To see the other types of publications on this topic, follow the link: Nonlinear optics.

Journal articles on the topic 'Nonlinear optics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nonlinear optics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zhang, Zhongmian, Dazhi Lu, Haohai Yu, Huaijin Zhang, and Yicheng Wu. "Nonlinear Cherenkov radiation in rotatory nonlinear optics." Chinese Optics Letters 23, no. 4 (2025): 041901. https://doi.org/10.3788/col202523.041901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fabelinskii, Immanuil L. "Nonlinear optics." Uspekhi Fizicheskih Nauk 154, no. 4 (1988): 703. http://dx.doi.org/10.3367/ufnr.0154.198804g.0703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

YAJIMA, TATSUO. "Nonlinear optics." Review of Laser Engineering 21, no. 1 (1993): 133–35. http://dx.doi.org/10.2184/lsj.21.133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

KOBAYASHI, TAKAYOSHI. "Nonlinear Optics." Sen'i Gakkaishi 45, no. 2 (1989): P68—P76. http://dx.doi.org/10.2115/fiber.45.p68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fleischer, Jason W., Dragomir N. Neshev, Guy Bartal, et al. "Nonlinear Optics." Optics and Photonics News 15, no. 12 (2004): 30. http://dx.doi.org/10.1364/opn.15.12.000030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baluq, Mihaela, Joel Hales, David J. Hagan, et al. "Nonlinear Optics." Optics and Photonics News 16, no. 12 (2005): 28. http://dx.doi.org/10.1364/opn.16.12.000028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fabelinskiĭ, Immanuil L. "Nonlinear optics." Soviet Physics Uspekhi 31, no. 4 (1988): 380–81. http://dx.doi.org/10.1070/pu1988v031n04abeh005758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Moloney, Jerome V., and Alan C. Newell. "Nonlinear optics." Physica D: Nonlinear Phenomena 44, no. 1-2 (1990): 1–37. http://dx.doi.org/10.1016/0167-2789(90)90045-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ferguson, A. I. "Nonlinear Optics." Journal of Modern Optics 39, no. 11 (1992): 2375. http://dx.doi.org/10.1080/09500349214552381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Firth, W. J. "Nonlinear Optics." Journal of Modern Optics 40, no. 5 (1993): 967–68. http://dx.doi.org/10.1080/09500349314551011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Sauter, E. G., and Christos Flytzanis. "Nonlinear Optics." Physics Today 51, no. 1 (1998): 64–65. http://dx.doi.org/10.1063/1.882109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bruno, E. Schmidt, Philippe Lassonde, Guilmot Ernotte, et al. "Linearizing Nonlinear Optics." EPJ Web of Conferences 205 (2019): 01007. http://dx.doi.org/10.1051/epjconf/201920501007.

Full text
Abstract:
Fourier nonlinear optics merges the simplicity of linear optics with the power of nonlinear optics to achieve a decoupling of frequencies, amplitudes and phases in nonlinear processes - enabling first deep UV shaping at 207nm.
APA, Harvard, Vancouver, ISO, and other styles
13

Vysloukh, V. A. "Nonlinear fiber optics." Uspekhi Fizicheskih Nauk 160, no. 5 (1990): 151. http://dx.doi.org/10.3367/ufnr.0160.199005k.0151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Soskin, M. S., and M. V. Vasnetsov. "Nonlinear singular optics." Pure and Applied Optics: Journal of the European Optical Society Part A 7, no. 2 (1998): 301–11. http://dx.doi.org/10.1088/0963-9659/7/2/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Anderson, Brian P., and Pierre Meystre. "Nonlinear atom optics." Contemporary Physics 44, no. 6 (2003): 473–83. http://dx.doi.org/10.1080/00107510310001608863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

de Michel, Marc, and Dan Ostrowsky. "Nonlinear integrated optics." Physics World 3, no. 3 (1990): 56–62. http://dx.doi.org/10.1088/2058-7058/3/3/28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Anderson, Brian P., and Pierre Meystre. "Nonlinear Atom Optics." Optics and Photonics News 13, no. 6 (2002): 20. http://dx.doi.org/10.1364/opn.13.6.000020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Vysloukh, Victor A. "Nonlinear fiber optics." Soviet Physics Uspekhi 33, no. 5 (1990): 400. http://dx.doi.org/10.1070/pu1990v033n05abeh002596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lenz, G., P. Meystre, and E. M. Wright. "Nonlinear atom optics." Physical Review Letters 71, no. 20 (1993): 3271–74. http://dx.doi.org/10.1103/physrevlett.71.3271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Rasing, Th. "Nonlinear magneto-optics." Journal of Magnetism and Magnetic Materials 175, no. 1-2 (1997): 35–50. http://dx.doi.org/10.1016/s0304-8853(97)00175-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Stegeman, George I., and Colin T. Seaton. "Nonlinear integrated optics." Journal of Applied Physics 58, no. 12 (1985): R57—R78. http://dx.doi.org/10.1063/1.336205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Dalton, B. J. "Modern Nonlinear Optics." Journal of Modern Optics 41, no. 8 (1994): 1678. http://dx.doi.org/10.1080/09500349414552531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Dianov, Evgenii M., P. V. Mamyshev, and A. M. Prokhorov. "Nonlinear fiber optics." Soviet Journal of Quantum Electronics 18, no. 1 (1988): 1–15. http://dx.doi.org/10.1070/qe1988v018n01abeh010192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kreher, K. "Modern Nonlinear Optics." Zeitschrift für Physikalische Chemie 213, Part_1 (1999): 109–10. http://dx.doi.org/10.1524/zpch.1999.213.part_1.109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Feinberg, Jack. "Photorefractive Nonlinear Optics." Physics Today 41, no. 10 (1988): 46–52. http://dx.doi.org/10.1063/1.881157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Chin, S. L., F. Théberge, and W. Liu. "Filamentation nonlinear optics." Applied Physics B 86, no. 3 (2006): 477–83. http://dx.doi.org/10.1007/s00340-006-2455-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Manzoni, Cristian, and Giulio Cerullo. "Parametric nonlinear optics." Photoniques, no. 122 (2023): 46–51. http://dx.doi.org/10.1051/photon/202312246.

Full text
Abstract:
Many scientific and technological applications require the generation of broadly tunable femtosecond light pulses. Optical parametric amplifiers (OPAs) exploit second-order nonlinear interactions to convert a high-power fixed wavelength pulse (the pump) into a tunable pulse (the signal). This paper reviews the principles of OPAs and highlights their capability to generate few-optical-cycle pulses with high energy and carrier-envelope-phase stability.
APA, Harvard, Vancouver, ISO, and other styles
28

Shaikhova, G. N., N. S. Serikbayev, and S. K. Burgumbayeva. "ANALYTICAL SOLUTIONS OF THE NONLOCAL NONLINEAR SCHRÖDINGER-TYPE EQUATIONS." Herald of the Kazakh-British technical university 21, no. 3 (2024): 158–64. http://dx.doi.org/10.55452/1998-6688-2024-21-3-158-164.

Full text
Abstract:
In physics, nonlinear equations are applіed to characterize the varied phenomena. Usually, the nonlinear equations are presented by nonlinear partial differential equations, that can be received as conditions for the compatibility of two linear differentіal equations, named the Lax pairs. The presence of the Lax pair determines integrability for the nonlinear partial differentіal equation. Linked to this development was the realization that certаіn coherent structures, known as solіtons, which play a fundamental role in nonlinear phenomena as lattice dynamics, nonlinear optіcs, and fluіd mecha
APA, Harvard, Vancouver, ISO, and other styles
29

Meredith, Gerald R. "Organic Materials for Nonlinear Optics." MRS Bulletin 13, no. 8 (1988): 24–29. http://dx.doi.org/10.1557/s0883769400064642.

Full text
Abstract:
were very exciting but speculative, being technologically feasible only if new classes of materials could be developed The subject of materials in nonlinear optics (NLO) encompasses a wide range of important topics. Today the line between materials and NLO processes has become fuzzy, particularly for newer NLO processes (e.g. photorefrac-tion, and optical bistability, logic and computing). For more established NLO processes (e.g., harmonic generation, parametric processes, linear electro-optic effect, etc.) the subjects are well studied and the importance of various materials properties on the
APA, Harvard, Vancouver, ISO, and other styles
30

SHAN, JIE, AJAY NAHATA, and TONY F. HEINZ. "TERAHERTZ TIME-DOMAIN SPECTROSCOPY BASED ON NONLINEAR OPTICS." Journal of Nonlinear Optical Physics & Materials 11, no. 01 (2002): 31–48. http://dx.doi.org/10.1142/s0218863502000845.

Full text
Abstract:
We present a brief review of the use of nonlinear optics for broadband terahertz (THz) time-domain spectroscopy with femtosecond laser pulses. The generation of THz pulses is accomplished by optical rectification and coherent detection by electro-optic sampling or field-induced second-harmonic generation. The approach permits exceptional time response, as well as the possibility for multichannel detection schemes.
APA, Harvard, Vancouver, ISO, and other styles
31

Downer, M. C. "OPTICS: A New Low for Nonlinear Optics." Science 298, no. 5592 (2002): 373–75. http://dx.doi.org/10.1126/science.1078098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Elston, Steve J. "Optics and Nonlinear Optics of Liquid Crystals." Journal of Modern Optics 41, no. 7 (1994): 1517–18. http://dx.doi.org/10.1080/09500349414551451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ackemann, Thorsten, Cornelia Denz, and Fedor Mitschke. "Dynamics in Nonlinear Optics and Quantum Optics." Applied Physics B 81, no. 7 (2005): 881–82. http://dx.doi.org/10.1007/s00340-005-2067-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sharma, Mamta. "NONLINEAR OPTICS: PROGRESS IN HIGH-INTENSITY LASER-MATTER INTERACTIONS." International Journal of Global Research Innovations & Technology 03, no. 01(II) (2025): 144–50. https://doi.org/10.62823/ijgrit/3.1(ii).7385.

Full text
Abstract:
Nonlinear optics has proved to be one of the fastest-growing areas in contemporary physics, thanks to the development of high-intensity laser systems to generate ultrashort, high-power laser pulses. The response of a material in linear optics is directly proportional to the optical field applied to it. In nonlinear optics, however, there are involved complicated interactions wherein the polarization of the medium is nonlinearly dependent on the incident light's electric field. This results in a variety of effects such as harmonic generation, self-focusing, multiphoton absorption, and optical K
APA, Harvard, Vancouver, ISO, and other styles
35

Kuzyk, Mark G. "Nonlinear Optics: Fundamental Limits of Nonlinear Susceptibilities." Optics and Photonics News 14, no. 12 (2003): 26. http://dx.doi.org/10.1364/opn.14.12.000026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Miller, Johanna L. "Nonlinear optical computing doesn’t need nonlinear optics." Physics Today 77, no. 10 (2024): 12–14. http://dx.doi.org/10.1063/pt.vbbo.lurd.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Konorov, S. O. "Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers." Optics and Spectroscopy 99, no. 1 (2005): 131. http://dx.doi.org/10.1134/1.1999905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Jordan, C., G. Marowsky, R. Buhleier, et al. "Silicon Surface Nonlinear Optics." Materials Science Forum 173-174 (September 1994): 153–58. http://dx.doi.org/10.4028/www.scientific.net/msf.173-174.153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Liu, Chao, Xiao Han, Rongchao Shi, et al. "Nonlinear optics of graphdiyne." Materials Chemistry Frontiers 5, no. 17 (2021): 6413–28. http://dx.doi.org/10.1039/d1qm00834j.

Full text
Abstract:
Graphdiyne features a high π-conjugation degree and an intrinsic natural bandgap, which guarantee a large optical refractive index and broadband absorption, and thus promises a wide range of application prospects in nonlinear optics.
APA, Harvard, Vancouver, ISO, and other styles
40

Litchinitser, Natalia M. "Nonlinear optics in metamaterials." Advances in Physics: X 3, no. 1 (2018): 1367628. http://dx.doi.org/10.1080/23746149.2017.1367628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Hübner, Wolfgang. "Magneto-optics goes nonlinear." Physics World 8, no. 10 (1995): 21–22. http://dx.doi.org/10.1088/2058-7058/8/10/23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Boyd, Robert W., and Barry R. Masters. "Nonlinear Optics, Third Edition." Journal of Biomedical Optics 14, no. 2 (2009): 029902. http://dx.doi.org/10.1117/1.3115345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ansari, Nadeem A., Colin Pask, and David R. Rowland. "Momentum in nonlinear optics." Journal of Modern Optics 47, no. 6 (2000): 993–1011. http://dx.doi.org/10.1080/09500340008233401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

A. Ansari, Colin Pask, David R. Row, Nadeem. "Momentum in nonlinear optics." Journal of Modern Optics 47, no. 6 (2000): 993–1011. http://dx.doi.org/10.1080/095003400147629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Gavrilenko, Vladimir I., Tatiana V. Murzina, and Goro Mizutani. "Nonlinear Optics of Nanostructures." Physics Research International 2012 (December 9, 2012): 1–2. http://dx.doi.org/10.1155/2012/648758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hau, Lene Vestergaard. "Nonlinear optics: Shocking superfluids." Nature Physics 3, no. 1 (2007): 13–14. http://dx.doi.org/10.1038/nphys498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Sutherland, Richard L. "Handbook of Nonlinear Optics." Optical Engineering 36, no. 3 (1997): 964. http://dx.doi.org/10.1117/1.601248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ghamsari, Behnood G., and Pierre Berini. "Nonlinear optics rules magnetism." Nature Photonics 10, no. 2 (2016): 74–75. http://dx.doi.org/10.1038/nphoton.2015.272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Donnat, Phillipe, and Jeffrey Rauch. "Dispersive nonlinear geometric optics." Journal of Mathematical Physics 38, no. 3 (1997): 1484–523. http://dx.doi.org/10.1063/1.531905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Sorokin, P. P., and J. H. Glownia. "Nonlinear optics in space." Canadian Journal of Physics 78, no. 5-6 (2000): 461–81. http://dx.doi.org/10.1139/p00-016.

Full text
Abstract:
A detailed model for nonlinear photoexcitation of H2 in space is proposed and considered at length. It is shown that, on the basis of this model, one is able to provide at least partial explanations for three famous astrophysical spectral mysteries pertaining to our galaxy. These concern the carrier identities of the Diffuse Interstellar (Absorption) Bands (DIBs), the Unidentified Infrared (Emission) Bands (UIBs), and the visible bands emitted by the Red Rectangle nebula.PACS Nos.: 95.30Gv, 33.70-w
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!