Dissertations / Theses on the topic 'Nonlinear mixed-effects model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 45 dissertations / theses for your research on the topic 'Nonlinear mixed-effects model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ribbing, Jakob. "Covariate Model Building in Nonlinear Mixed Effects Models." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7923.
Full textGibiansky, Ekaterina. "Population pharmacokinetics : model-free approach and nonlinear mixed-effects modelling." Thesis, University of Greenwich, 1999. http://gala.gre.ac.uk/8654/.
Full textCole, James Jacob. "Assessing Nonlinear Relationships through Rich Stimulus Sampling in Repeated-Measures Designs." OpenSIUC, 2018. https://opensiuc.lib.siu.edu/dissertations/1587.
Full textZhang, Huaiye. "Bayesian Approach Dealing with Mixture Model Problems." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/37681.
Full textPh. D.
Dosne, Anne-Gaëlle. "Improved Methods for Pharmacometric Model-Based Decision-Making in Clinical Drug Development." Doctoral thesis, Uppsala universitet, Institutionen för farmaceutisk biovetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-305697.
Full textStrömberg, Eric. "Applied Adaptive Optimal Design and Novel Optimization Algorithms for Practical Use." Doctoral thesis, Uppsala universitet, Institutionen för farmaceutisk biovetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-308452.
Full textClewe, Oskar. "Novel Pharmacometric Methods for Informed Tuberculosis Drug Development." Doctoral thesis, Uppsala universitet, Institutionen för farmaceutisk biovetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-303872.
Full textNagem, Mohamed O. "Diagnostics for Nonlinear Mixed-Effects Models." College Park, Md.: University of Maryland, 2009. http://hdl.handle.net/1903/9546.
Full textThesis research directed by: Applied Mathematics & Statistics, and Scientific Computation Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Vong, Camille. "Model-Based Optimization of Clinical Trial Designs." Doctoral thesis, Uppsala universitet, Institutionen för farmaceutisk biovetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-233445.
Full textBarrowman, Nicholas J. "Nonlinear mixed effects models for meta-analysis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ57342.pdf.
Full textMahbouba, Raid. "Nonlinear mixed effects models for longitudinal DATA." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-120579.
Full textXu, Zhibing. "Statistical Modeling and Predictions Based on Field Data and Dynamic Covariates." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/51130.
Full textPh. D.
Johansson, Åsa M. "Methodology for Handling Missing Data in Nonlinear Mixed Effects Modelling." Doctoral thesis, Uppsala universitet, Institutionen för farmaceutisk biovetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-224098.
Full textNyberg, Joakim. "Practical Optimal Experimental Design in Drug Development and Drug Treatment using Nonlinear Mixed Effects Models." Doctoral thesis, Uppsala universitet, Institutionen för farmaceutisk biovetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-160481.
Full textErnest, II Charles. "Benefits of Non-Linear Mixed Effect Modeling and Optimal Design : Pre-Clinical and Clinical Study Applications." Doctoral thesis, Uppsala universitet, Institutionen för farmaceutisk biovetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-209247.
Full textMy name should be listed as "Charles Steven Ernest II" on cover.
Wang, Liangliang. "Estimating nonlinear mixed-effects models by the generalized profiling method and its application to pharmacokinetics." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=18424.
Full textIl n'y a aucune solution de exacte pour beaucoup de modèles non-linéaires à effets mixtes (NLME) exprimés comme un ensemble d'équations ordinaires (ODE) en modèles de compartiment. Cette thèse passe en revue plusieurs méthodes et outils courants de logiciel pour NLME, et explore une nouvelle manière d'estimer des effets mixtes non-linéaires en modèles de compartiment basée sur le cadre de la méthode de profilage généralisée proposée par Ramsay, Hooker, Campbell, et Cao (2007). Quatre types de paramètres sont identifiés et estimés d'en cascade par une optimisation de multiple-niveau: le paramètre regularisateur est choisi par le critère de la contre-vérification généralisée (GCV); les paramètres structuraux, y compris les effets fixes, la matrice de variance-covariance pour les effets aléatoires, et la variance résiduelle sont optimisés par un critère basé sur une expansion de premier ordre de Taylor de fonction non-linéaire ; les effets aléatoires sont optimisés par une methode des moindres carrés non-linéaires pénalisés ; et les coefficients d'expansions de fonction de base sont optimisés par un lissage pénalisé avec la pénalité définie par l'equation differentielle. En conséquence, certains des paramètres sont exprimés en tant que fonctions explicites ou implicites d'autres paramètres. La dimensionnalité de l'espace des paramètres est réduite, et la surface d'optimisation devient plus lisse. L'algorithme de Newton-Raphson est appliqué aux paramètres d'évaluation pour chaque niveau d'optimisation, où le théorème des fonctions implicites est employé couramment pour établir les gradients et les matrices de Hessiennes de facon analytiques. La méthode proposée et des codes de MATLAB sont examinés par des applications à plusieurs modèles de compartiment en pharmacocinétique sur des donnees simulées et vraies. Des résultats sont comparés aux valeurs ou aux évaluations vraies obtenues pa
Zhang, Hanze. "Bayesian inference on quantile regression-based mixed-effects joint models for longitudinal-survival data from AIDS studies." Scholar Commons, 2017. https://scholarcommons.usf.edu/etd/7456.
Full textWang, Tao. "Multivariate one-sided tests for multivariate normal and nonlinear mixed effects models with complete and incomplete data." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/32764.
Full textGalarza, Morales Christian Eduardo 1988. "Quantile regression for mixed-effects models = Regressão quantílica para modelos de efeitos mistos." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306681.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-27T06:40:31Z (GMT). No. of bitstreams: 1 GalarzaMorales_ChristianEduardo_M.pdf: 5076076 bytes, checksum: 0967f08c9ad75f9e7f5df339563ef75a (MD5) Previous issue date: 2015
Resumo: Os dados longitudinais são frequentemente analisados usando modelos de efeitos mistos normais. Além disso, os métodos de estimação tradicionais baseiam-se em regressão na média da distribuição considerada, o que leva a estimação de parâmetros não robusta quando a distribuição do erro não é normal. Em comparação com a abordagem de regressão na média convencional, a regressão quantílica (RQ) pode caracterizar toda a distribuição condicional da variável de resposta e é mais robusta na presença de outliers e especificações erradas da distribuição do erro. Esta tese desenvolve uma abordagem baseada em verossimilhança para analisar modelos de RQ para dados longitudinais contínuos correlacionados através da distribuição Laplace assimétrica (DLA). Explorando a conveniente representação hierárquica da DLA, a nossa abordagem clássica segue a aproximação estocástica do algoritmo EM (SAEM) para derivar estimativas de máxima verossimilhança (MV) exatas dos efeitos fixos e componentes de variância em modelos lineares e não lineares de efeitos mistos. Nós avaliamos o desempenho do algoritmo em amostras finitas e as propriedades assintóticas das estimativas de MV através de experimentos empíricos e aplicações para quatro conjuntos de dados reais. Os algoritmos SAEMs propostos são implementados nos pacotes do R qrLMM() e qrNLMM() respectivamente
Abstract: Longitudinal data are frequently analyzed using normal mixed effects models. Moreover, the traditional estimation methods are based on mean regression, which leads to non-robust parameter estimation for non-normal error distributions. Compared to the conventional mean regression approach, quantile regression (QR) can characterize the entire conditional distribution of the outcome variable and is more robust to the presence of outliers and misspecification of the error distribution. This thesis develops a likelihood-based approach to analyzing QR models for correlated continuous longitudinal data via the asymmetric Laplace distribution (ALD). Exploiting the nice hierarchical representation of the ALD, our classical approach follows the stochastic Approximation of the EM (SAEM) algorithm for deriving exact maximum likelihood (ML) estimates of the fixed-effects and variance components in linear and nonlinear mixed effects models. We evaluate the finite sample performance of the algorithm and the asymptotic properties of the ML estimates through empirical experiments and applications to four real life datasets. The proposed SAEMs algorithms are implemented in the R packages qrLMM() and qrNLMM() respectively
Mestrado
Estatistica
Mestre em Estatística
Mello, Marcello Neiva de. "Modelo não linear misto aplicado a análise de dados longitudinais em um solo localizado em Paragominas, PA." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-17032014-101144/.
Full textThis paper has as an objective to apply the theory of mixed models to the content of nitrogen and carbon in the soil at various depths. Due to the large amount of organic material in the soil, the content of nitrogen and carbon present high variability in the depths of soil surface, and present a nonlinear behavior. Thus, it was necessary to use the approach of nonlinear mixed models to longitudinal data analysis. The use of this approach provides a model that allows to model nonlinear data with heterogeneity of variances by providing a curve for each sample.
Mielke, Tobias [Verfasser], and Rainer [Akademischer Betreuer] Schwabe. "Approximations of the Fisher information for the construction of efficient experimental designs in nonlinear mixed effects models / Tobias Mielke. Betreuer: Rainer Schwabe." Magdeburg : Universitätsbibliothek, 2011. http://d-nb.info/1051445477/34.
Full textBerhe, Leakemariam. "Statistical modeling and design in forestry : The case of single tree models." Doctoral thesis, Umeå : Umeå University, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1663.
Full textEl, Halimi Rachid. "Nonlinear Mixed-effects Models and Nonparametric Inference. A Method Based on Bootstrap for the Analysis of Non-normal Repeated Measures Data in Biostatistical Practice." Doctoral thesis, Universitat de Barcelona, 2005. http://hdl.handle.net/10803/1556.
Full textEl propósito principal del trabajo ha sido el estudio de la validez del empleo de modelos mixtos no lineales para analizar datos de medidas repetidas y discutir la robustez del enfoque inferencial paramétrico basado en la aproximación propuesta por Lindstrom y Bates (1990), y proponer y evaluar posibles alternativas al mismo, basadas en la metodología bootstrap. Se discute además el mejor procedimiento para generar las muestras bootstrap a partir de datos longitudinales bajo modelos mixtos, y se realiza una adaptación de la metodología bootstrap a métodos de ajuste en dos etapas, como STS (Standard two-stage) y GTS (Global two-stage).
Los resultados de simulación confirman que la aproximación paramétrica basada en la hipótesis de normalidad no es fiable cuando la distribución de la variable estudiada se aparta seriamente de la normal. En concreto, los intervalos de confianza aproximados basados en una aproximación lineal, y en general en los resultados asintóticos de la máxima verosimilitud, no son robustos frente a la desviación de la hipótesis de normalidad de los datos, incluso para tamaños muéstrales relativamente grandes.
El método "bootstrap" proporciona un estimador de los parámetros, en términos de amplitud del intervalo y de su cobertura relativamente más adecuado que el método clásico, basado en la hipótesis de normalidad de la variable estudiada.
Diabaté, Modibo. "Modélisation stochastique et estimation de la croissance tumorale." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM040.
Full textThis thesis is about mathematical modeling of cancer dynamics ; it is divided into two research projects.In the first project, we estimate the parameters of the deterministic limit of a stochastic process modeling the dynamics of melanoma (skin cancer) treated by immunotherapy. The estimation is carried out with a nonlinear mixed-effect statistical model and the SAEM algorithm, using real data of tumor size. With this mathematical model that fits the data well, we evaluate the relapse probability of melanoma (using the Importance Splitting algorithm), and we optimize the treatment protocol (doses and injection times).We propose in the second project, a likelihood approximation method based on an approximation of the Belief Propagation algorithm by the Expectation-Propagation algorithm, for a diffusion approximation of the melanoma stochastic model, noisily observed in a single individual. This diffusion approximation (defined by a stochastic differential equation) having no analytical solution, we approximate its solution by using an Euler method (after testing the Euler method on the Ornstein Uhlenbeck diffusion process). Moreover, a moment approximation method is used to manage the multidimensionality and the non-linearity of the melanoma mathematical model. With the likelihood approximation method, we tackle the problem of parameter estimation in Hidden Markov Models
Madelain, Vincent. "Modélisation de l’effet du favipiravir sur la dynamique viro-immunologique de la maladie à virus Ebola et implications pour son évaluation clinique." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC049.
Full textIn spite of recurrent outbreaks, no therapeutics with demonstrated clinical efficacy are available in Ebola virus disease. Based on experimentations performed by Reaction! Consortium in mice and macaques, this thesis aimed to characterize the effect of an antiviral drug, favipiravir, using mechanistic mathematical models of the infection and associated immune response. The approach to build models and estimate parameters relied on nonlinear mixed effect models. The first project of this thesis explored the concentration-effect relationship on the viremia in mice. Then, a second project allowed to characterize the pharmacokinetics of favipiravir in macaques, underlying dose and time non linearity, and to identify relevant dosing regimen for efficacy experiments in infected animals. Once these experiments completed, the integration of the virological and immunological data into a mechanistic joint model shed light on the effect of favipiravir. The moderate inhibition of the viral replication resulting from the favipiravir plasma concentrations was enough to limit the development of a deleterious inflammatory response, and thus improve the survival rate of treated macaques. Simulations performed with this model underlined the crucial impact of the treatment initiation delay on survival. These results encourage the pursuit of the clinical evaluation of favipiravir in prophylaxis or post exposure trials. Finally, a last project demonstrated the lack of benefit of ribavirin addition to favipiravir in Ebola virus disease
Novakovic, Ana M. "Longitudinal Models for Quantifying Disease and Therapeutic Response in Multiple Sclerosis." Doctoral thesis, Uppsala universitet, Institutionen för farmaceutisk biovetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-316562.
Full textChevallier, Juliette. "Statistical models and stochastic algorithms for the analysis of longitudinal Riemanian manifold valued data with multiple dynamic." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX059/document.
Full textBeyond transversal studies, temporal evolution of phenomena is a field of growing interest. For the purpose of understanding a phenomenon, it appears more suitable to compare the evolution of its markers over time than to do so at a given stage. The follow-up of neurodegenerative disorders is carried out via the monitoring of cognitive scores over time. The same applies for chemotherapy monitoring: rather than tumors aspect or size, oncologists asses that a given treatment is efficient from the moment it results in a decrease of tumor volume. The study of longitudinal data is not restricted to medical applications and proves successful in various fields of application such as computer vision, automatic detection of facial emotions, social sciences, etc.Mixed effects models have proved their efficiency in the study of longitudinal data sets, especially for medical purposes. Recent works (Schiratti et al., 2015, 2017) allowed the study of complex data, such as anatomical data. The underlying idea is to model the temporal progression of a given phenomenon by continuous trajectories in a space of measurements, which is assumed to be a Riemannian manifold. Then, both a group-representative trajectory and inter-individual variability are estimated. However, these works assume an unidirectional dynamic and fail to encompass situations like multiple sclerosis or chemotherapy monitoring. Indeed, such diseases follow a chronic course, with phases of worsening, stabilization and improvement, inducing changes in the global dynamic.The thesis is devoted to the development of methodological tools and algorithms suited for the analysis of longitudinal data arising from phenomena that undergo multiple dynamics and to apply them to chemotherapy monitoring. We propose a nonlinear mixed effects model which allows to estimate a representative piecewise-geodesic trajectory of the global progression and together with spacial and temporal inter-individual variability. Particular attention is paid to estimation of the correlation between the different phases of the evolution. This model provides a generic and coherent framework for studying longitudinal manifold-valued data.Estimation is formulated as a well-defined maximum a posteriori problem which we prove to be consistent under mild assumptions. Numerically, due to the non-linearity of the proposed model, the estimation of the parameters is performed through a stochastic version of the EM algorithm, namely the Markov chain Monte-Carlo stochastic approximation EM (MCMC-SAEM). The convergence of the SAEM algorithm toward local maxima of the observed likelihood has been proved and its numerical efficiency has been demonstrated. However, despite appealing features, the limit position of this algorithm can strongly depend on its starting position. To cope with this issue, we propose a new version of the SAEM in which we do not sample from the exact distribution in the expectation phase of the procedure. We first prove the convergence of this algorithm toward local maxima of the observed likelihood. Then, with the thought of the simulated annealing, we propose an instantiation of this general procedure to favor convergence toward global maxima: the tempering-SAEM
Machado, Robson José Mariano. "Modelos mistos semiparamétricos parcialmente não lineares." Universidade Federal de São Carlos, 2014. https://repositorio.ufscar.br/handle/ufscar/4582.
Full textUniversidade Federal de Sao Carlos
Correlated data sets with nonlinear structure are common in many areas such as biostatistics, pharmacokinetics and longitudinal studies. Nonlinear mixed-effects models are useful tools to analyse those type of problems. In this dissertation, a generalization to this models is proposed, namely by semiparametric partially nonlinear mixed-effects model (MMSPNL), with a nonparametric function to model the mean of the response variable. It assumes that the mean of the interest variable is explained by a nonlinear function, which depends on fixed effects parameters and explanatory variables, and by a nonparametric function. Such nonparametic function is quite flexible, allowing a better adequacy to the functional form that underlies the data. The random effects are included linearly to the model, which simplify the expression of the response variable distribution and enables the model to take into account the within-group correlation structure. It is assumed that the random errors and the random effects jointly follow a multivariate normal distribution. Relate to the nonparametric function, it is deal with the P-splines smoothing technique. The methodology to obtain the parameters estimates is penalized maximum likelihood method. The random effects may be obtained by using the Empirical Bayes method. The goodness of the model and identification of potencial influent observation is verified with the local influence method and a residual analysis. The pharmacokinetic data set, in which the anti-asthmatic drug theophylline was administered to 12 subjects and serum concentrations were taken at 11 time points over the 25 hours (after being administered), was re-analysed with the proposed model, exemplifying its uses and properties.
Dados correlacionados com estrutura não linear são comuns em bioestatística, estudos farmacocinéticos e longitudinais. Modelos mistos não lineares são ferramentas úteis para se analisar esses tipos de problemas. Nesta dissertação, propõe-se uma generalização desses modelos, chamada de modelo misto semiparamétrico parcialmente não linear (MMSPNL), com uma função não paramétrica para se modelar a média da variável resposta. Assume-se que a média da variável de interesse é explicada por uma função não linear, que depende de parâmetros de efeitos fixos e variáveis explicativas, e por uma função não paramétrica. Tal função não paramétrica possui grande flexibilidade, permitindo uma melhor adequação à forma funcional que subjaz aos dados. Os efeitos aleatórios são incluídos linearmente ao modelo, o que simplifica a expressão da distribuição da variável resposta e permite considerar a estrutura de correlação intra grupo. É assumido que os erros aleatórios e efeitos aleatórios conjuntamente seguem uma distribuição normal multivariada. Em relação a função não paramétrica, utiliza-se a técnica de suavização com P-splines. A metodologia para se obterem as estimativas dos parâmetros é o método de máxima verossimilhança penalizada. Os efeitos aleatórios podem ser obtidos usando-se o método de Bayes empírico. A qualidade do modelo e a identificação de observações aberrantes é verificada pelo método de influência local e por análise de resíduos. O conjunto de dados farmacocinéticos, em que o antiasmático theophylline foi administrado a 12 sujeitos e concentrações séricas foram tomadas em 11 instantes de tempo durante as 25 horas (após ser administrado), foi reanalisado com o modelo proposto, exemplificando seu uso e propriedades.
Paraiba, Carolina Costa Mota. "Modelos não lineares truncados mistos para locação e escala." Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/4497.
Full textFinanciadora de Estudos e Projetos
We present a class of nonlinear truncated mixed-effects models where the truncation nature of the data is incorporated into the statistical model by assuming that the variable of interest, namely the truncated variable, follows a truncated distribution which, in turn, corresponds to a conditional distribution obtained by restricting the support of a given probability distribution function. The family of nonlinear truncated mixed-effects models for location and scale is constructed based on the perspective of nonlinear generalized mixed-effects models and by assuming that the distribution of response variable belongs to a truncated class of distributions indexed by a location and a scale parameter. The location parameter of the response variable is assumed to be associated with a continuous nonlinear function of covariates and unknown parameters and with unobserved random effects, and the scale parameter of the responses is assumed to be characterized by a continuous function of the covariates and unknown parameters. The proposed truncated nonlinear mixed-effects models are constructed assuming both random truncation limits; however, truncated nonlinear mixed-effects models with fixed known limits are readily obtained as particular cases of these models. For models constructed under the assumption of random truncation limits, the likelihood function of the observed data shall be a function both of the parameters of the truncated distribution of the truncated variable and of the parameters of the distribution of the truncation variables. For the particular case of fixed known truncation limits, the likelihood function of the observed data is a function only of the parameters of the truncated distribution assumed for the variable of interest. The likelihood equation resulting from the proposed truncated nonlinear regression models do not have analytical solutions and thus, under the frequentist inferential perspective, the model parameters are estimated by direct maximization of the log-likelihood using an iterative procedure. We also consider diagnostic analysis to check for model misspecification, outliers and influential observations using standardized residuals, and global and local influence metrics. Under the Bayesian perspective of statistical inference, parameter estimates are computed based on draws from the posterior distribution of parameters obtained using an Markov Chain Monte Carlo procedure. Posterior predictive checks, Bayesian standardized residuals and a Bayesian influence measures are considered to check for model adequacy, outliers and influential observations. As Bayesian model selection criteria, we consider the sum of log -CPO and a Bayesian model selection procedure using a Bayesian mixture model framework. To illustrate the proposed methodology, we analyze soil-water retention, which are used to construct soil-water characteristic curves and which are subject to truncation since soil-water content (the proportion of water in soil samples) is limited by the residual soil-water content and the saturated soil-water content.
Neste trabalho, apresentamos uma classe de modelos não lineares truncados mistos onde a característica de truncamento dos dados é incorporada ao modelo estatístico assumindo-se que a variável de interesse, isto é, a variável truncada, possui uma função de distribuição truncada que, por sua vez, corresponde a uma função de distribuição condicional obtida ao se restringir o suporte de alguma função de distribuição de probabilidade. A família de modelos não lineares truncados mistos para locação e escala é construída sob a perspectiva de modelos não lineares generalizados mistos e considerando uma classe de distribuições indexadas por parâmetros de locação e escala. Assumimos que o parâmetro de locação da variável resposta é associado a uma função não linear contínua de um conjunto de covariáveis e parâmetros desconhecidos e a efeitos aleatórios não observáveis, e que o parâmetro de escala das respostas pode ser caracterizado por uma função contínua das covariáveis e de parâmetros desconhecidos. Os modelos não lineares truncados mistos para locação e escala, aqui apresentados, são construídos supondo limites de truncamento aleatórios, porém, modelos não lineares truncados mistos com limites fixos e conhecidos são prontamente obtidos como casos particulares desses modelos. Nos modelos construídos sob a suposição de limites de truncamentos aleatórios, a função de verossimilhança é escrita em função dos parâmetros da distribuição da variável resposta truncada e dos parâmetros das distribuições das variáveis de truncamento. Para o caso particular de limites fixos e conhecidos, a função de verossimilhança será apenas uma função dos parâmetros da distribuição truncada assumida para a variável resposta de interesse. As equações de verossimilhança dos modelos, aqui propostos, não possuem soluções analíticas e, sob a perspectiva frequentista de inferência estatística, os parâmetros do modelo são estimados pela maximização direta da função de log-verossimilhança via um procedimento iterativo. Consideramos, também, uma análise de diagnóstico para verificar a adequação do modelo, observações discrepantes e/ou influentes, usando resíduos padronizados e medidas de influência global e influência local. Sob a perspectiva Bayesiana de inferência estatística, as estimativas dos parâmetros dos modelos propostos são definidas como as médias a posteriori de amostras obtidas via um algoritmo do tipo cadeia de Markov Monte Carlo das distribuições a posteriori dos parâmetros. Para a análise de diagnóstico Bayesiano do modelo, consideramos métricas de avaliação preditiva a posteriori, resíduos Bayesianos padronizados e a calibração de casos para diagnóstico de influência. Como critérios Bayesianos de seleção de modelos, consideramos a soma de log -CPO e um critério de seleção de modelos baseada na abordagem Bayesiana de mistura de modelos. Para ilustrar a metodologia proposta, analisamos dados de retenção de água em solo, que são usados para construir curvas de retenção de água em solo e que estão sujeitos a truncamento pois as medições de umidade de água (a proporção de água presente em amostras de solos) são limitadas pela umidade residual e pela umidade saturada do solo amostrado.
Chiswell, Karen Elizabeth. "Model diagnostics for the nonlinear mixed effects model with balanced longitudinal data." 2007. http://www.lib.ncsu.edu/theses/available/etd-09042007-214316/unrestricted/etd.pdf.
Full text"Examination of Mixed-Effects Models with Nonparametrically Generated Data." Doctoral diss., 2019. http://hdl.handle.net/2286/R.I.53768.
Full textDissertation/Thesis
Doctoral Dissertation Psychology 2019
Wang, Hui-Ching, and 王繪情. "Analyzing data in ovarian cancer study using extended Cox proportional hazards model (including time-varying coefficients) and nonlinear mixed-effects model." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/2a43re.
Full text國立中山大學
應用數學系研究所
103
Ovarian cancer is not the most common tumor in gynecology department, but it is the most lethal gynecologic malignancy. The first part is to find the important variates between different cell types. We use Kaplan-Meier curve to analysis the survival curves with different cell types, and test whether the curves are different by log-rank test. The second part, we were interested in the correlation of the risk factors and survival. The traditional Cox proportional hazards model has been used to identify independent risk factors without considering time effect. The objective of this study was to explore whether the risk factors in ovarian cancer had time-varying effects on survival. We shared the R package on internet for download. The final section is to model patients'' CA125 by time. We can roughly classify patients into two types with the tendency of CA125. After treatment, the perform of CA125 will keep stable continuously or get rise eventually. Therefore, we use nonlinear mixed-effects model with Bayesian hierarchical framework to analysis the longitudinal data. Data used in this study was from Kaohsiung Veteran''s General Hospital from 1995 to end of 2011.
Wang, Li-pei, and 王莉珮. "Bayesian inference for a piecewise nonlinear mixed-effects model with skewed distribution and heteroscedasticity with application to an ovarian cancer study." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/4qd8n7.
Full text國立中山大學
應用數學系研究所
105
In ovarian cancer studies, cancer antigen 125 (CA125) is an important tumor marker which is repeatedly measured over time. We aim to model the CA125 trajectories that can help us understand patients’ prognosis. In longitudinal studies, nonlinear mixed-effects (NLME) models are often used to model patients’ trajectories. The random effects and random errors of NLME are often assumed to be normally distributed and in addition, errors are assumed to be homogeneous. However, these assumption may not be satisfied when modeling the CA125 trajectories. In this paper, we propose a general nonlinear mixed-effects model with random effects being skewed and errors being skewed, heteroskedastic and possibly heavy tailed. We applied the proposed model to the CA125 trajectories and compared the fitting of our model to those with other models. Moreover, we conducted a simulation study to study the effects of skewness, heteroskedasticity and heavy tail on the fitting.
TSAI, YI-SHIUAN, and 蔡宜軒. "Maximum Likelihood Estimation for Multivariate Nonlinear Mixed-effects Models." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/8f5s94.
Full text逢甲大學
統計學系統計與精算碩士班
102
Multivariate nonlinear mixed-effects models (MNLMM) have recently received a great deal of attention in the statistical literature due to the flexibility for analyzing a broad range of multi-outcome longitudinal data especially following nonlinear profiles. In this thesis, we aim at providing five different methods for maximum likelihood (ML) estimation of the parameters in the MNLMM. The five approximation methods include the penalized nonlinear least squares coupled with multivariate linear mixed effects (PNLS-MLME) approximation, Laplacian approximation, pseudodata ECM algorithm, Monte Carlo EM algorithm, and importance sampling approximation. A somewhat complex numerical issue for ML estimation in the MNLMM is the evaluation of the observed log-likelihood function because it involves evaluating a multiple integral that, in most cases, does not show a closed-form expression. Thus, we also offer several approximations to the observed log-likelihood function and an information-based method to calculate the standard errors of parameters estimates under large sample properties. A comparison of the computational performance for the proposed methods is investigated through a simulation study and an application to a real dataset.
Zhou, Meijian. "Fully exponential Laplace approximation EM algorithm for nonlinear mixed effects models." 2009. http://proquest.umi.com/pqdweb?did=1933939851&sid=8&Fmt=2&clientId=14215&RQT=309&VName=PQD.
Full textTitle from title screen (site viewed February 25, 2010). PDF text: x, 193 p. ; 3 Mb. UMI publication number: AAT 3386609. Includes bibliographical references. Also available in microfilm and microfiche formats.
Calegario, Natalino. "Modeling Eucalyptus stand growth based on linear and nonlinear mixed-effects models." 2002. http://purl.galileo.usg.edu/uga%5Fetd/calegario%5Fnatalino%5F200205%5Fphd.
Full textWang, Jing. "An optimization approach for the parameter estimation of the nonlinear mixed effects models." 2004. http://www.lib.ncsu.edu/theses/available/etd-07282004-165624/unrestricted/etd.pdf.
Full textChen, Yakuan. "Methods for functional regression and nonlinear mixed-effects models with applications to PET data." Thesis, 2017. https://doi.org/10.7916/D87W6QJ9.
Full textHUANG, YAN-LING, and 黃彥菱. "Analysis of Longitudinal Data with Censored and Missing Values via Nonlinear Mixed-effects Models." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/23267683758841290881.
Full text逢甲大學
統計學系
105
Repeated measures from clinical trials or biomedical research are usually collected and shown to be nonlinear profiles, the nonlinear mixed-effects model (NLMM) has become a popular modelling tool for analyzing such kind of data. However, censored and missing data often occur in longitudinal studies due to limitations of the measuring technology, missed visits, loss to follow-up, and so on. This thesis formulates the nonlinear mixed-effects model with censored and missing responses (NLMM-CM), which allows the analysts to model longitudinal data in the presence of censored and missing values simultaneously. The nonlinear mixed-effects model with censored values (NLMM-C), nonlinear mixed-effects model with missing values (NLMM-M) and nonlinear mixed-effects model (NLMM), which are treated as special cases of the NLMM-CM, are also presented and compared to the proposed NLMM-CM in simulation sudies. To carry out maximum likelihood estimation of model parameters, we provide an efficient expectation conditional maximization (ECM) algorithm. This method is developed under the complete pseudo-data likelihood function, which is derived by using first-order Taylor expansion around individual-specific parameters. Real-data examples and simulation studies are used to demonstrate the performance of our proposed methods.
Song, Shijun. "Nonlinear mixed effects models with dropout and missing covariates when the dropout depends on the random effects." Thesis, 2005. http://hdl.handle.net/2429/16692.
Full textScience, Faculty of
Statistics, Department of
Graduate
Li, He. "A simulation study of the second-order least squares estimators for nonlinear mixed effects models." 2006. http://hdl.handle.net/1993/20816.
Full textRodriguez-Zas, Sandra Luisa. "Bayesian analysis of somatic cell score lactation patterns in Holstein cows using nonlinear mixed effects models." 1998. http://catalog.hathitrust.org/api/volumes/oclc/40952874.html.
Full textTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 392-426).
Liu, Wei. "The theory and methods for measurement errors and missing data problems in semiparametric nonlinear mixed-effects models." Thesis, 2006. http://hdl.handle.net/2429/18520.
Full textScience, Faculty of
Statistics, Department of
Graduate
Chen, Chi-Chung, and 陳吉重. "Bayesian analysis for mixture nonlinear mixed-effects models with skewed random effects and errors with application to an ovarian cancer study." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/51744864893611079506.
Full text國立中山大學
應用數學系研究所
104
It is common to analyze longitudinal data using nonlinear mixed-effects (NLME) model. And we often use NLME model with normality and homogeneity assumption. However, this assumption may be unrealistic in practice. Our aim is to model the longitu- dinal profiles of CA125, a tumor marker, in an ovarian cancer study. When fitting these profiles using NLME model, we observed that the distribution of the random effects and errors are skewed. Hence we propose an NLME model with skewed normal random effects and skewed-t errors. Moreover, we observed that errors and some of the random effects are heterogeneous due to early and late cancer stage. Therefore, we apply the Bayesian hierarchical framework using the heterogeneity and skewness information to construct our new NLME model. Most importantly, we hope that this model can be helpful for doctors during the clinical treatments. In the second part, we provide a more generalized Cox proportional hazard (Cox PH) model. The traditional Cox PH model has been used to identify the risk factors without considering time-varying effects. A generalized Cox PH model must satisfy the proportional hazard assumption, even though the risk factors are time-dependent. Wang (2015) has provided a more generalized Cox PH model by considering the risk factors which have time-varying effects and shared the R package. Here we extended the model even more. Some of the risk factors which are time-dependent can have time-varying effects simultaneously. We use spline function to approximate the time-varying coefficients and also provide an R function.
Svensson, Elin M. "Pharmacometric Models to Improve Treatment of Tuberculosis." Doctoral thesis, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-282139.
Full text