Academic literature on the topic 'Nonlinear optical signal processing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nonlinear optical signal processing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nonlinear optical signal processing"

1

Peyghambarian, N. "Optical Computing and Nonlinear Optical Signal Processing." Optical Engineering 26, no. 1 (January 1, 1987): 260101. http://dx.doi.org/10.1117/12.7974012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Watanabe, Shigeki. "Optical signal processing using nonlinear fibers." Journal of Optical and Fiber Communications Reports 3, no. 1 (December 23, 2005): 1–24. http://dx.doi.org/10.1007/s10297-005-0039-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

STEGEMAN, G. I., and C. T. SEATON. "OPTICAL SIGNAL PROCESSING WITH NONLINEAR GUIDED WAVES." Optics News 11, no. 12 (December 1, 1985): 6. http://dx.doi.org/10.1364/on.11.12.000006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

STEGEMAN, G. I., and C. T. SEATON. "OPTICAL SIGNAL PROCESSING WITH NONLINEAR GUIDED WAVES." Optics News 11, no. 12 (December 1, 1985): 6_1. http://dx.doi.org/10.1364/on.11.12.0006_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kurumida, Junya, and S. J. Ben Yoo. "Nonlinear Optical Signal Processing in Optical Packet Switching Systems." IEEE Journal of Selected Topics in Quantum Electronics 18, no. 2 (March 2012): 978–87. http://dx.doi.org/10.1109/jstqe.2011.2143390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Oxenløwe, L. K., M. Galili, H. C. Hansen Mulvad, H. Hu, J. L. Areal, E. Palushani, H. Ji, A. T. Clausen, and P. Jeppesen. "Nonlinear Optical Signal Processing for Tbit/s Ethernet Applications." International Journal of Optics 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/573843.

Full text
Abstract:
Wereviewrecent experimental demonstrations of Tbaud optical signal processing. In particular, we describe a successful 1.28 Tbit/s serial data generation based on single polarization 1.28 Tbaud symbol rate pulses with binary data modulation (OOK) and subsequent all-optical demultiplexing. We also describe the first error-free 5.1 Tbit/s data generation and demodulation based on a single laser, where a 1.28 Tbaud symbol rate is used together with quaternary phase modulation (DQPSK) and polarization multiplexing. The 5.1 Tbit/s data signal is all-optically demultiplexed and demodulated by direct detection in a delay-interferometer-balanced detector-based receiver, yielding a BER less than 10−9. We also present subsystems making serial optical Tbit/s systems compatible with standard Ethernet data for data centre applications and present Tbit/s results using, for instance silicon nanowires.
APA, Harvard, Vancouver, ISO, and other styles
7

Sytnik, O. "Optimal nonlinear fi ltering of stochastic processes in rescue radar." RADIOFIZIKA I ELEKTRONIKA 26, no. 3 (2021): 18–23. http://dx.doi.org/10.15407/rej2021.03.018.

Full text
Abstract:
Subject and Purpose. Smoke, fog, avalanches, debris of collapsed structures and other optically opaque obstacles in both natural and man-made disasters make optical sensors useless for detecting victims. Electromagnetic waves of the decimeter range penetrate well almost all obstacles, reflect from the trapped people and return to the radar receiver. Due to the breathing and heartbeat, the human-reflected sounding signals get the Doppler phase modulation, which is an information signal. These information signals and their properties provide the subject matter for the present research with the aim to create optimal methods and algorithms of random event processing for the prompt location of survivors by rescuers. Method and Methodology. The method of stochastic analysis of the fluctuation Doppler spectra of reflected sounding signals shows that the information signals have properties of conditional Markov processes. Results. The problem of optimal nonlinear filtering of conditional Markov processes entering the radar signal processing unit has been examined closely. An optimal adaptive filter has been proposed to reduce the masking effect of interferences caused by non-stationary noises and sounding signal reflections from stationary objects. The optimality criterion is the minimum mean square error function whose current value is evaluated in real time during the filtering process as the statistics is accumulated. The filter coefficients are calculated by the recurrent, steepest descent algorithm. The real-time work is carried out through the use of fast Fourier transform algorithms. Conclusion. The structure of the optimal adaptive filter to be built into the radar signal processing unit has been developed. Real radar signals have shown that the optimal filtering during the signal processing in systems designed for detecting live people by their breathing and heartbeat facilitates the interpretation of the observed signals. Some spectra of real signals generated by human breathing and heartbeat are presented.
APA, Harvard, Vancouver, ISO, and other styles
8

Adur, Javier, Hernandes F. Carvalho, Carlos L. Cesar, and Victor H. Casco. "Nonlinear Optical Microscopy Signal Processing Strategies in Cancer." Cancer Informatics 13 (January 2014): CIN.S12419. http://dx.doi.org/10.4137/cin.s12419.

Full text
Abstract:
This work reviews the most relevant present-day processing methods used to improve the accuracy of multimodal nonlinear images in the detection of epithelial cancer and the supporting stroma. Special emphasis has been placed on methods of non linear optical (NLO) microscopy image processing such as: second harmonic to autofluorescence ageing index of dermis (SAAID), tumor-associated collagen signatures (TACS), fast Fourier transform (FFT) analysis, and gray level co-occurrence matrix (GLCM)-based methods. These strategies are presented as a set of potential valuable diagnostic tools for early cancer detection. It may be proposed that the combination of NLO microscopy and informatics based image analysis approaches described in this review (all carried out on free software) may represent a powerful tool to investigate collagen organization and remodeling of extracellular matrix in carcinogenesis processes.
APA, Harvard, Vancouver, ISO, and other styles
9

Van, V., T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P. T. Ho. "Optical signal processing using nonlinear semiconductor microring resonators." IEEE Journal of Selected Topics in Quantum Electronics 8, no. 3 (May 2002): 705–13. http://dx.doi.org/10.1109/jstqe.2002.1016376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Azimipour, Mehdi, and Ramin Pashaie. "Nonlinear optical signal processing on multiwavelength sensitive materials." Optics Letters 38, no. 21 (October 21, 2013): 4324. http://dx.doi.org/10.1364/ol.38.004324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Nonlinear optical signal processing"

1

Maitra, Ayan. "Nonlinear resonators for all-optical signal processing." Karlsruhe Univ.-Verl. Karlsruhe, 2007. http://d-nb.info/992791707/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Atabaki, Amir Hossein. "Reconfigurable silicon photonic devices for optical signal processing." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41207.

Full text
Abstract:
Processing of high-speed data using optical signals is a promising approach for tackling the bandwidth and speed challenges of today's electronics. Realization of complex optical signal processing functionalities seems more possible than any time before, thanks to the recent achievements in silicon photonics towards large-scale photonic integration. In this Ph.D. work, a novel thermal reconfiguration technology is proposed and experimentally demonstrated for silicon photonics that is compact, low-loss, low-power, fast, with a large tuning-range. These properties are all required for large-scale optical signal processing and had not been simultaneously achieved in a single device technology prior to this work. This device technology is applied to a new class of resonator-based devices for reconfigurable nonlinear optical signal processing. For the first time, we have demonstrated the possibility of resonance wavelength tuning of individual resonances and their coupling coefficients. Using this new device concept, we have demonstrated tunable wavelength-conversion through four-wave mixing in a resonator-based silicon device for the first time.
APA, Harvard, Vancouver, ISO, and other styles
3

Koos, Christian. "Nanophotonic devices for linear and nonlinear optical signal processing." Karlsruhe : Univ.-Verl. Karlsruhe, 2007. http://d-nb.info/987044451/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Spasojevic, Mina. "Nonlinear optical signal processing and tunable optical delays in silicon-on-insulator waveguides." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119660.

Full text
Abstract:
The continued trend of increasing demand for large communications bandwidths is placing great strain on today's communications technology. This underlines the need for improving capacities and scalability of the existing as well as the future transmission systems. Investigating the capabilities of different modulation formats presents one way of addressing the matter. This thesis explores the optical time-division (de)multiplexing (OTDM) modulation scheme and provides a platform for building an all-optical signal processing system in silicon-on-insulator (SOI) relying on OTDM. It demonstrates successful OTDM demultiplexing and tunable optical delays both implemented in silicon nanoscale optical devices. OTDM demultiplexing is carried out by exploiting the nonlinearities in silicon waveguides. It focuses on four wave mixing (FWM) phenomenon chosen for its great potential for very high data rates resulting from its instantaneous nature, in addition to the advantage of being transparent to modulation formats. The thesis demonstrates how all-optical OTDM demultiplexing can be achieved through a two step process, generation of continuously tunable delay line followed by demultiplexing process, with both steps implemented in the same silicon waveguide. It demonstrates successful 40 Gb/s-to-10 Gb/s demultiplexing resulting in four error free demultiplexed channels.For further integration of the demultiplexing process, this thesis explores achieving tunable optical delays in silicon waveguides. It shows two approaches for implementing sidewall grating structures, serial Bragg grating arrays and the step-chirped Bragg gratings. Both approaches were fabricated and characterized and demonstrate relatively large delays (up to 65 ps) in discrete steps (from 15 ps to 32 ps) over wide bandwidths (from 35 nm to 70 nm), however they require further optimization. All-optical signal processing and optical devices presented in this thesis provide building blocks and indicate future steps that can lead toward fully integrated OTDM demultiplexer in SOI.
L'augmentation incessante de la demande pour de larges bandes passantes crée de grandes tensions sur les technologies de communications existantes. Cela met en évidence le besoin d'améliorer la capacité et l'extensibilité des systèmes de transmission existants et futurs. Cette question peut être résolue, entre autres, par l'exploration des capacités de formats de modulation différents. Cette thèse examine un schéma de (dé)multiplexage optique temporel (OTDM) et présente une plateforme pour la mise en place d'un système pour le traitement de signaux exclusivement optiques sur silicium sur isolant (SOI) qui s'appuie sur le démultiplexage OTDM. Le démultiplexage OTDM et les délais optiques réglables, tous deux implémentés sur des dispositifs en silicium à l'échelle nanométrique, sont démontrés avec succès. Le démultiplexage OTDM est effectuée par l'exploitation de la non-linéarité des guides d'onde sur silicium. Cette technique emploie le phénomène de mélange à quatre ondes (FWM) choisi pour son potentiel pour les très hautes fréquences de données grâce à sa nature instantanée en plus de posséder l'avantage d'être transparent aux formats de modulation. Cette thèse démontre que le démultiplexage OTDM exclusivement optique peut être effectué en deux étapes, la production de ligne à retard ajustable en continue suivit par un procédé de démultiplexage, tous deux implémentés dans le même guide d'onde sur silicium. Un démultiplexage de 40 Gb/s à 10 Gb/s résultant en quatre canaux démultiplexés sans erreur est démontré avec succès. Pour une intégration plus poussée du procédé de démultiplexage, cette thèse examine la possibilité de créer un délai optique ajustable dans les guides d'onde sur silicium. Deux approches pour la mise en œuvre de réseaux sur les parois d'un guide d'onde sont démontrées: une série de réseaux de Bragg et des réseaux de Bragg chirpés. Les deux approches ont été fabriquées et caractérisées et démontrent des délais relativement larges (jusqu'à 65 ps) par étapes discontinues (de 15 ps à 32 ps) sur une bande passante large (de 35 nm à 70 nm). Ces approches doivent cependant être davantage optimisées. Le traitement de signaux exclusivement optique et les dispositifs optiques présentés dans cette thèse fournissent les étapes et les informations nécessaires qui pourraient mener à un démultiplexeur OTDM sur silicium complètement intégré.
APA, Harvard, Vancouver, ISO, and other styles
5

Tseng, Shuo-Yen. "Development of linear and nonlinear components for integrated optical signal processing." College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3650.

Full text
Abstract:
Thesis (Ph. D.) -- University of Maryland, College Park, 2006.
Thesis research directed by: Electrical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles
6

Ettabib, Mohamed A. "All-optical signal processing in novel highly nonlinear fibres and waveguides." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/368583/.

Full text
Abstract:
All-optical signal processing has recently become an attractive research field, a result of nonlinear optical systems making major advances in terms of cost, compactness, energy consumption, integrability and reliability. This technology has impacted several areas ranging from telecommunications and biomolecular sensing to military and quantum communications, and spanning a vast range of frequencies from the near to mid-infrared. This PhD research project was aimed at investigating the features and feasibility of two state-of-the-art all-optical signal processing technologies: highly nonlinear soft glass fibres and silicon-based waveguides. Of the various soft glasses available, lead silicate and tellurite are considered within this thesis. The optical properties of a highly nonlinear lead silicate W-type fibre are studied and the design process of such fibres is explained in detail. A number of telecommunications-based all-optical processing applications are also demonstrated in this fibre technology. Phase sensitive amplification is demonstrated in the W-type fibre and the process is used to regenerate the phase of 40 Gbit/s differential phase shift keying (DPSK) signals. The optical characteristics of a highly nonlinear tellurite fibre are also studied both at 1.55 and 2 µm. Efficient four wave mixing (FMW)-based wavelength conversion of 1.55 µm signals is demonstrated in the fibre and a detailed numerical study into the potential of the fibre in realizing phase-matched mid-infrared (MIR) to near-infrared (NIR) spectral translation is conducted. The second all-optical signal processing platform investigated in this project is silicon germanium (SiGe) waveguides. A detailed account of the linear and nonlinear optical properties of this newly emerging silicon-based technology is reported for the first time and the potential of this platform is highlighted by demonstrating wavelength conversion of 40 Gbaud DPSK and QPSK signals. Broadband spectral translation is also demonstrated in the SiGe waveguides with record FWM bandwidths.
APA, Harvard, Vancouver, ISO, and other styles
7

Twardowski, T. "Exact theory of surface-guided TM and coupled TE-TM nonlinear electromagnetic waves." Thesis, University of Salford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kuo, Ping-piu, and 郭炳彪. "Fiber-based nonlinear photonic processor: a versatile platform for optical communication signal processing." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B4098817X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kuo, Ping-piu. "Fiber-based nonlinear photonic processor a versatile platform for optical communication signal processing /." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B4098817X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Koos, Christian [Verfasser]. "Nanophotonic devices for linear and nonlinear optical signal processing / von Christian Koos." Karlsruhe : Univ.-Verl. Karlsruhe, 2007. http://d-nb.info/987044451/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Nonlinear optical signal processing"

1

Ferreira, Mário F. S. Optical Signal Processing in Highly Nonlinear Fibers. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429262111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nikolakakos, Iraklis P. Nonlinear optical characterization of novel Kerr materials for ultrafast all-optical signal processing. Ottawa: National Library of Canada, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ye, Winnie Ning. All-optical signal processing using nonlinear periodic structures: A study of temporal response. Ottawa: National Library of Canada, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Binh, Le Nguyen. Nonlinear optical systems: Principles, applications, and advanced signal processing with MATLAB and simulink models. Boca Raton: Taylor & Francis, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Arce, Gonzalo R. Nonlinear Signal Processing. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471691852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

VanderLugt, Anthony. Optical signal processing. New York: Wiley, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Das, Pankaj K. Optical Signal Processing. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-74962-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fiddy, M. A., and M. Nieto-Vesperinas, eds. Optical Signal Processing. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-4006-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fiddy, M. A. Optical Signal Processing. Boston, MA: Springer US, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dougherty, Geoff. Pattern Recognition and Classification: An Introduction. New York, NY: Springer New York, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Nonlinear optical signal processing"

1

Schneider, Thomas. "Optical Signal Processing." In Nonlinear Optics in Telecommunications, 299–342. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08996-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fiddy, M. A. "Multidimensional Processing: Nonlinear Optics and Computing." In Optical Signal Processing, 5–18. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-4006-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wherrett, Brian S., and David C. Hutchings. "Optical bistability." In Nonlinear Optics in Signal Processing, 145–89. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1560-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eason, Robert W. "Optical processing using phase conjugation." In Nonlinear Optics in Signal Processing, 190–228. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1560-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Watanabe, Shigeki. "Optical signal processing using nonlinear fibers." In Ultrahigh-Speed Optical Transmission Technology, 141–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-68005-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Scott, M. "Materials for Nonlinear Optical Signal Processing." In Electronic Materials, 357–74. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3818-9_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bostel, Ashley J., Andrew K. Powell, and Trevor J. Hall. "Architectures for Optical Neural Networks." In Nonlinear Optics in Signal Processing, 229–85. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1560-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cotter, D. "Nonlinearity in optical fibre communications." In Nonlinear Optics in Signal Processing, 322–62. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1560-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sibbett, Wilson. "Ultrashort pulses for nonlinear optical techniques." In Nonlinear Optics in Signal Processing, 363–414. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1560-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ferreira, Mário F. S. "Optical Solitons." In Optical Signal Processing in Highly Nonlinear Fibers, 25–41. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429262111-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nonlinear optical signal processing"

1

Gaeta, Alexander. "Nonlinear optical signal processing." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/ofc.2012.oth4h.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Manning, R. J., R. P. Webb, J. M. Dailey, G. D. Maxwell, A. J. Poustie, S. Lardenois, and D. Cotter. "Use of Semiconductor Optical Amplifiers in Signal Processing Applications." In Nonlinear Photonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/np.2010.nmb1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Watanabe, S., and F. Futami. "All-optical signal processing using nonlinearity in optical fibers." In Nonlinear Guided Waves and Their Applications. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/nlgw.2001.mb1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Watanabe, Shigeki. "All-optical Signal Processing Using Nonlinear Fibers." In Nonlinear Optics: Materials, Fundamentals and Applications. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/nlo.2002.tua3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Turitsyn, Sergei K., and Sonia Boscolo. "All-optical nonlinear fibre signal processing." In 2009 11th International Conference on Transparent Optical Networks (ICTON). IEEE, 2009. http://dx.doi.org/10.1109/icton.2009.5185184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ahmed, Nourin, and Refat Kibria. "Nonlinear mixing in optical signal processing." In 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). IEEE, 2015. http://dx.doi.org/10.1109/wiecon-ece.2015.7443958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Roztocki, Piotr, Michael Kues, Christian Reimer, Luca Razzari, Roberto Morandotti, Lucia Caspani, Matteo Clerici, et al. "Quantum photonic circuits for optical signal processing." In 2015 Spatiotemporal Complexity in Nonlinear Optics (SCNO). IEEE, 2015. http://dx.doi.org/10.1109/scno.2015.7324001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Richardson, D. J., J. K. Kakande, R. Slavík, F. Parmigiani, and P. Petropoulos. "Advances in Optical Signal Processing Based on Phase Sensitive Parametric Mixing." In Nonlinear Photonics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/np.2012.nm3c.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Luther-Davies, Barry. "Thirty years of all-optical signal processing: materials and device challenges." In Nonlinear Photonics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/np.2016.nt5a.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Oxenløwe, L. K., H. C. H. Mulvad, H. Hu, H. Ji, M. Galili, M. Pu, E. Palushani, et al. "Ultrafast Nonlinear Signal Processing in Silicon Waveguides." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/ofc.2012.oth3h.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nonlinear optical signal processing"

1

Cowan, Dwaine O., and Dean W. Robinson. New Organic and Organometallic Materials with Nonlinear Optical Properties for Optical Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, September 1986. http://dx.doi.org/10.21236/ada185402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hwang, Sheng-Kwang. Nonlinear Dynamics of Photonics for Optical Signal Processing - Optical Frequency Conversion and Optical DSB-to-SSB Conversion. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ada626951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Porter, William A. Nonlinear Real-Time Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, June 1990. http://dx.doi.org/10.21236/ada222889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cronin-Golomb, Mark, and Jed Khoury. Non-Linear Optical Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada407564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Healy, Dennis M., and Jr. Signal Processing for Optical Networks. Fort Belvoir, VA: Defense Technical Information Center, May 1998. http://dx.doi.org/10.21236/ada346217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brost, George A. Photorefractives for Optical Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, December 1998. http://dx.doi.org/10.21236/ada358186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pan, J. J. Optical Computing and Optical Signal Processing. Phase 1. Fort Belvoir, VA: Defense Technical Information Center, April 1992. http://dx.doi.org/10.21236/ada250551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cromwell, R. Signal Processing Studies Program Optical Signal Amplification. Volume 2. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada188054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Roehrig, H., and M. Browne. Signal Processing Studies Program Optical Signal Amplification. Volume 1. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada188055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

D. REAGOR and ET AL. NOVEL SIGNAL PROCESSING WITH NONLINEAR TRANSMISSION LINES. Office of Scientific and Technical Information (OSTI), August 2000. http://dx.doi.org/10.2172/768777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography