To see the other types of publications on this topic, follow the link: Nonlinear optics at surfaces.

Journal articles on the topic 'Nonlinear optics at surfaces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nonlinear optics at surfaces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Shen, Y. R. "Surfaces probed by nonlinear optics." Surface Science 299-300 (January 1994): 551–62. http://dx.doi.org/10.1016/0039-6028(94)90681-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dick, Bernhard, Alfred Gierulski, and Gerd Marowsky. "Nonlinear Optics at Solid State Surfaces." Berichte der Bunsengesellschaft für physikalische Chemie 89, no. 3 (1985): 346–48. http://dx.doi.org/10.1002/bbpc.19850890349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liebsch, A. "Nonlinear optics from surfaces and interfaces." Surface Science 307-309 (April 1994): 1007–16. http://dx.doi.org/10.1016/0039-6028(94)91532-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Raghunathan, Varun, Jayanta Deka, Sruti Menon, Rabindra Biswas, and Lal Krishna A.S. "Nonlinear Optics in Dielectric Guided-Mode Resonant Structures and Resonant Metasurfaces." Micromachines 11, no. 4 (2020): 449. http://dx.doi.org/10.3390/mi11040449.

Full text
Abstract:
Nonlinear optics is an important area of photonics research for realizing active optical functionalities such as light emission, frequency conversion, and ultrafast optical switching for applications in optical communication, material processing, precision measurements, spectroscopic sensing and label-free biological imaging. An emerging topic in nonlinear optics research is to realize high efficiency optical functionalities in ultra-small, sub-wavelength length scale structures by leveraging interesting optical resonances in surface relief metasurfaces. Such artificial surfaces can be enginee
APA, Harvard, Vancouver, ISO, and other styles
5

Jordan, C., G. Marowsky, R. Buhleier, et al. "Silicon Surface Nonlinear Optics." Materials Science Forum 173-174 (September 1994): 153–58. http://dx.doi.org/10.4028/www.scientific.net/msf.173-174.153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shen, Y. R. "Surface nonlinear optics [Invited]." Journal of the Optical Society of America B 28, no. 12 (2011): A56. http://dx.doi.org/10.1364/josab.28.000a56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kauranen, Martti, Thierry Verbiest, Sven van Elshocht, and André Persoons. "Chirality in surface nonlinear optics." Optical Materials 9, no. 1-4 (1998): 286–94. http://dx.doi.org/10.1016/s0925-3467(97)00125-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brodskii, A. M. "Nonlinear optics of metal surface." physica status solidi (b) 134, no. 1 (1986): 251–56. http://dx.doi.org/10.1002/pssb.2221340130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aktsipetrov, O. A. "Surface nonlinear optics and nonlinear magneto-optics at Moscow State University [Invited]." Journal of the Optical Society of America B 28, no. 12 (2011): A27. http://dx.doi.org/10.1364/josab.28.000a27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kirilyuk, Andrei. "Nonlinear optics in application to magnetic surfaces and thin films." Journal of Physics D: Applied Physics 35, no. 21 (2002): R189—R207. http://dx.doi.org/10.1088/0022-3727/35/21/202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Renger, Jan, Romain Quidant, and Lukas Novotny. "Enhanced nonlinear response from metal surfaces." Optics Express 19, no. 3 (2011): 1777. http://dx.doi.org/10.1364/oe.19.001777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Vigoureux, J. M., and D. Courjon. "Evanescent Wave Mixing on Nonlinear Surfaces." Journal of Modern Optics 36, no. 12 (1989): 1575–80. http://dx.doi.org/10.1080/09500348914551691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

SMOLYANINOV, IGOR. "NONLINEAR NANO-OPTICS OF SURFACE PLASMONS AT THE "PLANCK SCALE"." Modern Physics Letters B 20, no. 07 (2006): 321–42. http://dx.doi.org/10.1142/s0217984906010846.

Full text
Abstract:
Simple dimensional analysis of typical nonlinear optical phenomena in metal nanoparticles indicates that qualitatively new effects may be expected in nonlinear optics of surface plasmon polaritons. It appears that some of these effects are similar to well-known effects of quantum gravitational theory.
APA, Harvard, Vancouver, ISO, and other styles
14

Shen, Y. R. "Nonlinear optical studies of surfaces." Applied Physics A Solids and Surfaces 59, no. 5 (1994): 541–43. http://dx.doi.org/10.1007/bf00348272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Mishina, E. D., A. I. Morosov, Q. K. Yu, S. Nakabayashi, and T. Rasing. "Nonlinear optics for surface phase transitions." Applied Physics B 74, no. 7-8 (2002): 765–75. http://dx.doi.org/10.1007/s00340-002-0922-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Shen, Y. R. "Surface nonlinear optics: a historical perspective." IEEE Journal of Selected Topics in Quantum Electronics 6, no. 6 (2000): 1375–79. http://dx.doi.org/10.1109/2944.902191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lozovik, Yu E., S. P. Merkulova, M. M. Nazarov, A. P. Shkurinov, and P. Masselin. "Time-resolved nonlinear surface plasmon optics." Journal of Experimental and Theoretical Physics Letters 75, no. 9 (2002): 461–64. http://dx.doi.org/10.1134/1.1494042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Whitesell, James K., and Hye Kyung Chang. "Surface Oriented Polymers for Nonlinear Optics." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 240, no. 1 (1994): 251–58. http://dx.doi.org/10.1080/10587259408029736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bloembergen, N. "Surface nonlinear optics: a historical overview." Applied Physics B: Lasers and Optics 68, no. 3 (1999): 289–93. http://dx.doi.org/10.1007/s003400050621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hicks, J. M., and T. Petralli-Mallow. "Nonlinear optics of chiral surface systems." Applied Physics B: Lasers and Optics 68, no. 3 (1999): 589–93. http://dx.doi.org/10.1007/s003400050669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Rasing, Th, and Y. R. Shen. "Interface Studies with Nonlinear Optics." MRS Bulletin 13, no. 7 (1988): 28–30. http://dx.doi.org/10.1557/s0883769400065234.

Full text
Abstract:
The importance of interfaces for material science and electronic devices has stimulated great interest in the development of surface analytical tools. Among them, modern optical techniques using lasers have attracted the most attention in recent years. They have the advantage of being applicable to all interfaces accessible by light, and the high temporal, spatial, and spectral resolutions offer unique opportunities for studying ultrafast molecular dynamics and other transient phenomena at interfaces. Optical second harmonic generation (SHG) and sum-frequency generation (SFG) are particularly
APA, Harvard, Vancouver, ISO, and other styles
22

Balzer, F., and H. G. Rubahn. "Third-order nonlinear optics of Na clusters bound to dielectric surfaces." Chemical Physics Letters 238, no. 1-3 (1995): 77–81. http://dx.doi.org/10.1016/0009-2614(95)00356-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

COELLO, VICTOR. "SURFACE PLASMON POLARITON LOCALIZATION." Surface Review and Letters 15, no. 06 (2008): 867–79. http://dx.doi.org/10.1142/s0218625x08011974.

Full text
Abstract:
Localization of surface plasmons polariton is reviewed in the context of experiments and modeling of near-field optical images. Near-field imaging of elastic (in-plane) surface plasmon scattering is discussed, and approaches for the correct image interpretation are outlined. Nonlinear effects related to localized surface plasmons are pressented. Surface plasmon localization opens up numerous possibilities for application in biosensing, nanophotonics, and in general in the area of surface optics properties.
APA, Harvard, Vancouver, ISO, and other styles
24

SHEN, Y. R. "NONLINEAR OPTICAL STUDIES OF POLYMER INTERFACES." Journal of Nonlinear Optical Physics & Materials 03, no. 04 (1994): 459–68. http://dx.doi.org/10.1142/s0218199194000250.

Full text
Abstract:
Second-order nonlinear optical processes can be used as effective surface probes. They can provide some unique opportunities for studies of polymer interfaces. Here we describe two examples to illustrate the potential of the techniques. One is on the formation of metal/polymer interfaces. The other is on the alignment of liquid crystal films by mechanically rubbed polymer surfaces.
APA, Harvard, Vancouver, ISO, and other styles
25

Adles, E. J., and D. E. Aspnes. "The anisotropic bond model of nonlinear optics." physica status solidi (a) 205, no. 4 (2008): 728–31. http://dx.doi.org/10.1002/pssa.200777846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Wu, Xiaoqin, and Limin Tong. "Optical microfibers and nanofibers." Nanophotonics 2, no. 5-6 (2013): 407–28. http://dx.doi.org/10.1515/nanoph-2013-0033.

Full text
Abstract:
AbstractAs a combination of fiber optics and nanotechnology, optical microfibers and nanofibers (MNFs) have been emerging as a novel platform for exploring fiber-optic technology on the micro/nanoscale. Typically, MNFs taper drawn from glass optical fibers or bulk glasses show excellent surface smoothness, high homogeneity in diameter and integrity, which bestows these tiny optical fibers with low waveguiding losses and outstanding mechanical properties. Benefitting from their wavelength- or sub-wavelength-scale transverse dimensions, waveguiding MNFs exhibit a number of interesting properties
APA, Harvard, Vancouver, ISO, and other styles
27

Chen, Shumei, Guixin Li, Kok Wai Cheah, Thomas Zentgraf, and Shuang Zhang. "Controlling the phase of optical nonlinearity with plasmonic metasurfaces." Nanophotonics 7, no. 6 (2018): 1013–24. http://dx.doi.org/10.1515/nanoph-2018-0011.

Full text
Abstract:
AbstractMetasurfaces are ultrathin structured surfaces that are capable of manipulating the propagation of light in an arbitrary manner. It has been endowed with various functionalities ranging from imaging to holography. In contrast to linear optical processes, the control of wave propagation and diffraction over nonlinear optical processes such as harmonic generations had been much more limited until recently, when the concept of metasurfaces was extended from linear optics to the nonlinear optical regime for manipulating the generation of harmonic signals in an unprecedented level. The key
APA, Harvard, Vancouver, ISO, and other styles
28

Valero-Valdés, Carlos. "Singular geometrical optics for differential operators on surfaces." Journal of Mathematical Physics 62, no. 2 (2021): 021508. http://dx.doi.org/10.1063/5.0028955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lohner, F. P., and A. A. Villaeys. "Nonlinear optical properties of metallic surfaces." Applied Surface Science 138-139 (January 1999): 325–29. http://dx.doi.org/10.1016/s0169-4332(98)00426-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Palomba, Stefano, Hayk Harutyunyan, Jan Renger, Romain Quidant, Niek F. van Hulst, and Lukas Novotny. "Nonlinear plasmonics at planar metal surfaces." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1950 (2011): 3497–509. http://dx.doi.org/10.1098/rsta.2011.0100.

Full text
Abstract:
We investigate the nonlinear optical response of a noble metal surface. We derive the components of the third-order nonlinear susceptibility and determine an absolute value of χ (3) ≈0.2 nm 2 V −2 , a value that is more than two orders of magnitude larger than the values found for typical nonlinear laser crystals. Using nonlinear four-wave mixing (4WM) with incident laser pulses of frequencies ω 1 and ω 2 , we generate fields oscillating at the nonlinear frequency ω 4WM =2 ω 1 − ω 2 . We identify and discuss three distinct regimes: (i) a regime where the 4WM field is propagating, (ii) a regime
APA, Harvard, Vancouver, ISO, and other styles
31

Bisadi, Z., M. Mancinelli, S. Manna, et al. "Silicon nanocrystals for nonlinear optics and secure communications." physica status solidi (a) 212, no. 12 (2015): 2659–71. http://dx.doi.org/10.1002/pssa.201532528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Prylepa, A., C. Reitböck, M. Cobet, et al. "Material characterisation with methods of nonlinear optics." Journal of Physics D: Applied Physics 51, no. 4 (2018): 043001. http://dx.doi.org/10.1088/1361-6463/aa9df4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Haerri, H. P., Q. Tang, B. Tieke, and S. Zahir. "IR analysis of Langmuir-Blodgett films for nonlinear optics." Thin Solid Films 210-211 (April 1992): 234–36. http://dx.doi.org/10.1016/0040-6090(92)90221-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lundqvist, S. "Nonlocal and nonlinear electromagnetic effects at surfaces." International Journal of Quantum Chemistry 35, no. 6 (1989): 827–38. http://dx.doi.org/10.1002/qua.560350618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

MURUGESH, S., and M. LAKSHMANAN. "NONLINEAR DYNAMICS OF MOVING CURVES AND SURFACES: APPLICATIONS TO PHYSICAL SYSTEMS." International Journal of Bifurcation and Chaos 15, no. 01 (2005): 51–63. http://dx.doi.org/10.1142/s0218127405012004.

Full text
Abstract:
The subject of moving curves (and surfaces) in three-dimensional space (3-D) is a fascinating topic not only because it represents typical nonlinear dynamical systems in classical mechanics, but also finds important applications in a variety of physical problems in different disciplines. Making use of the underlying geometry, one can very often relate the associated evolution equations to many interesting nonlinear evolution equations, including soliton possessing nonlinear dynamical systems. Typical examples include dynamics of filament vortices in ordinary and superfluids, spin systems, phas
APA, Harvard, Vancouver, ISO, and other styles
36

Yu, Dong, Ali Gharavi, and Luping Yu. "Novel Aromatic Polyimides for Nonlinear Optics." Journal of the American Chemical Society 117, no. 47 (1995): 11680–86. http://dx.doi.org/10.1021/ja00152a008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Salam, A., and D. A. Micha. "Nonlinear optical response of metal surfaces with adsorbed molecules." International Journal of Quantum Chemistry 75, no. 4-5 (1999): 429–39. http://dx.doi.org/10.1002/(sici)1097-461x(1999)75:4/5<429::aid-qua9>3.0.co;2-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

KOTANI, Masahiro. "Application of nonlinear optics to the surface study." Hyomen Kagaku 10, no. 11 (1989): 901–7. http://dx.doi.org/10.1380/jsssj.10.901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Coulombel, Jean-François, and Mark Williams. "Geometric Optics for Surface Waves in Nonlinear Elasticity." Memoirs of the American Mathematical Society 263, no. 1271 (2020): 0. http://dx.doi.org/10.1090/memo/1271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Marcou, Alice. "Rigorous weakly nonlinear geometric optics for surface waves." Asymptotic Analysis 69, no. 3-4 (2010): 125–74. http://dx.doi.org/10.3233/asy-2010-0996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Veenstra, K. J., A. V. Petukhov, A. P. de Boer, and Th Rasing. "Phase-sensitive detection technique for surface nonlinear optics." Physical Review B 58, no. 24 (1998): R16020—R16023. http://dx.doi.org/10.1103/physrevb.58.r16020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Liu, Xiaojun, Alec Rose, Ekaterina Poutrina, Cristian Ciracì, Stéphane Larouche, and David R. Smith. "Surfaces, films, and multilayers for compact nonlinear plasmonics." Journal of the Optical Society of America B 30, no. 11 (2013): 2999. http://dx.doi.org/10.1364/josab.30.002999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Wang, Sasa, Yunpeng Yao, Jintao Kong, et al. "Highly efficient white-light emission in a polar two-dimensional hybrid perovskite." Chemical Communications 54, no. 32 (2018): 4053–56. http://dx.doi.org/10.1039/c8cc01663a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Singh, Rajendra K., James O. Stoffer, Tony D. Flaim, David B. Hall, and John M. Torkelson. "Monohydroxy-hydrazone-functionalized thermally crosslinked polymers for nonlinear optics." Journal of Applied Polymer Science 92, no. 2 (2004): 770–81. http://dx.doi.org/10.1002/app.13309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zhang, Lingzhi, Zhigang Cai, Qingshui Yu, and Zhaoxi Liang. "Photocrosslinked polymer and interpenetrating polymer network for nonlinear optics." Journal of Applied Polymer Science 71, no. 7 (1999): 1081–87. http://dx.doi.org/10.1002/(sici)1097-4628(19990214)71:7<1081::aid-app6>3.0.co;2-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Choi, Dong Hoon, Sangyup Song, Taek Seung Lee, Soo Young Park, and Nakjoong Kim. "Thermally stable maleimide copolymer for second-order nonlinear optics." Journal of Applied Polymer Science 59, no. 1 (1996): 9–14. http://dx.doi.org/10.1002/(sici)1097-4628(19960103)59:1<9::aid-app2>3.0.co;2-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Powell, Clem E., Marie P. Cifuentes, Joseph P. Morrall, et al. "Organometallic Complexes for Nonlinear Optics. 30.1Electrochromic Linear and Nonlinear Optical Properties of Alkynylbis(diphosphine)ruthenium Complexes." Journal of the American Chemical Society 125, no. 2 (2003): 602–10. http://dx.doi.org/10.1021/ja0277125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wirp, A., C. Bäumer, H. Hesse, D. Kip, and E. Krätzig. "Magnesium-doped near-stoichiometric lithium tantalate crystals for nonlinear optics." physica status solidi (a) 202, no. 6 (2005): 1120–23. http://dx.doi.org/10.1002/pssa.200420009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Mäkitalo, Jouni, Saku Suuriniemi, and Martti Kauranen. "Boundary element method for surface nonlinear optics of nanoparticles." Optics Express 19, no. 23 (2011): 23386. http://dx.doi.org/10.1364/oe.19.023386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zhang, Xueyue, Qi-Tao Cao, Zhuo Wang, et al. "Symmetry-breaking-induced nonlinear optics at a microcavity surface." Nature Photonics 13, no. 1 (2018): 21–24. http://dx.doi.org/10.1038/s41566-018-0297-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!