Dissertations / Theses on the topic 'Nonlinear Model Predictive Control - NMPC'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Nonlinear Model Predictive Control - NMPC.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Norén, Christoffer. "Path Planning for Autonomous Heavy Duty Vehicles using Nonlinear Model Predictive Control." Thesis, Linköpings universitet, Reglerteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-95547.
Full textPenet, Maxime. "Robust Nonlinear Model Predictive Control based on Constrained Saddle Point Optimization : Stability Analysis and Application to Type 1 Diabetes." Phd thesis, Supélec, 2013. http://tel.archives-ouvertes.fr/tel-00968899.
Full textKozubík, Michal. "Aplikace nelineárního prediktivního řízení pro pohon se synchronním motorem." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400605.
Full textMurali, madhavan rathai Karthik. "Synthesis and real-time implementation of parameterized NMPC schemes for automotive semi-active suspension systems." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALT052.
Full textThis thesis discusses the synthesis and real-time (RT) implementation of parameterized Nonlinear Model Predictive Control (pNMPC) schemes for automotive semi-active suspension systems. The pNMPC scheme uses a black-box simulation-based optimization method. The crux of the method is to finitely parameterize the input profile and simulate the system for each parameterized input and obtain the approximate objective and constraint violation value for the pNMPC problem. With the obtained results from the simulation, the input with minimum objective value or the least constraint violation value is selected and injected into the system and this is repeated in a receding horizon fashion. The method was experimentally validated on dSPACE MicroAutoBoX II (MABXII) and the results display good performance of the proposed approach. The pNMPC method was also augmented to parallelized pNMPC and the proposed method was implemented for control of semi-active suspension system for a half car vehicle. This method was implemented by virtue of Graphic Processing Units (GPUs) which serves as a paragon platform for implementation of parallel algorithms through its multi-core processors. Also, a stochastic version of the parallelized pNMPC method is proposed which is termed as Scenario-Stochastic pNMPC (SS-pNMPC) scheme and the method was implemented and tested on several NVIDIA embedded boards to verify and validate the RT feasibility of the proposed method for control of semi-active suspension system for a half car vehicle. In general, the parallelized pNMPC schemes provide good performance and also, fares well for large input parameterization space. Finally, the thesis proposes a software tool termed “pNMPC – A code generation software tool for implementation of derivative free pNMPC scheme for embedded control systems”. The code generation software (S/W) tool was programmed in C/C++ and also, provides interface to MATLAB/Simulink. The S/W tested for variety of examples both in simulation as well as on RT embedded hardware (MABXII) and the results looks promising and viable for RT implementation for real world applications. The code generation S/W tool also includes GPU code generation feature for parallel implementation. To conclude, the thesis was conducted under the purview of the EMPHYSIS project and the goals of the project align with this thesis and the proposed pNMPC methods are amenable with eFMI standard
Azevedo, Diego Sousa de. "Otimização do código do sistema de navegação e controle de robôs móveis baseado em NMPC para embarcar em arquiteturas de baixo custo." Universidade Federal da Paraíba, 2015. http://tede.biblioteca.ufpb.br:8080/handle/tede/7853.
Full textMade available in DSpace on 2016-02-16T13:26:42Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 3970645 bytes, checksum: d514b848324ac20a549db632034383d7 (MD5) Previous issue date: 2015-10-10
The purpose of this study is to adapt and embed a navigation system and control of mobile robots, based on NMPC, in a low-cost board existent on the market, to provide sufficient com-putational resources so that the robot is able to converge, without losing performance, using the same horizons applied in a Laptop. The obtained results demonstrate the proposed scenario according with the experiments, proving that it is possible to use low cost boards, to a navigation system and control of mobile robots, based on NMPC, using the same predictive and control horizons applied in a Laptop.
A proposta desse trabalho é adaptar e embarcar um sistema de navegação e controle de robôs móveis, baseado em NMPC, em uma placa de baixo custo já existente no mercado, que dispo-nibilize recursos computacionais suficientes para que o Robô seja capaz de convergir, sem perda de desempenho e utilizando os mesmos horizontes aplicados em um Laptop. Os Resulta-dos obtidos demonstram todo o cenário proposto e de acordo com os experimentos realizados, comprovou-se que é possível o uso de placas de baixo custo, para controle de robôs móveis, baseado em NMPC, utilizando os mesmos horizontes de predição e controle aplicados em uma Laptop.
Furieri, Luca. "Geometric versus Model Predictive Control based guidance algorithms for fixed-wing UAVs in the presence of very strong wind fields." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/11872/.
Full textSriniwas, Ganti Ravi. "Nonlinear model predictive control." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/10267.
Full textAl, Seyab Rihab Khalid Shakir. "Nonlinear model predictive control using automatic differentiation." Thesis, Cranfield University, 2006. http://hdl.handle.net/1826/1491.
Full textFannemel, Åsmund Våge. "Dynamic Positioning by Nonlinear Model Predictive Control." Thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-8921.
Full textThis thesis discusses the theoretical aspects of the unscented Kalman filter (UKF) and nonlinear model predictive control (NMPC) and try to evaluate their practical value in a dynamic positioning (DP) system. A nonlinear horizontal vessel model is used as the basis for performing state, disturbance, and parameter estimation, and attempts at controling the vessel using NMPC are made. It is shown that the extended Kalman filter (EKF), which is much used in various navigation applications including DP, is outperformed both theoretically and practically in simulations by the UKF. Much of which is due to the UKF's improved approximation of the estimated system's true stochastic properties. An attempt to estimate the current from the hydrodynamical damping forces have been applied and shown to be working when the vessel is not subjected to other slowly-varying drift forces. It is implemented a dual estimation approach to try to estimate hydrodynamic damping, which is a very real problem for actual vessels and DP systems. A theoretical evaluation of NMPC is performed and it is concluded that NMPC schemes could fulfill a need in vessel control and DP. Its combination of model based control, optimization approach to achieving performance and predictive properties are indeed useful also for DP. It is found that NMPC could be a step towards a unified control approach combining low and high speed reference tracking, station-keeping and several other control operations which today are handled by separate control approaches. NMPC provides the control designer with an exceptional amount of freedom when quantifying the performance, that it is impossible not to find some use for NMPC.
Balbis, Luisella. "Nonlinear model predictive control for industrial applications." Thesis, University of Strathclyde, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501892.
Full textBreyholtz, Øyvind. "Nonlinear Model Predictive Pressure Control during Drilling Operations." Thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9697.
Full textDrilling into mature, depleted fields is often difficult because of tight pressure margins. Increasing the pressure control will enable wells that previously were considered undrillable, to be drilled. Enabling drilling and increased oil recovery from depleted fields would most likely lead to a substantial increase in profit margains. A better pressure control will also increase the safety of the drilling crew, because the risk of unwanted situations such as a kick or a blow-out is decreased, also reducing the risk of unwanted environmental influence, e.g. oil spill. To compensate for the lack of a continuous measurement of the bottomhole pressure during drilling operations, an adpative observer of the bottomhole pressure is implemented. The observer implemented is tested, and shows promising results in estimating both the bottomhole pressure and the friction coefficient in the well during a pipe connection procedure. To control the pressure in the well, a low-order nonlinear model predicitve controller is developed, and it has been tested to perform well during the pipe connection procedure, where it maintains the pressure within the predefined boundaries. In this thesis both the obsever and the controller will be tested against an artificial well; simulated by a commercial software.
Hampson, S. P. "Nonlinear model predictive control of a hydraulic actuator." Thesis, University of Canterbury. Mechanical Engineering, 1995. http://hdl.handle.net/10092/6032.
Full textVerschueren, Robin [Verfasser], and Moritz [Akademischer Betreuer] Diehl. "Convex approximation methods for nonlinear model predictive control." Freiburg : Universität, 2018. http://d-nb.info/1192660641/34.
Full textLee, Jaehwa. "Linear and nonlinear distributed economic model predictive control." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/23936.
Full textZhu, Yongjie. "Constrained nonlinear model predictive control for vehicle regulation." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1222177849.
Full textLopez, Brett Thomas. "Adaptive robust model predictive control for nonlinear systems." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122395.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 115-124).
Modeling error and external disturbances can severely degrade the performance of Model Predictive Control (MPC) in real-world scenarios. Robust MPC (RMPC) addresses this limitation by optimizing over control policies but at the expense of computational complexity. An alternative strategy, known as tube MPC, uses a robust controller (designed offline) to keep the system in an invariant tube centered around a desired nominal trajectory (generated online). While tube MPC regains tractability, there are several theoretical and practical problems that must be solved for it to be used in real-world scenarios. First, the decoupled trajectory and control design is inherently suboptimal, especially for systems with changing objectives or operating conditions. Second, no existing tube MPC framework is able to capture state-dependent uncertainty due to the complexity of calculating invariant tubes, resulting in overly-conservative approximations. And third, the inability to reduce state-dependent uncertainty through online parameter adaptation/estimation leads to systematic error in the trajectory design. This thesis aims to address these limitations by developing a computationally tractable nonlinear tube MPC framework that is applicable to a broad class of nonlinear systems.
"This work was supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1122374, by the DARPA Fast Lightweight Autonomy (FLA) program, by the NASA Convergent Aeronautics Solutions project Design Environment for Novel Vertical Lift Vehicles (DELIVER), and by ARL DCIST under Cooperative Agreement Number W911NF- 17-2-0181"--Page 7.
by Brett T. Lopez.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Aeronautics and Astronautics
Lucia, Sergio [Verfasser]. "Robust Multi-stage Nonlinear Model Predictive Control / Sergio Lucia." Aachen : Shaker, 2015. http://d-nb.info/1071527835/34.
Full textDrca, Ivana. "Nonlinear Model Predictive Control of the Four Tank Process." Thesis, KTH, Reglerteknik, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-106237.
Full textMacKay, Maria Ellen. "Model based predictive control of nonlinear and multivariable systems." Thesis, Manchester Metropolitan University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337269.
Full textFindeisen, Rolf. "Nonlinear model predictive control a sampled data feedback perspective /." [S.l. : s.n.], 2004.
Find full textQuachio, Raphael. "Identificação de sistemas não-lineares de modelos com estrutura de Wiener e Hammerstein para NMPC." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3139/tde-07022019-104111/.
Full textThis thesis focuses on obtaining models that may produce a better performance of Model-based Predictive Controllers (MPC). Several papers published in the last 25 years have proposed methods based on the minimization of multi-step ahead prediction functions, which are inherently nonlinear. These methods have been called MPC Relevant Identification (MRI). Most of the papers focused on obtaining linear models. In the last 5 years, some methods have been proposed to obtain nonlinear models based on the minimization of the same cost function. These papers were based on the direct minimization of the nonlinear cost function to produce models with NARMAX (nonlinear Autoregressive Moving Average with exogenous inputs) structure. However, simplified MPC schemes may be obtained using models with Wiener and Hammerstein structures. This thesis presents new theoretical results which allow the development of MRI identification algorithms for models with Wiener and Hammerstein structures, without the need to perform the minimization of the nonlinear cost function. Besides the proof of theoretical results, new algorithms are developed and have their prediction capability statistical properties and performance in nonlinear MPC controllers evaluated.
Johannessen, Morten Krøtøy, and Torgeir Myrvold. "Stick-Slip Prevention of Drill Strings Using Nonlinear Model Reduction and Nonlinear Model Predictive Control." Thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9112.
Full textThe main focus of this thesis is aspects in the development of a system for prevention of stick-slip oscillations in drill strings that are used for drilling oil wells. Stick-slip is mainly caused by elasticity of the drill string and changing frictional forces at the bit; static frictional forces are higher than the kinetic frictional forces which make the bit act in a manner where it sticks and then slips, called stick-slip. Stick-slip leads to excessive bit wear, premature tool failures and a poor rate of penetration. A model predictive controller (MPC) should be a suitable remedy for this problem; MPC has gained great success in constrained control problems where tight control is needed. Friction is a highly nonlinear phenomenon and for that reason is it obvious that a nonlinear model is preferred to be used in the MPC to get prime control. Obviously it is of great importance that the internal model used in the MPC is of a certain quality, and as National Oilwell Varco (NOV) has developed a nonlinear drill string model in Simulink, it will be useful to check over this model. This model was therefore verified with a code-to-code comparison and validated using logging data provided from NOV. As the model describing the dynamics of the drill string is somewhat large, a nonlinear model reduction is needed due to the computational complexity of solving a nonlinear model predictive control problem. This nonlinear model reduction is based on the technique of balancing the empirical Gramians, a method that has proven to be successful for a variety of systems. A nonlinear drill string model has been reduced and implemented to a nonlinear model predictive controller (NMPC) and simulated for different scenarios; all proven that NMPC is able to cope with the stick-slip problem. Comparisons have been made with a linear MPC and an existing stick-slip prevention system, SoftSpeed, developed by National Oilwell Varco.
de, Villiers J. P. "Monte Carlo approaches to nonlinear optimal and model predictive control." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598462.
Full textFelipe, Dominguez Luis Felipe Dominguez. "Advances in multiparametric nonlinear programming & explicit model predictive control." Thesis, Imperial College London, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.536023.
Full textYang, Xue. "Advanced-Multi-Step and Economically Oriented Nonlinear Model Predictive Control." Research Showcase @ CMU, 2015. http://repository.cmu.edu/dissertations/574.
Full textMoeti, Sekhonyana. "Formal analysis of state estimation for nonlinear model predictive control." Master's thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/20065.
Full textAgarwal, Naveen. "Nonlinear model predictive control of a semi-batch emulsion polymerization reactor." Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/8456.
Full textDahl, Becedas Martin. "Linear and Nonlinear Model Predictive Control of a Wave Energy Converter." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284252.
Full textDetta examensarbete har syftat till att utveckla en regulator som maximerarenergiöverföringen från kinetisk vågenergi till elektrisk energi. Vågkraftverketsom använts är av typen punktabsorberande system, som utvecklas av företagetCorPower Ocean AB. Två modeller har använts, en linjär approximationsamt en modell där ett urval av olinjära krafter varit aktiva. En Linjär samtOlinjär Modellprediktiv Regulator har utvecklats, där Matlabs optimeringslösarefmincon användes. Kostnadsfunktionen för dessa regulatorer har ävenvarierats i ett försök att ta hänsyn till oändliga tidshorisonten. För att få enuppfattning av prestandan jämfördes dessa regulatorer med en annorlunda formuleradModellprediktiv Regulator som använde Matlabs optimeringslösarequadprog. Den sistnämnda presterade generellt bättre med avseende på utvunnenenergi. Regulatorerna som togs fram i detta arbete betedde sig interikigt som väntat då de i flera fall minskade i energi med en längre tidshorisont.Att försöka beskriva oändliga horisonten i kostnadsfunktionen resulteradeoftast i något mer utvunnen energi, det skulle dock krävas vidare arbeteför att kunna dra slutsatser kring denna metod. Det fanns indikationer på attfmincon presterade sämre med längre horisont, även här skulle det krävasmer arbete för att kunna fastställa huruvida detta var orsaken eller inte.
Dunn, John. "An investigation into neural network assisted model predictive control for nonlinear systems." Thesis, Brunel University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367442.
Full textLa, Huu Chuong [Verfasser], and Hans Georg [Akademischer Betreuer] Bock. "Dual Control for Nonlinear Model Predictive Control / Huu Chuong La ; Betreuer: Hans Georg Bock." Heidelberg : Universitätsbibliothek Heidelberg, 2016. http://d-nb.info/1180616316/34.
Full textRahideh, Akbar. "Model identification and robust nonlinear model predictive control of a twin rotor MIMO system." Thesis, Queen Mary, University of London, 2009. http://qmro.qmul.ac.uk/xmlui/handle/123456789/1885.
Full textYu, Mingzhao. "Model Reduction and Nonlinear Model Predictive Control of Large-Scale Distributed Parameter Systems with Applications in Solid Sorbent-Based CO2 Capture." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/887.
Full textNorstedt, Erik, and Olof Bräne. "Model Predictive Climate Control for Electric Vehicles." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446435.
Full textKoppauer, Herwig [Verfasser]. "Nonlinear model predictive control of an automotive waste heat recovery system / Herwig Koppauer." Düren : Shaker, 2019. http://d-nb.info/1196486247/34.
Full textHuang, Rui. "Nonlinear Model Predictive Control and Dynamic Real Time Optimization for Large-scale Processes." Research Showcase @ CMU, 2010. http://repository.cmu.edu/dissertations/29.
Full textAbokhatwa, Salah G. "Distributed nonlinear state-dependent model predictive control and estimation for power generation plants." Thesis, University of Strathclyde, 2014. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=23207.
Full textLu, Yaohui. "Scheduling quasi-min-max model predictve control." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/11692.
Full textBraghieri, Giovanni. "Application of robust nonlinear model predictive control to simulating the control behaviour of a racing driver." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275524.
Full textVarutti, Paolo [Verfasser]. "Model Predictive Control for Nonlinear Networked Control Systems : A Model-based Compensation Approach for Nondeterministic Communication Networks / Paolo Varutti." Aachen : Shaker, 2014. http://d-nb.info/1053361688/34.
Full textCoetzee, Lodewicus Charl. "Robust nonlinear model predictive control of a closed run-of-mine ore milling circuit." Thesis, Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-09272009-103725/.
Full textMartinsen, Frode. "The Optimization Algorithm rFSQP with Application to Nonlinear Model Predictive Control of Grate Sintering." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, 2001. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-78.
Full textThis thesis contributes to the research on optimization algorithms for nonlinear programming, and to the application of such algorithms to nonlinear model predictive control.
Regarding the contribution to research on algorithms for nonlinear programming, a novel algorithm is put forward with a complete theory for global and local convergence. This is the main contribution of the thesis. The algorithm, named rFSQP, is a reduced Hessian Feasible Sequential Quadratic Programming method. It remains feasible with respect to nonlinear inequalities at all SQP iterations, but nonlinear equality constraints are treated as in general reduced Hessian SQP methods. The rFSQP algorithm is implemented in MATLAB and tested on a number of small scale problems with encouraging results. However, the algorithm is designed for large scale problems with few degrees of freedom. Some preliminary testing of the algorithm on large scale problems are investigated.
The thesis also contributes to the understanding of the relation between sequential and simultaneous reduced gradient methods, and to the understanding of the relation between discretization methods for dynamical systems and the choice of optimization algorithms.
The thesis also contributes to model based control approaches of grate sintering. Grate sintering is a complex metallurgical process, where melting of solids and fast gas dynamics give rise to stiff process models, i.e. the "time constants" of the system differ by many decades in magnitude. Hence, application of real-time optimization methods like nonlinear model predictive control to the grate sintering process is challenging. The thesis gives a framework for implementing nonlinear model based control of grate sintering by giving a control objective, a nonlinear model and choosing an appropriate discretization scheme. The thesis gives a reduced order model which is less computationally demanding. Data from industrial experiments are used to adapt the model and to assess the control objective.
Kudruss, Manuel [Verfasser], and Katja [Akademischer Betreuer] Mombaur. "Nonlinear Model Predictive Control for Motion Generation of Humanoids / Manuel Kudruss ; Betreuer: Katja Mombaur." Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1210647745/34.
Full textBürger, Adrian [Verfasser], and Moritz [Akademischer Betreuer] Diehl. "Nonlinear mixed-integer model predictive control of renewable energy systems : : methods, software, and experiments." Freiburg : Universität, 2020. http://d-nb.info/1225682150/34.
Full textPark, Junho. "Nonlinear Model Predictive Control for a Managed Pressure Drilling with High-Fidelity Drilling Simulators." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/6792.
Full textBolin, Tobias. "Nonlinear Approximative Explicit Model Predictive Control Through Neural Networks : Characterizing Architectures and Training Behavior." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264994.
Full textModell-prediktiv reglering (MPC, efter engelskans Model Predictive Control) är ett paradigm inom reglertekniken som på ett effektivt sätt kan hantera begränsningar i systemet som ska regleras. Den här egenskapen kommer på bekostnad av att MPC kräver mycket datorkraft. Tidigare har användning av den här typen av kontroller därför varit begränsad till långsamma system. På senare tid har framsteg inom hård- och mjukvara dock möjliggjort användning av MPC på inbyggda system. Där kan dess förmåga att hantera begränsningar användas för att minska slitage, öka effektivitet och förbättra prestanda inom allt från bilar till vindkraftverk. Ett sätt att minska beräkningsbördan ytterligare är att beräkna MPC-policyn i förväg och spara den i en tabell. Det här tillvägagångssättet kallas explicit MPC. Ett alternativt tillvägagångssätt är att träna ett neuralt nätverk till att approximera policyn. Potentiellt har det här fördelarna att ett neuralt nätverk inte är begränsat till att efterlikna policys för system med linjär dynamik, och att det finns resultat som pekar på att neurala nätverk är väl lämpade för att lagra policys för explicit MPC. En begränsad mängd arbete har gjorts inom det här området. Hur nätverken designas och tränas tenderar därför att reflektera trender inom andra applikationsområden för neurala nätverk istället för att baseras på vad som fungerar för att implementera MPC. Det här examensarbetet försöker avhjälpa det här problemet. Dels genom en litteraturstudie och dels genom att undersöka hur olika arkitekturer för neurala nätverk beter sig när de tränas för att efterlikna en ickelinjär MPC-kontroller som ska stabilisera en inverterad pendel. Resultaten tyder på att nätverk med ReLU-aktivering ger bättre prestanda än motsvarande nätverk som använder SELU eller tangens hyperbolicus som aktiveringsfunktion. Resultaten visar också att batch noralization och dropout försämmrar nätverkens förmåga att lära sig policyn och att prestandan blir bättre om antalet lager i nätverket ökar. De neurala nätverken uppvisar dock i vissa fall kvalitativa problem, så som statiska fel och oscillerande kontrollsignaler nära begränsningar.
Kittisupakorn, Paisan. "The use of nonlinear model predictive control techniques for the control of a reactor with exothermic reactions." Thesis, Imperial College London, 1996. http://hdl.handle.net/10044/1/8742.
Full textNielsen, Isak. "Modeling and Control of Friction Stir Welding in 5 cm thick Copper Canisters." Thesis, Linköpings universitet, Reglerteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-78748.
Full text''Friction stir welding'' har blivit en populär svetsmetod inom många olika tillämpningar. På Svensk Kärnbränslehantering AB (SKB) undersöks möjligheten att använda metoden för att försegla de 5 cm tjocka kopparkapslarna som kommer innehålla det använda kärnbränslet. För att kunna producera repeterbara svetsar utav hög kvalité krävs det att processen regleras. Idag löses detta med en temperaturregulator som reglerar svetszonens temperatur. I detta examensarbete utökas styrsystemet med en regulator för svetsdjupet. Två olika lösningar har utvärderats; först en decentraliserad lösning där temperatur-regulatorn behålls och sedan en lösning med en olinjär modellprediktiv reglering (MPC) som reglerar både djup och temperatur. Passande modeller har tagits fram och har använts för att designa regulatorerna; en enklare modell för den decentraliserade regulatorn och en utökad, komplett modell som används i den olinjära MPC:n och som beskriver alla viktiga variabler i processen. Viktiga prestandamått har jämförts för de båda regulatorstrukturerna och även prestandaökningen med den olinjära MPC:n har utvärderats. Då denna regulator inte har implementerats på den verkliga processen har simuleringar av den kompletta modellen använts för att jämföra och utvärdera regulatorstrukturerna. Den decentraliserade regulatorn har implementerats och testats på processen. Två svetsar har gjorts och de har givit utmärkta resultat, vilket visar att regulatorstrukturen som presenteras i rapporten fungerar bra för reglering av svetsdjupet. Trots att den implementerade regulatorn klarar av att reglera svetsdjupet med godkänt resultat, så visar simuleringar att den olinjära MPC:n ger ännu bättre reglerprestanda. Denna regulator kompenserar för korskopplingar i systemet och resulterar i ett slutet system som är nästan helt frikopplat. Ytterligare forskning kommer avgöra vilken av strategierna som kommer att användas i slutprodukten.
Delport, Ruanne. "Process identification using second order Volterra models for nonlinear model predictive control design of flotation circuits." Diss., Pretoria : [s.n.], 2004. http://upetd.up.ac.za/thesis/available/etd-05112005-091046.
Full textImsland, Lars. "Topics in nonlinear control. : Output Feedback Stabilization and Control of Positive Systems." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, 2002. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-355.
Full textThe contributions of this thesis are in the area of control of systems with nonlinear dynamics. The thesis is divided into three parts. The two first parts are similar in the sense that they both consider output feedback of rather general classes of nonlinear systems, and both approaches are based on mathematical programming (although in quite different ways). The third part contains a state feedback approach for a specific system class, and is more application oriented.
The first part treats control of systems described by nonlinear difference equations, possibly with uncertain terms. The system dynamics are represented by piecewise affine difference inclusions, and for this system class, piecewise affine controller structures are suggested. Controller synthesis inequalities for such controller structures are given in the form of Bilinear Matrix Inequalities (BMIs). A solver for the BMIs is developed. The main contribution is to the output feedback case, where an observer-based controller structure is proposed. The theory is exemplified through two examples.
In the second part the output feedback problem is examined in the setting of Nonlinear Model Predictive Control (NMPC). The state space formulation of NMPC is inherently a state feedback approach, since the state is needed as initial condition for the prediction in the controller. Consequently, for output feedback it is natural to use observers to obtain estimates of the state. A high gain observer is applied for this purpose. It is shown that for several existing NMPC schemes, the state feedback stability properties ``semiglobally'' hold in the output feedback case. The theory is illuminated with a simple example.
Finally, a state feedback controller for a class of positive systems is proposed. Convergence of the state to a certain subset of the first orthant, corresponding to a constant ``total mass'' (interpreting states as masses) is obtained. Conditions are given under which convergence to this set implies asymptotic stability of an equilibrium. Simple examples illustrate some properties of the controller. Furthermore, the control strategy is applied to the stabilization of a gas-lifted oil well, and simulations on a rigorous multi-phase dynamic simulator of such a well demonstrate the controller performance.
Kufoalor, Dzordzoenyenye Kwame. "Reconfigurable Autopilot Design using Nonlinear Model Predictive Control : Application to High Performance and Autonomous Aircraft." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18439.
Full text