an imprinted optical lattice.
Chapter 5 is devoted to the impact of nonlocality on the stability of soliton complexes in uniform nonlocal Kerr-type nonlinear media. First, it is shown that the different nonlocal response of materials has different influence on the stability of soliton complexes in scalar case. Second, experimental work is reported on scalar multi-pole solitons in 2D highly nonlocal nonlinear media, including dipole, tripole, and necklace-type solitons, organized as arrays of out-of-phase bright spots. Finally, the chapter addresses the interplay between nonlocal nonlinearity and vectoral coupling, specially emphasizing the stabilization of vector effects on soliton complexes in nonlocal nonlinear media.
Finally, Chapter 6 summarizes the main results obtained in the thesis and discusses some open prospects.
APA, Harvard, Vancouver, ISO, and other styles
38

Abad, Jarillo Enrique. "Aspects of nonlinear dynamics in low dimensional lattices :a multilevel approach." Doctoral thesis, Universite Libre de Bruxelles, 2003. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Petri, Christoph [Verfasser], and Peter [Akademischer Betreuer] Schmelcher. "Nonlinear dynamics of spatio-temporally driven lattices / Christoph Petri. Betreuer: Peter Schmelcher." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2012. http://d-nb.info/1030365121/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Mourad, Ayman. "Description topologique de l'architecture fibreuse et modélisation mécanique du myocarde." Grenoble INPG, 2003. https://tel.archives-ouvertes.fr/tel-00004003.

Full text
Abstract:
Ce travail de thèse est effectué en collaboration avec l'équipe RFMQ du laboratoire TIMC. Il s'agit d'une modélisation géométrique, mécanique et numérique du myocarde. La partie géométrique consiste à vérifier une conjecture selon laquelle les fibres myocardiques courent comme des géodésiques sur des surfaces emboîtées. Nous avons vérifié sur des données expérimentales cette conjecture sur le ventricule gauche dont les trajectoires et les surfaces des fibres ont été identifiées. Dans la partie mécanique, nous avons construit une loi de comportement macroscopique du myocarde en grandes déformations par une technique d'homogénéisation discrète basée sur la description microscopique de l'arrangement des cellules cardiaques et de leur comportement mécanique individuel. De plus, nous avons appliqué notre méthode d'homogénéisation aux nanotubes de carbone dont, dans le cas des petites déformations, nous avons obtenu l'expression analytique de la loi de comportement.
APA, Harvard, Vancouver, ISO, and other styles
41

Lauter, Roland [Verfasser], and Florian [Gutachter] Marquardt. "Nonlinear collective phase dynamics of limit-cycle oscillator lattices / Roland Lauter ; Gutachter: Florian Marquardt." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2017. http://d-nb.info/1124233873/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Laptyeva, Tetyana V. [Verfasser], Roderich [Akademischer Betreuer] Moessner, and Arcady [Akademischer Betreuer] Pikovsky. "Nonlinear waves in random lattices: localization and spreading / Tetyana V. Laptyeva. Gutachter: Roderich Moessner ; Arcady Pikovsky. Betreuer: Roderich Moessner." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://d-nb.info/1068151722/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bitar, Diala. "Collective dynamics of weakly coupled nonlinear periodic structures." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD002/document.

Full text
Abstract:
Bien que la dynamique des réseaux périodiques non-linéaires ait été investiguée dans les domainestemporel et fréquentiel, il existe un réel besoin d’identifier des relations pratiques avec lephénomène de la localisation d’énergie en termes d’interactions modales et topologies de bifurcation.L’objectif principal de cette thèse consiste à exploiter le phénomène de la localisation pourmodéliser la dynamique collective d’un réseau périodique de résonateurs non-linéaires faiblementcouplés.Un modèle analytico-numérique a été développé pour étudier la dynamique collective d’unréseau périodique d’oscillateurs non-linéaires couplés sous excitations simultanées primaire et paramétrique,où les interactions modales, les topologies de bifurcations et les bassins d’attraction ontété analysés. Des réseaux de pendules et de nano-poutres couplés électrostatiquement ont étéinvestigués sous excitation extérieure et paramétrique, respectivement. Il a été démontré qu’enaugmentant le nombre d’oscillateurs, le nombre de solutions multimodales et la distribution desbassins d’attraction des branches résonantes augmentent. Ce modèle a été étendu pour investiguerla dynamique collective des réseaux 2D de pendules couplés et de billes sphériques en compressionsous excitation à la base, où la dynamique collective est plus riche avec des amplitudes de vibrationplus importantes et des bandes passantes plus larges. Une deuxième investigation de cettethèse consiste à identifier les solitons associés à la dynamique collective d’un réseau périodique etd’étudier sa stabilité
Although the dynamics of periodic nonlinear lattices was thoroughly investigated in the frequencyand time-space domains, there is a real need to perform profound analysis of the collectivedynamics of such systems in order to identify practical relations with the nonlinear energy localizationphenomenon in terms of modal interactions and bifurcation topologies. The principal goal ofthis thesis consists in exploring the localization phenomenon for modeling the collective dynamicsof periodic arrays of weakly coupled nonlinear resonators.An analytico-numerical model has been developed in order to study the collective dynamics ofa periodic coupled nonlinear oscillators array under simultaneous primary and parametric excitations,where the bifurcation topologies, the modal interactions and the basins of attraction havebeen analyzed. Arrays of coupled pendulums and electrostatically coupled nanobeams under externaland parametric excitations respectively were considered. It is shown that by increasing thenumber of coupled oscillators, the number of multimodal solutions and the distribution of the basinsof attraction of the resonant solutions increase. The model was extended to investigate the collectivedynamics of periodic nonlinear 2D arrays of coupled pendulums and spherical particles underbase excitation, leading to additional features, mainly larger bandwidth and important vibrationalamplitudes. A second investigation of this thesis consists in identifying the solitons associated tothe collective nonlinear dynamics of the considered arrays of periodic structures and the study oftheir stability
APA, Harvard, Vancouver, ISO, and other styles
44

Ngapasare, Arnold. "Waves in disordered and nonlinear mechanical structures." Thesis, Le Mans, 2020. http://www.theses.fr/2020LEMA1036.

Full text
Abstract:
Ce travail est consacré à l’ étude théorique et numérique de la propagation des ondes élastiques dans les structures mécaniques désordonnées. L’ objectif principal est d’ étudier comment la localisation induite par le désordre est affectée par la non-linéarité et par la présence de mouvements de rotations. Nous étudions d’abord une chaîne granulaire finie et montrons que non seulement la localisation d’ Anderson est rompue mais aussi que l’ équipartition de l’ énergie est réalisée grâce à la non-linéarité discontinue propre aux chaînes granulaires. De plus, nous étendons nos études à un reseau micropolaire qui supporte les ondes de rotation. Nous montrons que, dans la limite linéaire, la repartition de l’ énergie est facilitée à la fois par des ondes étendues à basse fréquence et par un ensemble de modes quasi-étendus à haute fréquence. Nous identifions aussi un cas où l’ énergie est complètement localisée en réglant la rigidité. Enfin, pour une chaîne LEGO architecturée non linéaire présentant un movement à la fois transversal et rotatif, nous étudions comment la non-linéarité rompt, dans ce système polarisé, la localisation d’ Anderson. Il s’avère que la dynamique de ce système a un caractère unique qui ressemble à une combinaison des modèles Fermi-Pasta-Ulam-Tsingou et Klein Gordon pour le comportement asymptotique et chaotique
This work is devoted to the theoretical and numerical study of elastic wave propagation in disordered mechanical structures. The main goal is to investigate how the localization induced by disorder is affected by nonlinearity and by the presence of rotational motion. Firstly, we study a finite granular chain and show that not only Anderson localization is broken but also energy equipartition is achieved due to the discontinuous nonlinearity which is particular to granular chains. Furthermore, we extend our studies to a micropolar lattice that supports rotational waves. We show that in the linear limit the energy spreading is facilitated both by low frequency extended waves and a set of high frequency quasiextended modes. Also, we identify a case where energy is completely localized by tuning the stiffness. Finally, for a nonlinear architected LEGO chain featuring both transverse and rotational motion we study how nonlinearity breaks Anderson localization in this polarized system. The dynamics is found to have a unique character resembling a combination of the Fermi-Pasta-Ulam Tsingou and Klein-Gordon models regarding the asymptotic dynamical behavior and chaoticity
APA, Harvard, Vancouver, ISO, and other styles
45

Marcovici, Irène. "Automates cellulaires probabilistes et mesures spécifiques sur des espaces symboliques." Phd thesis, Université Paris-Diderot - Paris VII, 2013. http://tel.archives-ouvertes.fr/tel-00933977.

Full text
Abstract:
Un automate cellulaire probabiliste (ACP) est une chaîne de Markov sur un espace symbolique. Le temps est discret, les cellules évoluent de manière synchrone, et le nouvel état de chaque cellule est choisi de manière aléatoire, indépendamment des autres cellules, selon une distribution déterminée par les états d'un nombre fini de cellules situées dans le voisinage. Les ACP sont utilisés en informatique comme modèle de calcul, ainsi qu'en biologie et en physique. Ils interviennent aussi dans différents contextes en probabilités et en combinatoire. Un ACP est ergodique s'il a une unique mesure invariante qui est attractive. Nous prouvons que pour les AC déterministes, l'ergodicité est équivalente à la nilpotence, ce qui fournit une nouvelle preuve de l'indécidabilité de l'ergodicité pour les ACP. Alors que la mesure invariante d'un AC ergodique est triviale, la mesure invariante d'un ACP ergodique peut être très complexe. Nous proposons un algorithme pour échantillonner parfaitement cette mesure. Nous nous intéressons à des familles spécifiques d'ACP, ayant des mesures de Bernoulli ou des mesures markoviennes invariantes, et étudions les propriétés de leurs diagrammes espace-temps. Nous résolvons le problème de classification de la densité sur les grilles de dimension supérieure ou égale à 2 et sur les arbres. Enfin, nous nous intéressons à d'autres types de problèmes. Nous donnons une caractérisation combinatoire des mesures limites pour des marches aléatoires sur des produits libres de groupes. Nous étudions les mesures d'entropie maximale de sous-décalages de type fini sur les réseaux et sur les arbres. Les ACP interviennent à nouveau dans ce dernier travail.
APA, Harvard, Vancouver, ISO, and other styles
46

Berthelot, Geoffroy. "L'expansion phénotypique et ses limites." Phd thesis, Université René Descartes - Paris V, 2013. http://tel.archives-ouvertes.fr/tel-00917998.

Full text
Abstract:
Le développement futur des performances sportives est un sujet de mythe et de désaccord entre les experts. Un article, publié en 2004, a donné lieu à un vif débat dans le domaine universitaire. Il suggère que les modèles linéaires peuvent être utilisés pour prédire -sur le long terme- la performance humaine dans les courses de sprint. Des arguments en faveur et en défaveur de cette méthodologie ont été avancés par différent scientifiques et d'autres travaux ont montré que le développement des performances est non linéaire au cours du siècle passé. Une autre étude a également souligné que la performance est liée au contexte économique et géopolitique. Dans ce travail, nous avons étudié les frontières suivantes: le développement temporel des performances dans des disciplines Olympiques et non Olympiques, avec le vieillissement chez les humains et d'autres espèces (lévriers, pur sangs, souris). Nous avons également étudié le développement des performances d'un point de vue plus large en analysant la relation entre performance, durée de vie et consommation d'énergie primaire. Nous montrons que ces développements physiologiques sont limités dans le temps et que les modèles linéaires introduits précédemment sont de mauvais prédicteurs des phénomènes biologiques et physiologiques étudiés. Trois facteurs principaux et directs de la performance sportive sont l'âge, la technologie et les conditions climatiques (température). Cependant, toutes les évolutions observées sont liées au contexte international et à l'utilisation des énergies primaires, ce dernier étant un paramètre indirect du développement de la performance. Nous montrons que lorsque les indicateurs des performances physiologiques et sociétales -tels que la durée de vie et la densité de population- dépendent des énergies primaires, la source d'énergie, la compétition inter-individuelle et la mobilité sont des paramètres favorisant la réalisation de trajectoires durables sur le long terme. Dans le cas contraire, la grande majorité (98,7%) des trajectoires étudiées atteint une densité de population égale à 0 avant 15 générations, en raison de la dégradation des conditions environnementales et un faible taux de mobilité. Ceci nous a conduit à considérer que, dans le contexte économique turbulent actuel et compte tenu de la crise énergétique à venir, les performances sociétales et physiques ne devraient pas croître continuellement.
APA, Harvard, Vancouver, ISO, and other styles
47

Ben, amor Mohamed hedi. "Méthodes numériques et formelles pour l'ingénierie des réseaux biologiques : traitement de l'information par des populations d'oscillateurs. Approches par contraintes et Taxonomie des réseaux biologiques." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00778673.

Full text
Abstract:
Cette thèse concerne l'ingénierie des systèmes complexes à partir d'une dynamique souhaitée. En particulier, nous nous intéressons aux populations d'oscillateurs et aux réseaux de régulation génétique. Dans une première partie, nous nous fondons sur une hypothèse, introduite en neurosciences, qui souligne le rôle de la synchronisation neuronale dans le traitement de l'information cognitive. Nous proposons de l'utiliser sur un plan plus large pour étudier le traitement de l'information par des populations d'oscillateurs. Nous discutons des isochrons de quelques oscillateurs classés selon leurs symétries dans l'espace des états. Cela nous permet d'avoir un critère qualitatif pour choisir un oscillateur. Par la suite, nous définissons des procédures d'impression, de lecture et de réorganisation de l'information sur une population d'oscillateurs. En perspective, nous proposons un système à couches d'oscillateurs de Wilson-Cowan. Ce système juxtapose convenablement synchronisation et désynchronisation à travers l'utilisation de deux formes de couplage: un couplage continu et un couplage par pulsation. Nous finissons en proposant une application de ce système: la détection de contours dans une image. En deuxième partie, nous proposons d'utiliser une approche par contraintes pour identifier des réseaux de régulation génétique à partir de connaissances partielles sur leur dynamique et leur structure. Le formalisme que nous utilisons est connu sous le nom de réseaux d'automates booléens à seuil ou réseaux Hopfield-semblables. Nous appliquons cette méthode, afin de déterminer le réseau de régulation de la morphogenèse florale d'Arabidopsis thaliana. Nous montrons l'absence d'unicité des solutions dans l'ensemble des modèles valides (ici, 532 modèles). Nous montrons le potentiel de cette approche dans la détermination et la classification de modèles de réseaux de régulation génétique. L'ensemble de ces travaux mène à un certain nombre d'applications, en particulier dans le développement de nouvelles méthodes de stockage de l'information et dans le design de systèmes de calcul non conventionnel.
APA, Harvard, Vancouver, ISO, and other styles
48

Johnson, Scott L. "Orthogonal lattice modeling of nonlinear systems." Thesis, 1986. http://hdl.handle.net/10945/22018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Huang, Ching-Lang, and 黃清郎. "Numerical Traveling Wave Solutions of Some Nonlinear Mixed-type Lattice Differential Equations." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/40101792338233423003.

Full text
Abstract:
碩士
淡江大學
數學學系碩士班
96
We present a finite difference method for computing traveling wave front solutions of a two-dimensional lattice differential equations. In particular, the nonlinear reaction function is bi-stable type and the diffusion term is with function-couple. Under some suitable conditions on the characteristic equation, we prove the existence of the positive wave speed. It can help us to approximate the asymptotically behavior on the boundaries of profile equation. Newton''s method is used to find the solution of nonlinear algebraic equations inducing by the finite difference method. To overcome the difficulty of finding a good initial solution of Newton''s iteration, the continuation method is implemented.
APA, Harvard, Vancouver, ISO, and other styles
50

Yu-Chang, Chen, and 陳佑昌. "A Study on Nonlinear Behavior and Design of Large Span Lattice Domes." Thesis, 1998. http://ndltd.ncl.edu.tw/handle/34828925144912352442.

Full text
Abstract:
碩士
中原大學
土木工程研究所
86
The present study is concerned with the structuraldesign and analysis of large span latticed domes.By using STAAD-III/ISDS based on AISC-89 code, latticeddomes are designed, and their behavior are comparedwith Generalized Displacement Control Method (GDC).In the study, by using the truss element and the beamelement with axial deformation to model the structure,the results show the difference in the load-deflection curve ofthe crown of latticed domes. The cross-section with samearea and different moment of inertia to mode latticeddomes display the different characteristics of STAAD-III/ISDSand Generalized Displacement Control Method. The analyzedresults of the model of beam elements with axialdeformation are confirmed in reference. A couple types oflatticed domes are shown that the design of theSTAAD-III/ISDS based on AISC-89 code were conservatively.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography