Dissertations / Theses on the topic 'Nonlinear optical signal processing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Nonlinear optical signal processing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Maitra, Ayan. "Nonlinear resonators for all-optical signal processing." Karlsruhe Univ.-Verl. Karlsruhe, 2007. http://d-nb.info/992791707/04.
Full textAtabaki, Amir Hossein. "Reconfigurable silicon photonic devices for optical signal processing." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41207.
Full textKoos, Christian. "Nanophotonic devices for linear and nonlinear optical signal processing." Karlsruhe : Univ.-Verl. Karlsruhe, 2007. http://d-nb.info/987044451/34.
Full textSpasojevic, Mina. "Nonlinear optical signal processing and tunable optical delays in silicon-on-insulator waveguides." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119660.
Full textL'augmentation incessante de la demande pour de larges bandes passantes crée de grandes tensions sur les technologies de communications existantes. Cela met en évidence le besoin d'améliorer la capacité et l'extensibilité des systèmes de transmission existants et futurs. Cette question peut être résolue, entre autres, par l'exploration des capacités de formats de modulation différents. Cette thèse examine un schéma de (dé)multiplexage optique temporel (OTDM) et présente une plateforme pour la mise en place d'un système pour le traitement de signaux exclusivement optiques sur silicium sur isolant (SOI) qui s'appuie sur le démultiplexage OTDM. Le démultiplexage OTDM et les délais optiques réglables, tous deux implémentés sur des dispositifs en silicium à l'échelle nanométrique, sont démontrés avec succès. Le démultiplexage OTDM est effectuée par l'exploitation de la non-linéarité des guides d'onde sur silicium. Cette technique emploie le phénomène de mélange à quatre ondes (FWM) choisi pour son potentiel pour les très hautes fréquences de données grâce à sa nature instantanée en plus de posséder l'avantage d'être transparent aux formats de modulation. Cette thèse démontre que le démultiplexage OTDM exclusivement optique peut être effectué en deux étapes, la production de ligne à retard ajustable en continue suivit par un procédé de démultiplexage, tous deux implémentés dans le même guide d'onde sur silicium. Un démultiplexage de 40 Gb/s à 10 Gb/s résultant en quatre canaux démultiplexés sans erreur est démontré avec succès. Pour une intégration plus poussée du procédé de démultiplexage, cette thèse examine la possibilité de créer un délai optique ajustable dans les guides d'onde sur silicium. Deux approches pour la mise en œuvre de réseaux sur les parois d'un guide d'onde sont démontrées: une série de réseaux de Bragg et des réseaux de Bragg chirpés. Les deux approches ont été fabriquées et caractérisées et démontrent des délais relativement larges (jusqu'à 65 ps) par étapes discontinues (de 15 ps à 32 ps) sur une bande passante large (de 35 nm à 70 nm). Ces approches doivent cependant être davantage optimisées. Le traitement de signaux exclusivement optique et les dispositifs optiques présentés dans cette thèse fournissent les étapes et les informations nécessaires qui pourraient mener à un démultiplexeur OTDM sur silicium complètement intégré.
Tseng, Shuo-Yen. "Development of linear and nonlinear components for integrated optical signal processing." College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3650.
Full textThesis research directed by: Electrical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Ettabib, Mohamed A. "All-optical signal processing in novel highly nonlinear fibres and waveguides." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/368583/.
Full textTwardowski, T. "Exact theory of surface-guided TM and coupled TE-TM nonlinear electromagnetic waves." Thesis, University of Salford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381757.
Full textKuo, Ping-piu, and 郭炳彪. "Fiber-based nonlinear photonic processor: a versatile platform for optical communication signal processing." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B4098817X.
Full textKuo, Ping-piu. "Fiber-based nonlinear photonic processor a versatile platform for optical communication signal processing /." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B4098817X.
Full textKoos, Christian [Verfasser]. "Nanophotonic devices for linear and nonlinear optical signal processing / von Christian Koos." Karlsruhe : Univ.-Verl. Karlsruhe, 2007. http://d-nb.info/987044451/34.
Full textAwad, Ehab S. "Ultra-fast optical signal processing for digital communications using all-optical nonlinear interactions in semiconductor optical waveguides." College Park, Md. : University of Maryland, 2003. http://hdl.handle.net/1903/299.
Full textThesis research directed by: Electrical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Slim, Joseph. "Optical signal processing for space division multiplexed systems." Thesis, Rennes 1, 2021. http://www.theses.fr/2021REN1S004.
Full textWhile the main advantage of optical communications is to enable transmission of ultra-high capacities by multiplexing dozens of wavelength channels operating at high bit rates, the processing of the data, for instance in view of its regeneration or routing, needs to be performed in the electrical domain, thus requiring optical-to-electrical-to-optical conversions. However, some processing functionalities could be performed more efficiently directly in the optical domain, which is known as all-optical signal processing. As new techniques exploiting the spatial dimension in multimode fibers have been proposed in order to further increase the transmitted capacity, a better understanding of nonlinear effects associated with multimode interactions is desirable. This thesis aimed to explore paths for all-optical signal processing in modedivision multiplexing. In particular, the target was to demonstrate how nonlinear effects in multimode fibers could be used to manipulate the properties of optical signals, either in a mode independent way, or mode dependent way. Two types of fibers were designed. The first one allows to perform some all-optical signal processing functionalities for all the modes of the fiber individually and simultaneously, by using the intramodal fourwave mixing nonlinear effect. The second fiber was designed in a way to perform all-optical signal processing between different modes of the fiber, using intermodal four-wave mixing
Lee, Ju Han. "All-optical nonlinear signal processing devices and their applications within fibre-optic communication systems." Thesis, University of Southampton, 2003. https://eprints.soton.ac.uk/42436/.
Full textMatichak, Jonathan D. "The design, synthesis, and characterization of polymethine dyes for all-optical signal processing applications." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/41050.
Full textKim, Hyeongeu. "Investigation of optical properties of polymethines for potential application in all-optical signal processing." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53579.
Full textKARAGULEFF, CHRIS. "DEGENERATE FOUR WAVE MIXING IN THIN FILM OPTICAL WAVEGUIDES (NONLINEAR OPTICS, INTEGRATED, PHASE CONJUGATION, SIGNAL PROCESSING)." Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187908.
Full textGuiomar, Fernando Pedro Pereira. "Digital nonlinear equalization for optical transmission systems." Doctoral thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/15977.
Full textThis thesis focuses on digital equalization of nonlinear fiber impairments for coherent optical transmission systems. Building from well-known physical models of signal propagation in single-mode optical fibers, novel nonlinear equalization techniques are proposed, numerically assessed and experimentally demonstrated. The structure of the proposed algorithms is strongly driven by the optimization of the performance versus complexity tradeoff, envisioning the near-future practical application in commercial real-time transceivers. The work is initially focused on the mitigation of intra-channel nonlinear impairments relying on the concept of digital backpropagation (DBP) associated with Volterra-based filtering. After a comprehensive analysis of the third-order Volterra kernel, a set of critical simplifications are identified, culminating in the development of reduced complexity nonlinear equalization algorithms formulated both in time and frequency domains. The implementation complexity of the proposed techniques is analytically described in terms of computational effort and processing latency, by determining the number of real multiplications per processed sample and the number of serial multiplications, respectively. The equalization performance is numerically and experimentally assessed through bit error rate (BER) measurements. Finally, the problem of inter-channel nonlinear compensation is addressed within the context of 400 Gb/s (400G) superchannels for long-haul and ultra-long-haul transmission. Different superchannel configurations and nonlinear equalization strategies are experimentally assessed, demonstrating that inter-subcarrier nonlinear equalization can provide an enhanced signal reach while requiring only marginal added complexity.
A presente tese foca-se no tema da equalização digital de distorções não lineares da fibra em sistemas coerentes de transmissão ótica. Tirando partido de modelos físicos bem conhecidos para a propagação de sinal em fibras óticas mono-modo, novas técnicas de equalização não linear são propostas, testadas numericamente e validadas por demonstração experimental. A estrutura dos algoritmos propostos é fortemente condicionada pela otimização do compromisso entre complexidade e desempenho, tendo em conta a sua futura implementação prática em transcetores comerciais operando em tempo-real. O trabalho desenvolvido foca-se inicialmente na mitigação das distorções não lineares intra-canal, aplicando o conceito de propagação digital inversa realizado através de filtros de Volterra. Após uma análise sistemática do núcleo de Volterra de terceira ordem, é identificado um conjunto de simplificações críticas, culminando no desenvolvimento de algoritmos de equalização não linear de baixa complexidade, formulados no domínio do tempo e frequência. A complexidade de implementação das técnicas propostas e analiticamente descrita em termos de esforço computacional e latência de processamento, através da determinação do número de multiplicações reais por amostra e do número de multiplicações realizadas em série, respetivamente. O desempenho da equalização e avaliado recorrendo a simulação numérica e validação experimental através da medição da taxa de erros. Por fim, a questão da compensação não linear inter-canal é abordada no contexto da propagação de supercanais 400G para sistemas de transmissão metro e longa distância. Nesse âmbito são experimentalmente testadas diferentes configurações de supercanal e estratégias de equalização não linear, demonstrando assim que a implementação de equalização inter-subportadora permite estender consideravelmente o alcance, requerendo apenas um esforço computacional ligeiramente superior.
Gabel, Allan Harley. "Degenerate four wave mixing in semiconductor doped glass waveguides." Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184367.
Full textXie, Weilin. "Nonlinear properties of phase-sensitive fiber-optic parametric amplifiers for signal processing." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS108/document.
Full textThe capability and performance of the widely deployed fiber-optic and photonic systems strongly depend on the noise and nonlinearities of the optical amplifiers. In this context, phase-sensitive fiber-optic parametric amplifiers (PS-FOPAs), relying on four-wave mixing in optical fibers, outperforms conventional phase-insensitive amplifier thanks to the unique phase-sensitivity that can be exploited for noiseless amplification and mitigation of the nonlinear impairment. In conjunction with the vast gain spectrum and other functionality such as wavelength conversion, they have been regarded as a promising candidate for the next generation optical amplifiers towards all-optical communication and processing.The PS-FOPA is conventionally described by the fundamental coupled wave equations derived from the nonlinear Schrödinger equation that contains only three or four interacting waves. However, for a more general case, the emergence of high-order waves will inevitably affect the phase-sensitivity. The objective of this thesis aims at the thorough investigation of the nonlinear properties in terms of the gain properties and the phase sensitivities with respect to different configurations of a dual-pump signal-idler degenerate PS-FOPA. The more accurate numerical analysis is obtained by using the 7-wave model that incorporates the first order high-order waves stemming from the high-order four-wave mixing processing. This model permits to assess a more precise physical interpretation of the multi-wave interactions based on phase matching conditions, revealing the underlying relations between the dispersion and the phase-sensitivity. Moreover, the simultaneous phase and amplitude regenerative capability of a basic PS-FOPA is evaluated for the overall optimization. It allows fully exploiting the potential ability of a basic PS-FOPA acting as a fundamental building block of the future all-optical functionalities. The analysis approach based on this model permits application-oriented optimization and is of particular guiding significance for design and optimization of PS-FOPA in various scenarios
Neumann, Niels. "Signal processing with optical delay line filters for high bit rate transmission systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-64036.
Full textOver the course of the past decades, the global communication system has become a central part of people's everyday lives. Optical communication systems are the technological basis for this development. Only fibers can provide the huge bandwidth that is required. Where the fiber could be regarded as a flat channel for the first optical transmission systems wavelength multiplexing and increasing line rates made it necessary to take more and more physical effects into account. When the line rates are increased to 40 Gbit/s and higher static chromatic dispersion compensation is not enough. The modulation format's intrinsic tolerance for dispersion decreases quadratically with the symbol rate. Thus, environmentally induced chromatic dispersion fluctuations may exceed the dispersion tolerance of the modulation formats. This makes an adaptive dispersion compensation necessary implying also the need for a monitoring scheme to steer the adaptive compensator. Legacy links that are CD-compensated by DCFs can be upgraded with residual dispersion compensators to make them ready for high speed transmission. Optical compensation is independent from the line rate. Hence, increasing the data rates is inherently supported. Optical compensators can be built WDM ready compensating multiple channels at once. The book deals with optical delay line filters as one class of optical compensators. The filter synthesis of such delay line filters is addressed. The connection between optical filters and digital FIR filters with complex coefficients that are used in conjunction with coherent detection could be shown. Iterative and analytical methods that produce the coefficients for dispersion (and also dispersion slope) compensating filters are researched. As important as the compensation of dispersion is the estimation of the dispersion of a signal. Using delay line filters, the vestigial sidebands of a signal can be used to measure the dispersion. Alternatively, nonlinear detection can be used to estimate the pulse broadening which is caused mainly by dispersion. With dispersion compensation and dispersion monitoring, dispersion compensators can be adapted to the signal's impairment. Special properties of the filter in conjunction with an analytical description can be used to provide a fast and reliable control algorithm for setting the filter to a given dispersion and centering it on a signal. Finally, prototypes of such fiber optic chromatic dispersion and dispersion slope compensation filters were manufactured and characterized. The device and system characterization of the prototypes is presented and discussed
Asraf, Daniel. "Optimal Detectors for Transient Signal Families and Nonlinear Sensors : Derivations and Applications." Doctoral thesis, Uppsala : Signals and systems [Signaler och system], Univ.-bibl. [distributör], 2003. http://publications.uu.se/theses/91-506-1664-1/.
Full textPessoa, Lucio Flavio Cavalcanti. "Nonlinear systems and neural networks with hybrid morphological/rank/linear nodes : optimal design and applications to image processing and pattern recognition." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/13519.
Full textFernandez, de Jauregui Ruiz Ivan. "Advanced modulation formats and nonlinear mitigation for spectral efficient optical transmission systems." Thesis, Evry, Institut national des télécommunications, 2018. http://www.theses.fr/2018TELE0009/document.
Full textGlobal data traffic is expected to reach up to 4.3 ZB per year by 2020. With the majority of the global communications being transported on submarine point-to-point fiber-optic systems, different cutting-edge technologies have been under research to cope with this unprecedented traffic growth. Continuous advances in high-speed integrated circuits have allowed the use of advanced modulation formats and digital signal processing (DSP) techniques to maximize the transmission spectral efficiency. With mitigation of fiber linear effects efficiently carried out by DSP with relative low-complexity, the capacity of modern fiber optic systems rests limited by fiber nonlinearities. To this extent, in the first part of this work, the performance and achievable benefits of low-complexity DSP techniques aiming to mitigate fiber Kerr nonlinear effects are investigated. Besides nonlinear compensation techniques, the use of multi-level modulation formats beyond 16QAM and high symbol rate channels have gained momentum to increase the system spectral efficiency. One of the major breakthroughs in the recent years, has been the introduction of QAM-based probabilistic constellation shaping (PCS-QAM), which has proven to outperform regular QAM formats. In this sense, in the second part of this work, the practical achievable rate increase brought by PCS-QAM for transoceanic distances is investigated. A theoretical and experimental comparison with other high-capacity formats is performed, and the design of a PCS-QAM for trans-Pacific distances is addressed. Finally, in the last section, several transmission records using the two above techniques are reported
Rankine, Luke. "Newborn EEG seizure detection using adaptive time-frequency signal processing." Queensland University of Technology, 2006. http://eprints.qut.edu.au/16200/.
Full textSerna, Otálvaro Samuel Felipe. "Design and characterization of Silicon Photonic structures for third order nonlinear effects." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS409/document.
Full textAll-optical signal processing implemented in silicon photonics is considered as a promising route to solve several bottlenecks for the realization of future dense and mixed integrated electronic and photonic chips including ultrahigh data bit rate issues and power consumption constraints. In the context of the planar silicon photonics technology, a dramatic reduction of the needed power to reach optical nonlinear effects is obtained due to the sub-micrometer size of silicon wires (~450nmX260nm) in the telecommunication wavelength window, although silicon does not exhibit second-order response (χ^((2))) due to the centrosymmetry of its lattice. Moreover, third-order effects (χ^((3))) are partially spoiled in this material due to the strength of the two-photon-absorption (TPA) effect, which in turn generates free-carriers inducing additional absorption and refractive index changes. One way to overcome this limitation is the hybrid integration on silicon of low index soft materials with luminescence or nonlinear optical properties lacking to silicon. In this context, the present work is devoted to the study of third order nonlinearities in silicon-based integrated structures exploiting enhanced electromagnetic field effects (e.g. in Si resonators and slow light waveguides). First, we have developed a dedicated single beam non-destructive method to characterize the instantaneous third order effects though the quantification of complex effective waveguide susceptibility. The method is named “Bi-directional top-hat D-Scan” and consists on a temporal analogous of the top-hat Z-Scan. We have established an analytical and numerical model and we report the first measurement of a silicon waveguide by using a pulse shaping set-up and a bi-directional procedure. The originality of our methods stands in the capability to measure in two steps : the 3rd order nonlinear Figure-Of-Merit (FOM) independently of the injection losses, and the effective nonlinear waveguide parameters (Kerr and TPA) taking into account measured coupling losses at each facet. Furthermore, we apply the method to other integrated novel materials including Ge-rich GeSi alloys, carbon nanotube doped thin films, and chalcogenide waveguides. Additionally, two further enhancements of light-matter nonlinear interactions have been explored within this work: optical microcavities and slow light waveguides. In the first picture, index variations caused by non-linearities shift the resonance frequencies precluding the coincidence with the excitation signal frequency, thereby decreasing the injection efficiency. In order to maintain the benefit of light localization throughout the pulsed excitation, we have experimentally and numerically studied the behavior of a designed and fabricated silicon nanobeam cavity excited by a high power tailored chirped pulse whose spectral phase relation compensates for the nonlinear frequency drift of the cavity resonance. We report a numerical study of this first experimental demonstration of the coherent excitation of a nonlinear micro-cavity, leading to an enhanced intra-cavity nonlinear interaction. Finally, we have dedicated efforts to engineer, fabricate and characterize silicon slot photonic crystal waveguides (SPhCW) in order to compensate their strong dispersion present in the slow light regime while taking benefit from large group index light propagation. We showed that their frequency dispersion properties can be engineered from anomalous to normal dispersion, along with zero group velocity dispersion (ZGVD) crossing points exhibiting a Normalized Delay Bandwidth Product (NDBP) as high as 0.156. The reported results provide the first experimental evidence for an accurate control of the dispersion properties of fillable periodical slotted structures in silicon photonics, which is of direct interest for on-chip all-optical data treatment using nonlinear optical effects in hybrid-on-silicon technologies
Baillot, Maxime. "Mélange à quatre ondes multiple pour le traitement tout-optique du signal dans les fibres optiques non linéaires." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S068/document.
Full textFour-wave mixing is a phase-sensitive nonlinear effect that arouses interest, particularly in the fields of frequency comb generation and all-optical signal processing. As an example, frequency combs can be produced thanks to a cascaded four-wave mixing process. In this case, N waves can interact with each other through the optical Kerr effect, and one has to take into account all the possible interactions to be able to adequately model the process. During my PhD thesis, I was interested in modeling the so-called multiple four-wave mixing process, in which any number N of waves can interact with each other. I proposed a general formulation that allows to easily identify all the four-wave mixing terms originating from all the possible combinations of wave coupling and their associated phase-mismatch terms. I validated this approach through the theoretical and experimental study of a multiple four-wave mixing process in a nonlinear optical fiber. Thanks to the developed model, I then proposed a theoretical study of the phase-sensitive frequency conversion process, which permits to demultiplex the quadrature components of an optical signal. In the literature, this process was first experimentally demonstrated in several nonlinear devices using four pump waves. I demonstrated that only three pump waves were required to successfully perform the experiment, and I determined the simple analytical relations from which the adequate experimental parameters (namely, the amplitudes and phases of the pump waves) could be deduced. I finally validated this study by experimentally demonstrating a phase-sensitive frequency conversion process with only three pump waves, and I theoretically studied the influence of chromatic dispersion on the performance of this frequency converter. Finally, I characterized some chalcogenide microstructured optical fibers that were fabricated in the framework of a collaboration with Perfos, the Institut des Sciences Chimiques de Rennes, and SelenOptics. I set up a test bench based on the four-wave mixing process in order to measure the chromatic dispersion and nonlinear coefficient of some optical fibers
Amari, Abdelkerim. "Compensation des effets nonlinéaires pour les transmissions WDM longue distance à 400Gbps et au-delà." Thesis, Paris, ENST, 2016. http://www.theses.fr/2016ENST0031/document.
Full textOptical communication systems have evolved since their deployment to meet the growing demand for high-speed communications. Over the past decades, the global demand for communication capacity has increased exponentially and the most of the growth has occurred in the last few years when data started dominating network traffic. In order to meet the increase of traffic demands fueled by the growth of internet services, an increase of access network capacity and consequently metro and long-haul network capacities is required. Next generation of long-haul WDM transmission systems is expected to operate at 400Gbps or 1Tbps bit rate. Superchannel approaches, such as Nyquist WDM and multi-band OFDM, allow both high spectral efficiency and small guardband which makes them promising candidates to generate these high bit rates in combination with multi-level modulations formats. Such transmission systems are strongly disturbed by fiber nonlinear effects which increase with the data rate and the small guard band. Therefore, fiber nonlinearities compensation is required to get the desired performance in terms of transmission reach. DSP based approaches such as digital back propagation and third-order Volterra based nonlinear equalizer have been already proposed to deal with intra-channel or intra-band nonlinear effects. In the context of superchannel systems, we have proposed two new compensation techniques to deal with fiber nonlinear effects. The first one, called fifth-order inverse Volterra based nonlinear equalizer, compensate for intra-band nonlinear effects. The second approach, which is the interband/ subcarrier nonlinear interference canceler, is proposed to combat the nonlinear interference insuperchannel systems
Ahlström, Christer. "Nonlinear phonocardiographic Signal Processing." Doctoral thesis, Linköpings universitet, Fysiologisk mätteknik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11302.
Full textWallace, Angus Keith, and wallace angus@gmail com. "Epilepsy research using nonlinear signal processing." Flinders University. Computer Science, Engineering and Mathematics, 2008. http://catalogue.flinders.edu.au./local/adt/public/adt-SFU20081124.210552.
Full textLittle, M. A. "Biomechanically informed nonlinear speech signal processing." Thesis, University of Oxford, 2007. http://ora.ox.ac.uk/objects/uuid:6f5b84fb-ab0b-42e1-9ac2-5f6acc9c5b80.
Full textHan, Yichen. "All-optical Microwave Signal Processing." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20234.
Full textDavison, Alan Stephen. "All-optical signal processing devices." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316729.
Full textAlbuquerque, André Antunes de Carvalho. "All-optical signal processing for optical communication systems." Doctoral thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/23624.
Full textO processamento ótico de sinal é uma alternativa possível para melhorar o desempenho e eficiência de sistemas de comunicações óticas, mas o seu estágio atual de desenvolvimento é ainda insuficiente para aplicações em sistemas reais. De forma a inverter esta situação, novas estratégias e pos-sibilidades para processamento ótico de sinal são aqui investigadas, com ênfase em conversão de comprimento de onda, regeneração de fase e amplificação sensível à fase em dispositivos de niobato de lítio com inversão periódica dos domínios ferroelétricos e fibras fortemente não-lineares. Um novo método para o desenho do perfil de inversão dos domínios fer¬roelétricos nos dispositivos de niobato de lítio de acordo com um espetro de conversão alvo é investigado nesta tese. O método proposto é validado numericamente e através da produção de um dispositivo real com largura de banda de conversão de 400 GHz. O dispositivo produzido é utilizado para conversão de onda multicanal de oito sinais modulados em fase, com a possibilidade adicional de sintonizar o comprimento de onda dos sinais con¬vertidos. Observa-se a existência de um compromisso entre elevada largura de banda de conversão e eficiência do dispositivo. São também investigadas nesta tese conversão e permuta de comprimento de onda tolerantes ao ruído de fase adicionado por fontes de bombeamento. Demonstra-se neste trabalho que a utilização de fontes de bombeamento coerentes permite evitar a adição de ruído de fase aos sinais convertidos. Nesta tese é também analisada analítica e numericamente amplificação sensível a fase baseada em dispositivos de niobato de lítio com inversão periódica dos domínios ferroelétricos para configurações de amplificadores de um, dois ou quatro modos. É ainda avaliada a possibilidade de ge¬rar ondas correlacionadas e de realizar amplificação sensível a fase num único dispositivo com propagação bidirecional. Com base neste esquema, demonstra-se regeneração de fase de sinais modulados em fase, porém com ganho limitado devido à baixa eficiência de conversão dos dispositivos e com desempenho afetado por instabilidades térmicas e foto refrativas. Mo¬tivado por estas limitações, demonstra-se amplificação de elevado ganho num amplificador sensível à fase de quatro modos, construído com uma fibra fortemente não-linear em vez de um dispositivo de niobato de lítio. Por fim, é efetuada uma análise numérica do impacto de utilizar amplifica¬dores sensíveis à fase em vez de amplificadores de fibra dopada com érbio no alcance em transmissão ponto a ponto de sinais e na amplificação e regeneração em redes óticas. Demonstra-se que amplificadores sensíveis à fase são mais vantajosos para formatos de modulação avançados e siste¬mas compostos por ligações óticas longas. As simulações assumem mode¬los simplificados para o ganho e ruído dos amplificadores, bem como uma versão modificada do modelo de ruído Gaussiano para estimar a potência das distorções não-lineares em sistemas com compensação total da dispersão cromática no final de cada segmento de fibra entre amplificadores.
All-optical signal processing techniques are a possible way to improve the performance and efficiency of optical communication systems, but the cur¬rent stage of development of such techniques is still unsatisfactory for real- world implementation. In order to invert this situation, new strategies and possibilities for all-optical signal processing are investigated here, with a particular focus on wavelength conversion, phase regeneration and phase- sensitive amplification in periodically poled lithium niobate waveguides and highly nonlinear fibers. A new and flexible method to design the poling pattern of periodically poled lithium niobate devices according to a target conversion spectrum is inves¬tigated in this work. The proposed method is validated through numerical simulations and by producing a real device with broad conversion bandwidth of 400 GHz. The device is then used for multichannel wavelength conversion of eight phase-modulated signals, with the additional possibility to tune the wavelength of the converted signals. A trade-off between high conversion bandwidth and conversion efficiency is observed. Advanced wavelength conversion and wavelength exchange tolerant to the phase noise added by the pump lasers are also investigated. It is shown that the additional phase noise transferred to the converted signals is eliminated by using coherent pumps, generated from the same light source. Phase-sensitive amplification based on periodically poled lithium niobate devices is also investigated in this thesis by numerically comparing the gain properties for one-, two- and four-mode configurations. The possibility to si¬multaneously generate correlated waves and observe phase-sensitive amplifi¬cation in a single device with bidirectional propagation is also demonstrated. Using such scheme,"black-box" phase regeneration of phase-encoded sig¬nals is experimentally demonstrated, albeit with limited net gain due to the low conversion efficiency of the device, and the limited reliability due to thermal and photorefractive instabilities. Motivated by such limitations, high-gain amplification in a four-mode phase-sensitive amplifier built with a highly nonlinear fiber instead of a periodically poled lithium niobate is demonstrated. Finally, the impact of using phase-sensitive amplifiers instead of common erbium-doped fiber amplifiers on the reach in point-to-point transmission and on the amplification and regeneration requirements in optical transport networks is numerically investigated. The calculations show that phase- sensitive amplifiers are particularly advantageous when considering high- order modulation formats and for transport networks comprised by long links. The numerical simulations are performed using simplified models for the gain and noise properties of the amplifiers, and a modified enhanced Gaussian noise model to estimate the power of the nonlinear distortions in systems with full dispersion compensation at the end of each span of fiber.
Voronenko, Sergej Olegovic. "Nonlinear signal processing by noisy spiking neurons." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/18793.
Full textNeurons are excitable cells which communicate with each other via electrical signals. In general, these signals are processed by the Neurons in a nonlinear fashion, the exact mathematical description of which is still an open problem in neuroscience. In this thesis, the broad topic of nonlinear signal processing is approached from two directions. The first part of the thesis is devoted to the question how input signals modulate the neural response. The second part of the thesis is concerned with the nonlinear reconstruction of input signals from the neural output and with the estimation of the amount of the transmitted information. The results of this thesis demonstrate how existing linear theories can be extended to capture nonlinear contributions of the signal to the neural response or to incorporate nonlinear correlations into the estimation of the transmitted information. More importantly, however, our analysis demonstrates that these extensions do not merely provide small corrections to the existing linear theories but can account for qualitatively novel effects which are completely missed by the linear theories. These effects include, for example, the excitation of harmonic oscillations in the neural firing rate or the estimation of information for systems with a signal-dependent output variance.
Hussein, Ghazanfar. "Optical signal processing using photorefractive crystals." Thesis, University of Southampton, 1992. https://eprints.soton.ac.uk/396383/.
Full textDawber, W. N. "Radiofrequency analysis using optical signal processing." Thesis, University of St Andrews, 1991. http://hdl.handle.net/10023/15035.
Full textKissinger, Thomas. "Range-resolved optical interferometric signal processing." Thesis, Cranfield University, 2015. http://dspace.lib.cranfield.ac.uk/handle/1826/9598.
Full textGhauri, Farzan Naseer. "Hybrid Photonic Signal Processing." Doctoral diss., University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3233.
Full textPh.D.
Optics and Photonics
Optics and Photonics
Optics PhD
Vaughn, Mark Douglas. "Optical subcarrier multiplexed signal processing using semiconductor optical amplifiers." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/13327.
Full textLai, Ming-fai, and 黎明輝. "All-optical signal processing based on optical parametric amplification." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B41508877.
Full textLai, Ming-fai. "All-optical signal processing based on optical parametric amplification." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B41508877.
Full textEASTON, ROGER LEE JR. "TWO-DIMENSIONAL SIGNAL PROCESSING IN RADON SPACE (OPTICAL SIGNAL, IMAGE PROCESSING, FOURIER TRANSFORMS)." Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/183978.
Full textSalem, Reza. "Polarization-insensitive techniques for optical signal processing." College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3947.
Full textThesis research directed by: Electrical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Weverka, Robert T. "Optical signal processing of phased array radar." Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3207762.
Full textWebb, M. R. "Millimetre wave quasi-optical signal processing systems." Thesis, University of St Andrews, 1993. http://hdl.handle.net/10023/2827.
Full textNaulleau, Patrick. "Optical signal processing and real world applications /." Online version of thesis, 1993. http://hdl.handle.net/1850/12136.
Full textFlinn, A. R. "Optical fibres in pre-detector signal processing." Thesis, University of St Andrews, 1989. http://hdl.handle.net/10023/13599.
Full textPark, William Heuywon. "Fluorescence lifetime sensor using optical fiber and optical signal processing." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0009/MQ34107.pdf.
Full textDai, Bo. "Optical code-division multiple access system and optical signal processing." Thesis, Heriot-Watt University, 2013. http://hdl.handle.net/10399/2663.
Full textMueller, Thorsten Oliver. "Nonlinear Ultrasonics: Signal Processing Considerations and a Nonlinear Parameter for Rayleigh Waves." Thesis, Available online, Georgia Institute of Technology, 2005, 2005. http://etd.gatech.edu/theses/available/etd-09282005-114142/.
Full textKim, Jin-Yeon, Committee Member ; Qu, Jianmin, Committee Member ; Jacobs, Laurence, Committee Chair. Includes bibliographical references.