Academic literature on the topic 'Nonlinear optical signal processing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nonlinear optical signal processing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nonlinear optical signal processing"
Peyghambarian, N. "Optical Computing and Nonlinear Optical Signal Processing." Optical Engineering 26, no. 1 (January 1, 1987): 260101. http://dx.doi.org/10.1117/12.7974012.
Full textWatanabe, Shigeki. "Optical signal processing using nonlinear fibers." Journal of Optical and Fiber Communications Reports 3, no. 1 (December 23, 2005): 1–24. http://dx.doi.org/10.1007/s10297-005-0039-z.
Full textSTEGEMAN, G. I., and C. T. SEATON. "OPTICAL SIGNAL PROCESSING WITH NONLINEAR GUIDED WAVES." Optics News 11, no. 12 (December 1, 1985): 6. http://dx.doi.org/10.1364/on.11.12.000006.
Full textSTEGEMAN, G. I., and C. T. SEATON. "OPTICAL SIGNAL PROCESSING WITH NONLINEAR GUIDED WAVES." Optics News 11, no. 12 (December 1, 1985): 6_1. http://dx.doi.org/10.1364/on.11.12.0006_1.
Full textKurumida, Junya, and S. J. Ben Yoo. "Nonlinear Optical Signal Processing in Optical Packet Switching Systems." IEEE Journal of Selected Topics in Quantum Electronics 18, no. 2 (March 2012): 978–87. http://dx.doi.org/10.1109/jstqe.2011.2143390.
Full textOxenløwe, L. K., M. Galili, H. C. Hansen Mulvad, H. Hu, J. L. Areal, E. Palushani, H. Ji, A. T. Clausen, and P. Jeppesen. "Nonlinear Optical Signal Processing for Tbit/s Ethernet Applications." International Journal of Optics 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/573843.
Full textSytnik, O. "Optimal nonlinear fi ltering of stochastic processes in rescue radar." RADIOFIZIKA I ELEKTRONIKA 26, no. 3 (2021): 18–23. http://dx.doi.org/10.15407/rej2021.03.018.
Full textAdur, Javier, Hernandes F. Carvalho, Carlos L. Cesar, and Victor H. Casco. "Nonlinear Optical Microscopy Signal Processing Strategies in Cancer." Cancer Informatics 13 (January 2014): CIN.S12419. http://dx.doi.org/10.4137/cin.s12419.
Full textVan, V., T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P. T. Ho. "Optical signal processing using nonlinear semiconductor microring resonators." IEEE Journal of Selected Topics in Quantum Electronics 8, no. 3 (May 2002): 705–13. http://dx.doi.org/10.1109/jstqe.2002.1016376.
Full textAzimipour, Mehdi, and Ramin Pashaie. "Nonlinear optical signal processing on multiwavelength sensitive materials." Optics Letters 38, no. 21 (October 21, 2013): 4324. http://dx.doi.org/10.1364/ol.38.004324.
Full textDissertations / Theses on the topic "Nonlinear optical signal processing"
Maitra, Ayan. "Nonlinear resonators for all-optical signal processing." Karlsruhe Univ.-Verl. Karlsruhe, 2007. http://d-nb.info/992791707/04.
Full textAtabaki, Amir Hossein. "Reconfigurable silicon photonic devices for optical signal processing." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41207.
Full textKoos, Christian. "Nanophotonic devices for linear and nonlinear optical signal processing." Karlsruhe : Univ.-Verl. Karlsruhe, 2007. http://d-nb.info/987044451/34.
Full textSpasojevic, Mina. "Nonlinear optical signal processing and tunable optical delays in silicon-on-insulator waveguides." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119660.
Full textL'augmentation incessante de la demande pour de larges bandes passantes crée de grandes tensions sur les technologies de communications existantes. Cela met en évidence le besoin d'améliorer la capacité et l'extensibilité des systèmes de transmission existants et futurs. Cette question peut être résolue, entre autres, par l'exploration des capacités de formats de modulation différents. Cette thèse examine un schéma de (dé)multiplexage optique temporel (OTDM) et présente une plateforme pour la mise en place d'un système pour le traitement de signaux exclusivement optiques sur silicium sur isolant (SOI) qui s'appuie sur le démultiplexage OTDM. Le démultiplexage OTDM et les délais optiques réglables, tous deux implémentés sur des dispositifs en silicium à l'échelle nanométrique, sont démontrés avec succès. Le démultiplexage OTDM est effectuée par l'exploitation de la non-linéarité des guides d'onde sur silicium. Cette technique emploie le phénomène de mélange à quatre ondes (FWM) choisi pour son potentiel pour les très hautes fréquences de données grâce à sa nature instantanée en plus de posséder l'avantage d'être transparent aux formats de modulation. Cette thèse démontre que le démultiplexage OTDM exclusivement optique peut être effectué en deux étapes, la production de ligne à retard ajustable en continue suivit par un procédé de démultiplexage, tous deux implémentés dans le même guide d'onde sur silicium. Un démultiplexage de 40 Gb/s à 10 Gb/s résultant en quatre canaux démultiplexés sans erreur est démontré avec succès. Pour une intégration plus poussée du procédé de démultiplexage, cette thèse examine la possibilité de créer un délai optique ajustable dans les guides d'onde sur silicium. Deux approches pour la mise en œuvre de réseaux sur les parois d'un guide d'onde sont démontrées: une série de réseaux de Bragg et des réseaux de Bragg chirpés. Les deux approches ont été fabriquées et caractérisées et démontrent des délais relativement larges (jusqu'à 65 ps) par étapes discontinues (de 15 ps à 32 ps) sur une bande passante large (de 35 nm à 70 nm). Ces approches doivent cependant être davantage optimisées. Le traitement de signaux exclusivement optique et les dispositifs optiques présentés dans cette thèse fournissent les étapes et les informations nécessaires qui pourraient mener à un démultiplexeur OTDM sur silicium complètement intégré.
Tseng, Shuo-Yen. "Development of linear and nonlinear components for integrated optical signal processing." College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3650.
Full textThesis research directed by: Electrical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Ettabib, Mohamed A. "All-optical signal processing in novel highly nonlinear fibres and waveguides." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/368583/.
Full textTwardowski, T. "Exact theory of surface-guided TM and coupled TE-TM nonlinear electromagnetic waves." Thesis, University of Salford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381757.
Full textKuo, Ping-piu, and 郭炳彪. "Fiber-based nonlinear photonic processor: a versatile platform for optical communication signal processing." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B4098817X.
Full textKuo, Ping-piu. "Fiber-based nonlinear photonic processor a versatile platform for optical communication signal processing /." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B4098817X.
Full textKoos, Christian [Verfasser]. "Nanophotonic devices for linear and nonlinear optical signal processing / von Christian Koos." Karlsruhe : Univ.-Verl. Karlsruhe, 2007. http://d-nb.info/987044451/34.
Full textBooks on the topic "Nonlinear optical signal processing"
Ferreira, Mário F. S. Optical Signal Processing in Highly Nonlinear Fibers. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429262111.
Full textNikolakakos, Iraklis P. Nonlinear optical characterization of novel Kerr materials for ultrafast all-optical signal processing. Ottawa: National Library of Canada, 2003.
Find full textYe, Winnie Ning. All-optical signal processing using nonlinear periodic structures: A study of temporal response. Ottawa: National Library of Canada, 2002.
Find full textBinh, Le Nguyen. Nonlinear optical systems: Principles, applications, and advanced signal processing with MATLAB and simulink models. Boca Raton: Taylor & Francis, 2012.
Find full textArce, Gonzalo R. Nonlinear Signal Processing. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471691852.
Full textDas, Pankaj K. Optical Signal Processing. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-74962-9.
Full textFiddy, M. A., and M. Nieto-Vesperinas, eds. Optical Signal Processing. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-4006-9.
Full textDougherty, Geoff. Pattern Recognition and Classification: An Introduction. New York, NY: Springer New York, 2013.
Find full textBook chapters on the topic "Nonlinear optical signal processing"
Schneider, Thomas. "Optical Signal Processing." In Nonlinear Optics in Telecommunications, 299–342. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08996-5_12.
Full textFiddy, M. A. "Multidimensional Processing: Nonlinear Optics and Computing." In Optical Signal Processing, 5–18. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-4006-9_3.
Full textWherrett, Brian S., and David C. Hutchings. "Optical bistability." In Nonlinear Optics in Signal Processing, 145–89. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1560-5_5.
Full textEason, Robert W. "Optical processing using phase conjugation." In Nonlinear Optics in Signal Processing, 190–228. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1560-5_6.
Full textWatanabe, Shigeki. "Optical signal processing using nonlinear fibers." In Ultrahigh-Speed Optical Transmission Technology, 141–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-68005-5_6.
Full textScott, M. "Materials for Nonlinear Optical Signal Processing." In Electronic Materials, 357–74. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3818-9_24.
Full textBostel, Ashley J., Andrew K. Powell, and Trevor J. Hall. "Architectures for Optical Neural Networks." In Nonlinear Optics in Signal Processing, 229–85. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1560-5_7.
Full textCotter, D. "Nonlinearity in optical fibre communications." In Nonlinear Optics in Signal Processing, 322–62. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1560-5_9.
Full textSibbett, Wilson. "Ultrashort pulses for nonlinear optical techniques." In Nonlinear Optics in Signal Processing, 363–414. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1560-5_10.
Full textFerreira, Mário F. S. "Optical Solitons." In Optical Signal Processing in Highly Nonlinear Fibers, 25–41. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429262111-3.
Full textConference papers on the topic "Nonlinear optical signal processing"
Gaeta, Alexander. "Nonlinear optical signal processing." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/ofc.2012.oth4h.5.
Full textManning, R. J., R. P. Webb, J. M. Dailey, G. D. Maxwell, A. J. Poustie, S. Lardenois, and D. Cotter. "Use of Semiconductor Optical Amplifiers in Signal Processing Applications." In Nonlinear Photonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/np.2010.nmb1.
Full textWatanabe, S., and F. Futami. "All-optical signal processing using nonlinearity in optical fibers." In Nonlinear Guided Waves and Their Applications. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/nlgw.2001.mb1.
Full textWatanabe, Shigeki. "All-optical Signal Processing Using Nonlinear Fibers." In Nonlinear Optics: Materials, Fundamentals and Applications. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/nlo.2002.tua3.
Full textTuritsyn, Sergei K., and Sonia Boscolo. "All-optical nonlinear fibre signal processing." In 2009 11th International Conference on Transparent Optical Networks (ICTON). IEEE, 2009. http://dx.doi.org/10.1109/icton.2009.5185184.
Full textAhmed, Nourin, and Refat Kibria. "Nonlinear mixing in optical signal processing." In 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). IEEE, 2015. http://dx.doi.org/10.1109/wiecon-ece.2015.7443958.
Full textRoztocki, Piotr, Michael Kues, Christian Reimer, Luca Razzari, Roberto Morandotti, Lucia Caspani, Matteo Clerici, et al. "Quantum photonic circuits for optical signal processing." In 2015 Spatiotemporal Complexity in Nonlinear Optics (SCNO). IEEE, 2015. http://dx.doi.org/10.1109/scno.2015.7324001.
Full textRichardson, D. J., J. K. Kakande, R. Slavík, F. Parmigiani, and P. Petropoulos. "Advances in Optical Signal Processing Based on Phase Sensitive Parametric Mixing." In Nonlinear Photonics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/np.2012.nm3c.1.
Full textLuther-Davies, Barry. "Thirty years of all-optical signal processing: materials and device challenges." In Nonlinear Photonics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/np.2016.nt5a.2.
Full textOxenløwe, L. K., H. C. H. Mulvad, H. Hu, H. Ji, M. Galili, M. Pu, E. Palushani, et al. "Ultrafast Nonlinear Signal Processing in Silicon Waveguides." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/ofc.2012.oth3h.5.
Full textReports on the topic "Nonlinear optical signal processing"
Cowan, Dwaine O., and Dean W. Robinson. New Organic and Organometallic Materials with Nonlinear Optical Properties for Optical Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, September 1986. http://dx.doi.org/10.21236/ada185402.
Full textHwang, Sheng-Kwang. Nonlinear Dynamics of Photonics for Optical Signal Processing - Optical Frequency Conversion and Optical DSB-to-SSB Conversion. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ada626951.
Full textPorter, William A. Nonlinear Real-Time Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, June 1990. http://dx.doi.org/10.21236/ada222889.
Full textCronin-Golomb, Mark, and Jed Khoury. Non-Linear Optical Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada407564.
Full textHealy, Dennis M., and Jr. Signal Processing for Optical Networks. Fort Belvoir, VA: Defense Technical Information Center, May 1998. http://dx.doi.org/10.21236/ada346217.
Full textBrost, George A. Photorefractives for Optical Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, December 1998. http://dx.doi.org/10.21236/ada358186.
Full textPan, J. J. Optical Computing and Optical Signal Processing. Phase 1. Fort Belvoir, VA: Defense Technical Information Center, April 1992. http://dx.doi.org/10.21236/ada250551.
Full textCromwell, R. Signal Processing Studies Program Optical Signal Amplification. Volume 2. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada188054.
Full textRoehrig, H., and M. Browne. Signal Processing Studies Program Optical Signal Amplification. Volume 1. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada188055.
Full textD. REAGOR and ET AL. NOVEL SIGNAL PROCESSING WITH NONLINEAR TRANSMISSION LINES. Office of Scientific and Technical Information (OSTI), August 2000. http://dx.doi.org/10.2172/768777.
Full text