Academic literature on the topic 'Nonlinear Maxwell equations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nonlinear Maxwell equations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nonlinear Maxwell equations"

1

Kotel’nikov, G. A. "Nonlinear Maxwell Equations." Journal of Nonlinear Mathematical Physics 3, no. 3-4 (January 1996): 391–95. http://dx.doi.org/10.2991/jnmp.1996.3.3-4.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Krejčí, Pavel. "Periodic solutions to Maxwell equations in nonlinear media." Czechoslovak Mathematical Journal 36, no. 2 (1986): 238–58. http://dx.doi.org/10.21136/cmj.1986.102088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

D'Aprile, Teresa, and Dimitri Mugnai. "Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 134, no. 5 (October 2004): 893–906. http://dx.doi.org/10.1017/s030821050000353x.

Full text
Abstract:
In this paper we study the existence of radially symmetric solitary waves for nonlinear Klein–Gordon equations and nonlinear Schrödinger equations coupled with Maxwell equations. The method relies on a variational approach and the solutions are obtained as mountain-pass critical points for the associated energy functional.
APA, Harvard, Vancouver, ISO, and other styles
4

Brizard, Alain J., and Anthony A. Chan. "Nonlinear relativistic gyrokinetic Vlasov-Maxwell equations." Physics of Plasmas 6, no. 12 (December 1999): 4548–58. http://dx.doi.org/10.1063/1.873742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Babin, Anatoli, and Alexander Figotin. "Nonlinear Maxwell Equations in Inhomogeneous Media." Communications in Mathematical Physics 241, no. 2-3 (September 19, 2003): 519–81. http://dx.doi.org/10.1007/s00220-003-0939-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gupta, Vinay Kumar, and Manuel Torrilhon. "Higher order moment equations for rarefied gas mixtures." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, no. 2173 (January 2015): 20140754. http://dx.doi.org/10.1098/rspa.2014.0754.

Full text
Abstract:
The fully nonlinear Grad's N ×26-moment ( N × G 26) equations for a mixture of N monatomic-inert-ideal gases made up of Maxwell molecules are derived. The boundary conditions for these equations are derived by using Maxwell's accommodation model for each component in the mixture. The linear stability analysis is performed to show that the 2×G26 equations for a binary gas mixture of Maxwell molecules are linearly stable. The derived equations are used to study the heat flux problem for binary gas mixtures confined between parallel plates having different temperatures.
APA, Harvard, Vancouver, ISO, and other styles
7

DUPLIJ, STEVEN, ELISABETTA DI GREZIA, GIAMPIERO ESPOSITO, and ALBERT KOTVYTSKIY. "NONLINEAR CONSTITUTIVE EQUATIONS FOR GRAVITOELECTROMAGNETISM." International Journal of Geometric Methods in Modern Physics 11, no. 01 (December 16, 2013): 1450004. http://dx.doi.org/10.1142/s0219887814500042.

Full text
Abstract:
This paper studies nonlinear constitutive equations for gravitoelectromagnetism. Eventually, the problem is solved of finding, for a given particular solution of the gravity-Maxwell equations, the exact form of the corresponding nonlinear constitutive equations.
APA, Harvard, Vancouver, ISO, and other styles
8

Ciaglia, F. M., F. Di Cosmo, G. Marmo, and L. Schiavone. "Evolutionary equations and constraints: Maxwell equations." Journal of Mathematical Physics 60, no. 11 (November 1, 2019): 113503. http://dx.doi.org/10.1063/1.5109087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

LONG, EAMONN. "EXISTENCE AND STABILITY OF SOLITARY WAVES IN NON-LINEAR KLEIN–GORDON–MAXWELL EQUATIONS." Reviews in Mathematical Physics 18, no. 07 (August 2006): 747–79. http://dx.doi.org/10.1142/s0129055x06002784.

Full text
Abstract:
We prove the existence and stability of non-topological solitons in a class of weakly coupled non-linear Klein–Gordon–Maxwell equations. These equations arise from coupling non-linear Klein–Gordon equations to Maxwell's equations for electromagnetism.
APA, Harvard, Vancouver, ISO, and other styles
10

Colin, Thierry, and Boniface Nkonga. "Multiscale numerical method for nonlinear Maxwell equations." Discrete & Continuous Dynamical Systems - B 5, no. 3 (2005): 631–58. http://dx.doi.org/10.3934/dcdsb.2005.5.631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Nonlinear Maxwell equations"

1

Spitz, Martin [Verfasser], and R. [Akademischer Betreuer] Schnaubelt. "Local Wellposedness of Nonlinear Maxwell Equations / Martin Spitz ; Betreuer: R. Schnaubelt." Karlsruhe : KIT-Bibliothek, 2017. http://d-nb.info/114952233X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Caldwell, Trevor. "Nonlinear Wave Equations and Solitary Wave Solutions in Mathematical Physics." Scholarship @ Claremont, 2012. https://scholarship.claremont.edu/hmc_theses/32.

Full text
Abstract:
In this report, we study various nonlinear wave equations arising in mathematical physics and investigate the existence of solutions to these equations using variational methods. In particular, we look for particle-like traveling wave solutions known as solitary waves. This study is motivated by the prevalence of solitary waves in applications and the rich mathematical structure of the nonlinear wave equations from which they arise. We focus on a semilinear perturbation of Maxwell's equations and the nonlinear Klein - Gordon equation coupled with Maxwell's equations. Physical ramifications of these equations are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Soneson, Joshua Eric. "Optical Pulse Dynamics in Nonlinear and Resonant Nanocomposite Media." Diss., Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1274%5F1%5Fm.pdf&type=application/pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thizy, Pierre-Damien. "Effets non-locaux pour des systèmes elliptiques critiques." Thesis, Cergy-Pontoise, 2016. http://www.theses.fr/2016CERG0817.

Full text
Abstract:
Les travaux de cette thèse sont regroupés en trois grandes parties traitant respectivement-des ondes stationnaires des systèmes de Schr"odinger-Maxwell-Proca et de Klein-Gordon-Maxwell-Proca sur une variété riemannienne fermée (compacte sans bord dans toute la thèse),-de systèmes elliptiques de Kirchhoff sur une variété riemannienne fermée,-de phénomènes d'explosion propres aux petites dimensions
This thesis, divided into three main parts, deals with-standing waves for Schrödinger-Maxwell-Proca and Klein-Gordon-Maxwell-Proca systems on a closed Riemannian manifold (compact without boundary during all the thesis),-elliptic Kirchhoff systems on a closed manifold,-low-dimensional blow-up phenomena
APA, Harvard, Vancouver, ISO, and other styles
5

Nowak, Derek Brant. "The Design of a Novel Tip Enhanced Near-field Scanning Probe Microscope for Ultra-High Resolution Optical Imaging." PDXScholar, 2010. https://pdxscholar.library.pdx.edu/open_access_etds/361.

Full text
Abstract:
Traditional light microscopy suffers from the diffraction limit, which limits the spatial resolution to λ/2. The current trend in optical microscopy is the development of techniques to bypass the diffraction limit. Resolutions below 40 nm will make it possible to probe biological systems by imaging the interactions between single molecules and cell membranes. These resolutions will allow for the development of improved drug delivery mechanisms by increasing our understanding of how chemical communication within a cell occurs. The materials sciences would also benefit from these high resolutions. Nanomaterials can be analyzed with Raman spectroscopy for molecular and atomic bond information, or with fluorescence response to determine bulk optical properties with tens of nanometer resolution. Near-field optical microscopy is one of the current techniques, which allows for imaging at resolutions beyond the diffraction limit. Using a combination of a shear force microscope (SFM) and an inverted optical microscope, spectroscopic resolutions below 20 nm have been demonstrated. One technique, in particular, has been named tip enhanced near-field optical microscopy (TENOM). The key to this technique is the use of solid metal probes, which are illuminated in the far field by the excitation wavelength of interest. These probes are custom-designed using finite difference time domain (FDTD) modeling techniques, then fabricated with the use of a focused ion beam (FIB) microscope. The measure of the quality of probe design is based directly on the field enhancement obtainable. The greater the field enhancement of the probe, the more the ratio of near-field to far-field background contribution will increase. The elimination of the far-field signal by a decrease of illumination power will provide the best signal-to-noise ratio in the near-field images. Furthermore, a design that facilitates the delocalization of the near-field imaging from the far-field will be beneficial. Developed is a novel microscope design that employs two-photon non-linear excitation to allow the imaging of the fluorescence from almost any visible fluorophore at resolutions below 30 nm without changing filters or excitation wavelength. The ability of the microscope to image samples at atmospheric pressure, room temperature, and in solution makes it a very promising tool for the biological and materials science communities. The microscope demonstrates the ability to image topographical, optical, and electronic state information for single-molecule identification. A single computer, simple custom control circuits, field programmable gate array (FPGA) data acquisition, and a simplified custom optical system controls the microscope are thoroughly outlined and documented. This versatility enables the end user to custom-design experiments from confocal far-field single molecule imaging to high resolution scanning probe microscopy imaging. Presented are the current capabilities of the microscope, most importantly, high-resolution near-field images of J-aggregates with PIC dye. Single molecules of Rhodamine 6G dye and quantum dots imaged in the far-field are presented to demonstrate the sensitivity of the microscope. A comparison is made with the use of a mode-locked 50 fs pulsed laser source verses a continuous wave laser source on single molecules and J-aggregates in the near-field and far-field. Integration of an intensified CCD camera with a high-resolution monochromator allows for spectral information about the sample. The system will be disseminated as an open system design.
APA, Harvard, Vancouver, ISO, and other styles
6

Druet, Pierre-Etienne. "Analysis of a coupled system of partial differential equations modeling the interaction between melt flow, global heat transfer and applied magnetic fields in crystal growth." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2009. http://dx.doi.org/10.18452/15893.

Full text
Abstract:
Hauptthema der Dissertation ist die Analysis eines nichtlinearen, gekoppelten Systems partieller Differentialgleichungen (PDG), das in der Modellierung der Kristallzüchtung aus der Schmelze mit Magnetfeldern vorkommt. Die zu beschreibenden Phenomäne sind einerseits der im elektromagnetisch geheizten Schmelzofen erfolgende Wärmetransport (Wärmeleitung, -konvektion und -strahlung), und andererseits die Bewegung der Halbleiterschmelze unter dem Einfluss der thermischen Konvektion und der angewendeten elektromagnetischen Kräfte. Das Modell besteht aus den Navier-Stokeschen Gleichungen für eine inkompressible Newtonsche Flüssigkeit, aus der Wärmeleitungsgleichung und aus der elektrotechnischen Näherung des Maxwellschen Systems. Wir erörtern die schwache Formulierung dieses PDG Systems, und wir stellen ein Anfang-Randwertproblem auf, das die Komplexität der Anwendung widerspiegelt. Die Hauptfrage unserer Untersuchung ist die Wohlgestelltheit dieses Problems, sowohl im stationären als auch im zeitabhängigen Fall. Wir zeigen die Existenz schwacher Lösungen in geometrischen Situationen, in welchen unstetige Materialeigenschaften und nichtglatte Trennfläche auftreten dürfen, und für allgemeine Daten. In der Lösung zum zeitabhängigen Problem tritt ein Defektmaß auf, das ausser der Flüssigkeit im Rand der elektrisch leitenden Materialien konzentriert bleibt. Da eine globale Abschätzung der im Strahlungshohlraum ausgestrahlten Wärme auch fehlt, rührt ein Teil dieses Defektmaßes von der nichtlokalen Strahlung her. Die Eindeutigkeit der schwachen Lösung erhalten wir nur unter verstärkten Annahmen: die Kleinheit der gegebenen elektrischen Leistung im stationären Fall, und die Regularität der Lösung im zeitabhängigen Fall. Regularitätseigenschaften wie die Beschränktheit der Temperatur werden, wenn auch nur in vereinfachten Situationen, hergeleitet: glatte Materialtrennfläche und Temperaturunabhängige Koeffiziente im Fall einer stationären Analysis, und entkoppeltes, zeitharmonisches Maxwell für das transiente Problem.
The present PhD thesis is devoted to the analysis of a coupled system of nonlinear partial differential equations (PDE), that arises in the modeling of crystal growth from the melt in magnetic fields. The phenomena described by the model are mainly the heat-transfer processes (by conduction, convection and radiation) taking place in a high-temperatures furnace heated electromagnetically, and the motion of a semiconducting melted material subject to buoyancy and applied electromagnetic forces. The model consists of the Navier-Stokes equations for a newtonian incompressible liquid, coupled to the heat equation and the low-frequency approximation of Maxwell''s equations. We propose a mathematical setting for this PDE system, we derive its weak formulation, and we formulate an (initial) boundary value problem that in the mean reflects the complexity of the real-life application. The well-posedness of this (initial) boundary value problem is the mainmatter of the investigation. We prove the existence of weak solutions allowing for general geometrical situations (discontinuous coefficients, nonsmooth material interfaces) and data, the most important requirement being only that the injected electrical power remains finite. For the time-dependent problem, a defect measure appears in the solution, which apart from the fluid remains concentrated in the boundary of the electrical conductors. In the absence of a global estimate on the radiation emitted in the cavity, a part of the defect measure is due to the nonlocal radiation effects. The uniqueness of the weak solution is obtained only under reinforced assumptions: smallness of the input power in the stationary case, and regularity of the solution in the time-dependent case. Regularity properties, such as the boundedness of temperature are also derived, but only in simplified settings: smooth interfaces and temperature-independent coefficients in the case of a stationary analysis, and, additionally for the transient problem, decoupled time-harmonic Maxwell.
APA, Harvard, Vancouver, ISO, and other styles
7

Kanso, Mohamed. "Sur le modèle de Kerr-Debye pour la propagation des ondes électromagnétiques." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14587/document.

Full text
Abstract:
Dans cette thèse on étudie des systèmes d’EDP non linéaires modélisant la propagation électromagnétique dans des milieux de type Kerr. On considère deux modèles. Le premier dit de Kerr-Debye, suppose un temps de réponse non nul du matériau à l’onde électromagnétique. Le second, dit de Kerr, suppose une réponse instantanée. On est ainsi confronté à des systèmes de relaxation tels que définis par Chen-Levermore-Liu (CPAM 1994). Nous établissons ici des résultats d’existence globale de solutions fortes à données petites en 3D pour le problème de Cauchy et un problème mixte. Puis nous construisons des schémas volumes finis asymptotic preserving et nous étudions leurs performances sur des cas physiques
In this thesis, we study non-linear PDE systems modeling the electromagnetic propagation in Kerr media. We consider two models. The first one is the Kerr-Debye model, it assumes a finite response time of the medium. The second one is the Kerr model, it assumes an instantaneous response. We deal with relaxation systems as defined by Chen-Levermore-Liu (CPAM 1994). For small data, we establish results of global existence of smooth solutions in 3D for the Cauchy problem and the IBVP. Then we investigate asymptotic preserving finite volume schemes and we study their performance on physical cases
APA, Harvard, Vancouver, ISO, and other styles
8

Nesrallah, Michael J. "Spatio-Temporal Theory of Optical Kerr Nonlinear Instability." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34313.

Full text
Abstract:
This work derives a nonlinear optical spatio-temporal instability. It is a perturbative analysis that begins from Maxwell’s equations and its constituent relations to derive a vectorial nonlinear wave equation. In fact, it is a new theoretical method that has been developed that builds on previous aspects of nonlinear optics in a more general way. The perturbation in the wave equation derived is coupled with its complex conjugate which has been taken for granted so far. Once decoupled it gives rise to a second-order equation and thus a true instability regime because the wavevector can become complex. The solution obtained for the perturbation that co-propagates with the driving laser is a generalization to modulation and filamentation instability, extending beyond the nonlinear Schrodinger and nonlinear transverse diffusion equations[1][2]. As a result of this new mechanism, new phenomena can be explored. For example, the Kerr Nonlinear Instability can lead to exponential growth, and hence amplification. This can occur even at wavelengths that are typically hard to operate at, such as into far infrared wave- lengths. This provides a mechanism for obtaining amplification in the far infrared from a small seed pulse without the need for population inversion. The analysis provides the basic framework that can be extended to many different avenues. This will be the subject of future work, as outlined in the conclusion of this thesis.
APA, Harvard, Vancouver, ISO, and other styles
9

Nabolsi, Hawraa. "Contrôle optimal des équations d'évolution et ses applications." Thesis, Valenciennes, 2018. http://www.theses.fr/2018VALE0027/document.

Full text
Abstract:
Dans cette thèse, tout d’abord, nous faisons l’Analyse Mathématique du modèle exact du chauffage radiatif d’un corps semi-transparent $\Omega$ par une source radiative noire qui l’entoure. Il s’agit donc d’étudier le couplage d’un système d’Equations de Transfert Radiatif avec condition au bord de réflectivité indépendantes avec une équation de conduction de la chaleur non linéaire avec condition limite non linéaire de type Robin. Nous prouvons l’existence et l’unicité de la solution et nous démontrons des bornes uniformes sur la solution et les intensités radiatives dans chaque bande de longueurs d’ondes pour laquelle le corps est semi-transparent, en fonction de bornes sur les données, Deuxièmement, nous considérons le problème du contrôle optimal de la température absolue à l’intérieur du corps semi-transparent $\Omega$ en agissant sur la température absolue de la source radiative noire qui l’entoure. À cet égard, nous introduisons la fonctionnelle coût appropriée et l’ensemble des contrôles admissibles $T_{S}$, pour lesquels nous prouvons l’existence de contrôles optimaux. En introduisant l’espace des états et l’équation d’état, une condition nécessaire de premier ordre pour qu’un contrôle $T_{S}$ : t ! $T_{S}$ (t) soit optimal, est alors dérivée sous la forme d’une inéquation variationnelle en utilisant le théorème des fonctions implicites et le problème adjoint. Ensuite, nous considérons le problème de l’existence et de l’unicité d’une solution faible des équations de la thermoviscoélasticité dans une formulation mixte de type Hellinger- Reissner, la nouveauté par rapport au travail de M.E. Rognes et R. Winther (M3AS, 2010) étant ici l’apparition de la viscosité dans certains coefficients de l’équation constitutive, viscosité qui dépend dans ce contexte de la température absolue T(x, t) et donc en particulier du temps t. Enfin, nous considérons dans ce cadre le problème du contrôle optimal de la déformation du corps semi-transparent $\Omega$, en agissant sur la température absolue de la source radiative noire qui l’entoure. Nous prouvons l’existence d’un contrôle optimal et nous calculons la dérivée Fréchet de la fonctionnelle coût réduite
This thesis begins with a rigorous mathematical analysis of the radiative heating of a semi-transparent body made of glass, by a black radiative source surrounding it. This requires the study of the coupling between quasi-steady radiative transfer boundary value problems with nonhomogeneous reflectivity boundary conditions (one for each wavelength band in the semi-transparent electromagnetic spectrum of the glass) and a nonlinear heat conduction evolution equation with a nonlinear Robin boundary condition which takes into account those wavelengths for which the glass behaves like an opaque body. We prove existence and uniqueness of the solution, and give also uniform bounds on the solution i.e. on the absolute temperature distribution inside the body and on the radiative intensities. Now, we consider the temperature $T_{S}$ of the black radiative source S surrounding the semi-transparent body $\Omega$ as the control variable. We adjust the absolute temperature distribution (x, t) 7! T(x, t) inside the semi-transparent body near a desired temperature distribution Td(·, ·) during the time interval of radiative heating ]0, tf [ by acting on $T_{S}$. In this respect, we introduce the appropriate cost functional and the set of admissible controls $T_{S}$, for which we prove the existence of optimal controls. Introducing the State Space and the State Equation, a first order necessary condition for a control $T_{S}$ : t 7! $T_{S}$ (t) to be optimal is then derived in the form of a Variational Inequality by using the Implicit Function Theorem and the adjoint problem. We come now to the goal problem which is the deformation of the semi-transparent body $\Omega$ by heating it with a black radiative source surrounding it. We introduce a weak mixed formulation of this thermoviscoelasticity problem and study the existence and uniqueness of its solution, the novelty here with respect to the work of M.E. Rognes et R. Winther (M3AS, 2010) being the apparition of the viscosity in some of the coefficients of the constitutive equation, viscosity which depends on the absolute temperature T(x, t) and thus in particular on the time t. Finally, we state in this setting the related optimal control problem of the deformation of the semi-transparent body $\Omega$, by acting on the absolute temperature of the black radiative source surrounding it. We prove the existence of an optimal control and we compute the Fréchet derivative of the associated reduced cost functional
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Nonlinear Maxwell equations"

1

Bidegaray-Fesquet, Brigitte. Hiérarchie de modèles en optique quantique: De Maxwell-Bloch à Schr̈odinger non-linéaire. Berlin: Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bidégaray-Fesquet, Brigitte. Hiérarchie de modèles en optique quantique: De Maxwell-Bloch à Schrödinger non-linéaire (Mathématiques et Applications). Springer, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nonlinear Maxwell equations"

1

Benci, Vieri, and Donato Fortunato. "The Nonlinear Schrödinger-Maxwell Equations." In Springer Monographs in Mathematics, 183–202. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06914-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Benci, Vieri, and Donato Fortunato. "The Nonlinear Klein-Gordon-Maxwell Equations." In Springer Monographs in Mathematics, 143–82. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06914-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goldin, Gerald A., Vladimir M. Shtelen, and Steven Duplij. "Conformal Symmetry Transformations and Nonlinear Maxwell Equations." In STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, 211–24. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97175-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ghimenti, Marco, and Anna Maria Micheletti. "Low Energy Solutions for the Semiclassical Limit of Schrödinger–Maxwell Systems." In Analysis and Topology in Nonlinear Differential Equations, 287–300. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04214-5_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ghimenti, Marco, and Anna Maria Micheletti. "Nonlinear Klein-Gordon-Maxwell systems with Neumann boundary conditions on a Riemannian manifold with boundary." In Contributions to Nonlinear Elliptic Equations and Systems, 299–323. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19902-3_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Imaikin, Valery, Alexander Komech, and Herbert Spohn. "Rotating Charge Coupled to the Maxwell Field: Scattering Theory and Adiabatic Limit." In Nonlinear Differential Equation Models, 143–56. Vienna: Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-0609-9_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bao, Gang, Aurelia Minut, and Zhengfang Zhou. "Maxwell’s Equations in Nonlinear Biperiodic Structures." In Mathematical and Numerical Aspects of Wave Propagation WAVES 2003, 406–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55856-6_65.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hanouzet, Bernard, and Muriel Sesques. "Absorbing Boundary Conditions for Maxwell’s Equations." In Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects, 315–22. Wiesbaden: Vieweg+Teubner Verlag, 1993. http://dx.doi.org/10.1007/978-3-322-87871-7_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

McLeod, J. B., C. A. Stuart, and W. C. Troy. "An Exact Reduction of Maxwell’s Equations." In Nonlinear Diffusion Equations and Their Equilibrium States, 3, 391–405. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0393-3_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Serkin, V. N., T. L. Belyaeva, and E. V. Samarina. "Simulation of ultrafast nonlinear electro-magnetic phenomena on the basis of Maxwell's equations solutions." In High-Performance Computing and Networking, 402–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61142-8_576.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nonlinear Maxwell equations"

1

Andreev, Anatoli V., and V. V. Berendakov. "Solitons of nontruncated Maxwell-Bloch equations." In International Conference on Coherent and Nonlinear Optics, edited by A. L. Andreev, Olga A. Kocharovskaya, and Paul Mandel. SPIE, 1996. http://dx.doi.org/10.1117/12.239461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bonod, Nicolas, Evgeny Popov, and Michel Neviere. "Factorization of nonlinear Maxwell equations in periodic media." In Optical Science and Technology, SPIE's 48th Annual Meeting, edited by Philippe Lalanne. SPIE, 2003. http://dx.doi.org/10.1117/12.504702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ming Fang, Xiaoyan Y. Z. Xiong, Wei E. I. Sha, Li Jun Jiang, and Zhixiang Huang. "Modeling of nonlinear response from metallic metamaterials by Maxwell-hydrodynamic equations." In 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016. http://dx.doi.org/10.1109/piers.2016.7735460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Saadeh, Shihadeh, and Gregory J. Salamo. "Experimental Observation of a New Chirped Continuous Pulse-Train Soliton Solution to the Maxwell-Bloch Equations." In Nonlinear Guided Waves and Their Applications. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/nlgw.1999.thd6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sirenko, Kostyantyn, Ozum Asirim, and Hakan Bagci. "A discontinuous Galerkin method for solving transient Maxwell equations with nonlinear material properties." In 2014 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium). IEEE, 2014. http://dx.doi.org/10.1109/usnc-ursi.2014.6955539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Quan-Fang Wang and Chengyu Cao. "Control problem for nonlinear systems given by Klein-Gordon-Maxwell equations with electromagnetic field." In 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. http://dx.doi.org/10.1109/cdc.2007.4434004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ming Fang, Kaikun Niu, Zhixiang Huang, Wei E. I. Sha, and Xianliang Wu. "Modeling nonlinear responses in metallic metamaterials by the FDTD solution to Maxwell-hydrodynamic equations." In 2016 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2016. http://dx.doi.org/10.1109/compem.2016.7588680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Goorjian, Peter M., and Yaron Silberberg. "NUMERICAL SIMULATIONS OF LIGHT BULLETS, USING THE FULL VECTOR, TIME DEPENDENT, NONLINEAR MAXWELL EQUATIONS." In Integrated Photonics Research. Washington, D.C.: OSA, 1995. http://dx.doi.org/10.1364/ipr.1995.ithf1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ashrafi, N., M. Mohamadali, and M. Najafi. "High Weissenberg Number Stress Boundary Layer for the Upper Convected Maxwell Fluid." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36544.

Full text
Abstract:
The classic Blassius problem of steady boundary-layer flow of the upper convected Maxwell over a flat plate in a moving fluid is studied. According to scaling parameters the equations represent the viscoelastic stress boundary layer. By means of an exact similarity transformation, the non-linear viscoelastic momentum and constitutive equations transform into a system of highly nonlinear coupled ordinary differential equations. Numerical solution may be achieved by a variable stepping method for the initial-value problem. The stepping numerical method chosen fifth order Runge-Kutta for solving the resulting nonlinear algebraic equations at each step. It is seen that there is a stress boundary layer and there is no velocity boundary layer.
APA, Harvard, Vancouver, ISO, and other styles
10

Christianto, Victor, Florentin Smarandache, and Yunita Umniyati. "Towards realism interpretation of wave mechanics based on Maxwell equations in quaternion space and some implications, including Smarandache’s hypothesis." In CONFERENCE ON THEORETICAL PHYSICS AND NONLINEAR PHENOMENA (CTPNP) 2019: Excursion from Vacuum to Condensed Matter. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0008139.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nonlinear Maxwell equations"

1

Brizard, A. Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic coordinates. Office of Scientific and Technical Information (OSTI), September 1988. http://dx.doi.org/10.2172/6793579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Davidson, R. C., W. W. Lee, and P. Stoltz. Statistically-averaged rate equations for intense nonneutral beam propagation through a periodic solenoidal focusing field based on the nonlinear Vlasov-Maxwell equations. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/304184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ronald C. Davidson, W. Wei-li Lee, Hong Qin, and Edward Startsev. Implications of the Electrostatic Approximation in the Beam Frame on the Nonlinear Vlasov-Maxwell Equations for Intense Beam Propagation. Office of Scientific and Technical Information (OSTI), November 2001. http://dx.doi.org/10.2172/792583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Davidson, R. C., and C. Chen. Kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field based on the nonlinear Vlasov-Maxwell equations. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/304185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography