To see the other types of publications on this topic, follow the link: Nonlinear oscillation.

Dissertations / Theses on the topic 'Nonlinear oscillation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Nonlinear oscillation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Lawrence, Jason William. "Crane Oscillation Control: Nonlinear Elements and Educational Improvements." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-07072006-175615/.

Full text
Abstract:
Thesis (Ph. D.)--Mechanical Engineering, Georgia Institute of Technology, 2007.
William Singhose, Committee Chair ; Steven Danyluk, Committee Member ; Donna Llewellyn, Committee Member ; Nader Sadegh, Committee Member ; Neil Singer, Committee Member.
APA, Harvard, Vancouver, ISO, and other styles
2

Sugiyama, Masahiro Ph D. Massachusetts Institute of Technology. "The Madden-Julian oscillation and nonlinear moisture modes." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/42924.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2008.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 231-245).
The Madden-Julian oscillation (MJO), the dominant tropical intraseasonal variability with widespread meteorological impacts, continues to puzzle the climate research community on both theoretical and modeling fronts. Motivated by a recent interest in the role of humidity in tropical dynamics, this thesis hypothesizes that the MJO is a nonlinear moisture mode whose existence depends on moisture-convection feedback (the feedback between deep convection and environmental free-tropospheric humidity), and that weak moisture convection feedback in general circulation models accounts for their deficiencies with the MJO simulations. Moisture modes are found to exist in a large class of linear primitive equation models on the equatorial beta-plane. For models with standard quasi-equilibrium parameterizations,perturbation expansion analyses demonstrate that the weak temperature gradient (WTG) approximation of Sobel et al. describes the small-scale limit of the moisture mode accurately,with the small expansion parameter being the ratio between temperature tendency and adiabatic cooling. Under the WTG balance, the only leading order variables are humidity and vertical motion. Analyses of three models in the literature show that a moisture mode is unstable if moist static energy (MSE) sources such as cloud radiative forcing or gust-enhanced surface heat flux exceed the MSE export. Numerical calculations of a single-column model under the WTG configuration show that a realistic convective scheme can reproduce moisture mode instability. Sensitivity tests on the strength of moisture-convection feedback in the Emanuel scheme indicate that such a feedback is essential for moisture mode instability, confirming the prediction from simple models. To explore the nonlinear regime of a moisture mode, numerical calculations of a simplified Quasi-equilibrium Tropical Circulation Model on the equatorial beta-plane have been performed.
A classical Gill model augmented with a prognostic humidity variable can capture nonlinear dynamics of the moisture mode. In particular, nonlinear advection of dry air by Rossby gyres is found to move the moisture mode eastward. Notwithstanding progress made in the present thesis, numerous difficulties abound. The most significant issue is that moisture mode instability favors the smallest scale in the linear regime. The author suggests that scale interaction and its effect on the humidity budget might be an important research topic.
by Masahiro Sugiyama.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
3

Arif, Jawad. "Nonlinear self-tuning control for power oscillation damping." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/7035.

Full text
Abstract:
Power systems exhibit nonlinear behavior especially during disturbances, necessitating the application of appropriate nonlinear control techniques. Lack of availability of accurate and updated models for the whole power system adds to the challenge. Conventional damping control design approaches consider a single operating condition of the system, which are obviously simple but tend to lack performance robustness. Objective of this research work is to design a measurement based self-tuning controller, which does not rely on accurate models and deals with nonlinearities in system response. Designed controller is required to ensure settling of inter-area oscillations within 10−12s, following disturbance such as a line outage. The neural network (NN) model is illustrated for the representation of nonlinear power systems. An optimization based algorithm, Levenberg-Marquardt (LM), for online estimation of power system dynamic behavior is proposed in batch mode to improve the model estimation. Careful study shows that the LM algorithm yields better closed loop performance, compared to conventional recursive least square (RLS) approach with the pole-shifting controller (PSC) in linear framework. Exploiting the capability of LM, a special form of neural network compatible with feedback linearization technique, is applied. Validation of the performance of proposed algorithm is done through the modeling and simulating heavy loading of transmission lines, when the nonlinearities are pronounced. Nonlinear NN model in the Feedback Linearization (FLNN) form gives better estimation than the autoregressive with an external input (ARX) form. The proposed identifier (FLNN with LM algorithm) is then tested on a 4−machine, 2−area power system in conjunction with the feedback linearization controller (FBLC) under varying operating conditions. This case study indicates that the developed closed loop strategy performs better than the linear NN with PSC. Extension of FLNN with FBLC structure in a multi-variable setup is also done. LM algorithm is successfully employed with the multi-input multi-output FLNN structure in a sliding window batch mode, and FBLC controller generates multiple control signals for FACTS. Case studies on a large scale 16−machine, 5−area power system are reported for different power flow scenarios, to prove the superiority of proposed schemes: both MIMO and MISO against a conventional model based controller. A coefficient vector for FBLC is derived, and utilized online at each time instant, to enhance the damping performance of controller, transforming into a time varying controller.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Yongfeng. "Nonlinear oscillation and control in the BZ chemical reaction." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26565.

Full text
Abstract:
Thesis (Ph.D)--Mathematics, Georgia Institute of Technology, 2009.
Committee Chair: Yi, Yingfei; Committee Member: Chow, Shui-Nee; Committee Member: Dieci, Luca; Committee Member: Verriest, Erik; Committee Member: Weiss, Howie. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
5

Kudo, Kiwamu. "Nonlinear Dynamics in Spin-Torque-Induced Magnetization Oscillation Phenomena." 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/179374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Peddle, Adam. "Components of nonlinear oscillation and optimal averaging for stiff PDEs." Thesis, University of Exeter, 2018. http://hdl.handle.net/10871/32418.

Full text
Abstract:
A novel solver which uses finite wave averaging to mitigate oscillatory stiffness is proposed and analysed. We have found that triad resonances contribute to the oscillatory stiffness of the problem and that they provide a natural way of understanding stability limits and the role averaging has on reducing stiffness. In particular, an explicit formulation of the nonlinearity gives rise to a stiffness regulator function which allows for analysis of the wave averaging. A practical application of such a solver is also presented. As this method provides large timesteps at comparable computational cost but with some additional error when compared to a full solution, it is a natural choice for the coarse solver in a Parareal-style parallel-in-time method.
APA, Harvard, Vancouver, ISO, and other styles
7

Emory, Christopher Wyatt. "Prediction of Limit Cycle Oscillation in an Aeroelastic System using Nonlinear Normal Modes." Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/30133.

Full text
Abstract:
There is a need for a nonlinear flutter analysis method capable of predicting limit cycle oscillation in aeroelastic systems. A review is conducted of analysis methods and experiments that have attempted to better understand and model limit cycle oscillation (LCO). The recently developed method of nonlinear normal modes (NNM) is investigated for LCO calculation. Nonlinear normal modes were used to analyze a spring-mass-damper system with nonlinear damping and stiffness to demonstrate the ability and limitations of the method to identify limit cycle oscillation. The nonlinear normal modes method was then applied to an aeroelastic model of a pitch-plunge airfoil with nonlinear pitch stiffness and quasi-steady aerodynamics. The asymptotic coefficient solution method successfully captured LCO at a low relative velocity. LCO was also successfully modeled for the same airfoil with an unsteady aerodynamics model with the use of a first order formulation of NNM. A linear beam model of the Goland wing with a nonlinear aerodynamic model was also studied. LCO was successfully modeled using various numbers of assumed modes for the beam. The concept of modal truncation was shown to extend to NNM. The modal coefficients were shown to identify the importance of each mode to the solution and give insight into the physical nature of the motion. The quasi-steady airfoil model was used to conduct a study on the effect of the nonlinear normal mode's master coordinate. The pitch degree of freedom, plunge degree of freedom, both linear structural mode shapes with apparent mass, and the linear flutter mode were all used as master coordinates. The master coordinates were found to have a significant influence on the accuracy of the solution and the linear flutter mode was identified as the preferred option. Galerkin and collocation coefficient solution methods were used to improve the results of the asymptotic solution method. The Galerkin method reduced the error of the solution if the correct region of integration was selected, but had very high computational cost. The collocation method improved the accuracy of the solution significantly. The computational time was low and a simple convergent iteration method was found. Thus, the collocation method was found to be the preferred method of solving for the modal coefficients.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Warren C. (Warren Chi). "A formulation of nonlinear limit cycle oscillation problems in aircraft flutter." Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/47325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Osman, Frederick, of Western Sydney Macarthur University, and Faculty of Business and Technology. "Nonlinear paraxial equation at laser plasma interaction." THESIS_FBT_XXX_Osman_F.xml, 1998. http://handle.uws.edu.au:8081/1959.7/280.

Full text
Abstract:
This thesis presents an investigation into the behaviour of a laser beam of finite diameter in a plasma with respect to forces and optical properties, which lead to self-focusing of the beam. The transient setting of ponderomotive nonlinearity in a collisionless plasma has been studied, and consequently the self- focusing of the pulse, and the focusing of the plasma wave occurs. The description of a self-focusing mechanism of laser radiation in the plasma due to nonlinear forces acting on the plasma in the lateral direction, relative to the laser has been investigated in the non-relativistic regime. The behaviour of the laser beams in plasma, which is the domain of self-focusing at high or moderate intensity, is dominated by the nonlinear force. The investigation of self-focusing processes of laser beams in plasma result from the relativistic mass and energy dependency of the refractive index at high laser intensities. Here the relativistic effects are considered to evaluate the relativistic self-focusing lenghts for the neodymium glass radiation, at different plasma densities of various laser intensities. A sequence of code in C++ has been developed to explore in depth self-focusing over a wide range of parameters. The nonlinear plasma dielectric function to relativistic electron motion will be derived in the latter part of this thesis. From that, one can obtain the nonlinear refractive index of the plasma and estimate the importance of relativistic self-focusing as compared to ponderomotive non-relativistic self-focusing, at very high laser intensities. When the laser intensity is very high, pondermotive self-focusing will be dominant. But at some point, when the oscillating velocity of the plasma electron becomes very large, relativistic effects will also play a role in self-focusing. A numerical and theoretical study of the generation and propagation of oscillation in the semiclassical limit of the nonlinear paraxial equation is presented in this thesis. In a general setting of both dimension and nonlinearity, the essential differences between the 'defocusing' and 'focusing' cases hence is identified. Presented in this thesis are the nonlinearity and dispersion effects involved in the propagation of solitions which can be understood by using a numerical routines were implemented through the use of the mathematica program, and results give a very clear idea of this interesting phenomena
Doctor of Philosophy (PhD)
APA, Harvard, Vancouver, ISO, and other styles
10

Darling, Jamie. "High power pulsed RF generation by soliton type oscillation on nonlinear lumped element transmission lines." Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

井上, 剛志, Tsuyoshi INOUE, 幸男 石田, Yukio ISHIDA, 新. 村上, and Shin MURAKAMI. "鉛直支持された磁気軸受・剛性ロータ系の非線形振動解析と実験 (制御力の遅れを考慮した場合)." 日本機械学会, 2005. http://hdl.handle.net/2237/8973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

井上, 剛志, Tsuyoshi INOUE, 幸男 石田, Yukio ISHIDA, 晋太郎 山田, and Shintarou YAMADA. "基礎励振を受ける並進・傾き連成系の振動(オートパラメトリック共振と重心高さ、偏重心、剛性差の影響)." 日本機械学会, 2006. http://hdl.handle.net/2237/8971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kim, Kiun. "Nonlinear aeroelastic analysis of aircraft wing-with-store configurations." Diss., Texas A&M University, 2004. http://hdl.handle.net/1969.1/361.

Full text
Abstract:
The author examines nonlinear aeroelastic responses of air vehicle systems. Herein, the governing equations for a cantilevered configuration are developed and the methods of analysis are explored. Based on the developed nonlinear bending-bending-torsion equations, internal resonance, which is possible in future air vehicles, and the possible cause of limit cycle oscillations of aircraft wings with stores are investigated. The nonlinear equations have three types of nonlinearities caused by wing flexibility, store geometry and aerodynamic stall, and retain up to third-order nonlinear terms. The internal resonance conditions are examined by the Method of Multiple Scales and demonstrated by time simulations. The effect of velocity change for various physical parameters and stiffness ratio is investigated through bifurcation diagrams derived from Poinar´e maps. The dominant factor causing limit cycle oscillations is the stiffness ratio between in-plane and out-of-plane motion.
APA, Harvard, Vancouver, ISO, and other styles
14

Khaled, Alhaifi. "Numerical and experimental studies of a nonlinear vibration system." Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/10545.

Full text
Abstract:
The objective of this research is to show that nonlinearity can be used to improve vibration absorption and suppression of unwanted vibrations in a main system due to external excitation. This was shown by investigating two systems a SDOF (with hardening nonlinearity) and a 2DOF (with softening nonlinearity). The aim of carrying out these investigations was to introduce a passive nonlinear system that can update itself and self-regulate to suppress undesired oscillations. To fulfil the desired gaol, various types of springs were considered and investigated. A commercially available spring called Mag-spring has been chosen and a function for its nonlinearity has been investigated. Mag-Spring is a newly invented spring which is designed to exhibit constant force at its operating range. However, this spring has a special non-linear behaviour before reaching to the constant force domain which is the main focus of the investigation presented in this thesis. The nonlinear behaviour of Mag-spring encouraged the idea that vibration design is possible by the advantages that can be gained from magnetic technology. The added benefit through this new Mag-spring, is that it solved some of the concerns assotiated with old available ones. The most concern norrowing the usage of magnetic springs, is the air gap between the two magnets, which make the attraction or repulsive force unstable through the spring’s working range. Linmot Company, introduced a solution to this concern by introducing a teflone that works as a bearing between the two magnets, which fixed the distance between them while they are sliding againest each other. In the first scenario of this study, a hardening nonlinear spring was added in parallel to a system with a single degree of freedom. The system will remain single degree of freedom as the spring was added in parallel without additional mass. The hardening spring shows low stiffness at low amplitude and high stiffness at higher amplitude. In this study, it was shown that nonlinearity affects the dynamic performance of a system and makes the natural frequency amplitude dependant. As the amplitude of vibration increases, consequently, stiffness increases and the natural frequency shifts away from the excitation frequency. For this investigation, a vibrating system with one degree of freedom has been built based on a mathematical model simulated and tested in Matlab software. Mag-spring was used to introduce the nonlinear stiffness to the system. Unbalance mass mounted to a disc fixed to a rotational machine has been used to create a forced vibration system with variable frequency. The response of the system with and without nonlinearity effect was monitored with an accelerometer. Simulation and experimental results showed that nonlinearity could shift the resonance frequency of the SDOF system by 10% (hardening of the system), without affecting the stiffness of the system at normal working condition. In the second scenario, a softening nonlinear spring was added as a vibration absorber to a system with a single degree of freedom, to make the system with two degree of freedom. The softening spring shows high stiffness at low amplitude and low stiffness at high amplitude. The rationale behind this is to introduce a spring which is hard at high frequency and soft at low frequency, which as a result will make the ratio √(k_a/m_a ) of the absorber follows the excitation frequency (ω) allowing the system to update itself and self-regulate providing vibration cancellation at more than one frequency value and widen the vibration cancellation range (ω_n2-ω_n1). It was shown that the Mag-spring could show a softening behaviour in a limited domain if its operating position is shifted. A program has been written to simulate the behaviour of all nonlinear system with two degree of freedom (nonlinear absorber). At this program, the maximum amplitude of each time domain was used to produce the frequency domain of the amplitude of the system. The amplitude of the vibration for a linear and a nonlinear absorber was compared. The results showed that the nonlinear absorber suppresses and reduces the vibration amplitude of the main system better than the linear absorbers with up to 60% reduction in magnification ratio and from 5% to 10% in widening the cancellation range (ω_n2-ω_n1). In the last scenario of this study, 4 different ideal softening stiffness curves were introduced based on theoretical methods. Their vibration response was calculated and compared to the nonlinear absorber (Mag-spring) and a linear absorber. This study shows that when nonlinearity is designed properly, it could provide a distinguished vibration cancellation response resulting more than 60% vibration cancellation improvement. This study demonstrated the possibility of developing a passive self-regulating tuned mass system involving the usage of nonlinearity. Nonlinearity will enhance the vibration cancellation by allowing the system to update itself and as a result will make the vibration absorption to be effective within a frequency range rather than single frequency unlike the classical tuned mass system. This study, to the best knowledge of the author, can be classified as an uncommon study in vibration systems investigations.
APA, Harvard, Vancouver, ISO, and other styles
15

Vermaut, Mahendra. "Flutter and forced aileron oscillation analyses of an aircraft wing including the effect of the nonlinear wing-fold hinge." Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=26434.

Full text
Abstract:
A methodology is presented to calculate the response of a wing as well as the aerodynamic forces on the wing, due to forced aileron oscillations. The purpose of oscillating the ailerons in flight is to excite the vibration modes of the wing. From vibration recordings and knowledge of the aerodynamic forces induced by the aileron oscillation, the vibration modes of the wing can be identified. Identified modes may then be compared to wing vibration modes which are calculated through aeroelastic analyses of the wing. In particular, the flutter characteristics of the wing, predicted through aeroelastic analyses, can be verified.
The flutter and forced aileron oscillation analyses are performed on the aeroelastic equations built for a finite-element model of the wing. An existing finite-element model is used. The aerodynamic forces induced by wing vibrations are calculated through the doublet-lattice method, using existing software. The flutter and forced aileron oscillation analyses are based on the modal form of the aeroelastic equations. The modal transformation and the resulting equations are rigourously outlined. A physical interpretation of the mathematical formulae is given. (Abstract shortened by UMI.)
APA, Harvard, Vancouver, ISO, and other styles
16

Agustí, Batlle Jordi. "Nonlinear micro/nano-optomechanical oscillators for energy transduction from IR sources." Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/285101.

Full text
Abstract:
En aquesta tesi es proposa un nou dispositiu que combina antenes òptiques i micro/nanoestructures mecàniques amb l'objectiu de transformar energia electromagnètica en energia mecànica. El principal objectiu de la feina realitzada és l'estudi dels mecanismes de transducció implicats. El principi de funcionament d'aquest nou dispositiu es pot resumir de la manera següent: les antenes absorbeixen la radiació electromagnètica en l'espectre infraroig i la transformen en una distribució de temperatura en l'estructura mecànica, a causa de les propietats tèrmiques del material estructural la resposta tèrmica es converteix en una deflexió mecànica que eventualment pot conduir a l'autooscil·lació del dispositiu. Donades les transformacions d'energia involucrades, el modelatge de les físiques acoblades esdevé un pas fonamental per tal de dissenyar, fabricar i caracteritzar un dispositiu de prova de concepte. La conversió d'energies es demostra que és més eficient quan el dispositiu autooscil·la. No obstant això, a causa de la naturalesa altament no lineal d'aquest fenomen, saber exactament si aquesta oscil·lació es pot aconseguir utilitzant el dispositiu de prova de concepte implica caracteritzar-lo físicament per tal d'aplicar el model desenvolupat.
In this thesis, a new device merging optical antennas and micro/nano-mechanical structures is proposed with the aim to transform electromagnetic energy into mechanical energy. The study of the involved transduction mechanisms is the main objective of the presented work. The working principle of this new device can be summarized as follows: the antennas acting as absorbers in the infrared spectrum capture the electromagnetic radiation and transform it into a temperature field in the mechanical structure. Due to the thermal properties of the structural material the thermal response is converted to a mechanical deflection which eventually can lead to the self-oscillation of the device. Given the involved energy transformations, the modeling of the coupled physics becomes a fundamental step in the path of designing, fabricating and characterizing a proof-of-concept device. The energy conversion is shown to be more efficient when the device auto-oscillates. However, due the the highly nonlinear nature of such phenomenon precisely knowing if such oscillation can be achieved using the proof-of-concept device imply its physical characterization in order to apply the developed model.
APA, Harvard, Vancouver, ISO, and other styles
17

Heim, Eugene Henry DeWendt. "Development of Methods for Improved Data Integrity and Efficient Testing of Wind Tunnel Models for Dynamic Test Conditions in Unsteady and Nonlinear Flight Regimes." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/31050.

Full text
Abstract:
Todayâ s high performance aircraft are operating in expanded flight envelopes, often maneuvering at high angular rates at high angles-of-attack, even above maximum lift. Current aerodynamic models are inadequate in predicting flight characteristics in the expanded envelope, such as rapid aircraft departures and other unusual motions. Unsteady flows of aircraft are of real concern. The ability to accurately measure aerodynamic loads directly impacts the ability to accurately model and predict flight. Current wind tunnel testing techniques do not adequately address the data fidelity of a test point under the influence of fluctuating loads and moments. Additionally, forced oscillation test techniques, one of the primary tools used to develop dynamic models, do not currently provide estimates of the uncertainty of the results during an oscillation cycle. Further, in testing models across a range of flight conditions, there are frequently parts of the envelope which are well behaved and require few data points to arrive at a sound answer, and other parts of the envelope where the responses are much more active and require a large sample of data to arrive at an answer with statistical significance. Currently, test methods do not factor changes of flow physics into data acquisition schemes, so in many cases data are obtained over more iterations than required, or insufficient data may be obtained to determine a valid estimate. Methods of providing a measure of data integrity for static and forced oscillation test techniques are presented with examples. A method for optimizing required forced oscillation cycles based on decay of uncertainty gradients and balance tolerances is also presented.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
18

Lakatos, Dominic [Verfasser], Alin [Akademischer Betreuer] Albu-Schäffer, Alin [Gutachter] Albu-Schäffer, Stefano [Gutachter] Stramigioli, and Marco [Gutachter] Hutter. "Multi-Dimensional Nonlinear Oscillation Control of Compliantly Actuated Robots / Dominic Lakatos ; Gutachter: Alin Albu-Schäffer, Stefano Stramigioli, Marco Hutter ; Betreuer: Alin Albu-Schäffer." München : Universitätsbibliothek der TU München, 2018. http://d-nb.info/1155923367/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Fragemann, Anna. "Optical parametric amplification with periodically poled KTiOPO4." Doctoral thesis, KTH, Laserfysik, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-531.

Full text
Abstract:
This thesis explores the use of engineered nonlinear crystals from the KTiOPO4 (KTP) family as the gain material in optical parametric amplifiers (OPAs), with the aim to achieve more knowledge about the benefits and limitations of these devices. The work aims further at extending the possible applications of OPAs by constructing and investigating several efficient and well performing amplifiers. An OPA consists of a strong pump source, which transfers its energy to a weak seed beam while propagating through a nonlinear crystal. The crystals employed in this work are members of the KTP family, which are attractive due to their large nonlinear coefficients, high resistance to damage and wide transparency range. The flexibility of OPAs with respect to different wavelength regions and pulse regimes was examined by employing various dissimilar seed and pump sources. The possibility to adapt an OPA to a specific pump and seed wavelength and achieve efficient energy conversion between the beams, originates from quasi-phasematching, which is achieved in periodically poled (PP) nonlinear crystals. Quasi-phasematched samples can be obtained by changing the position of certain atoms in a ferroelectric crystal and thereby reversing the spontaneous polarisation. In this thesis several material properties of PP crystals from the KTP family were examined. The wavelength and temperature dispersion of the refractive index were determined for PP RbTiOPO4, which is essential for future use of this material. Another experiment helped to increase the insight into the volumes close to domain walls in PP crystals Further, several OPAs were built and their ability to efficiently amplify the seed beam without changing its spectral or spatial properties was studied. Small signal gains of up to 55 dB and conversion efficiencies of more than 35 % were achieved for single pass arrangements employing 8 mm long PPKTP crystals. Apart from constructing three setups, which generated powerful nanosecond, picosecond and femtosecond pulses, the possibility to amplify broadband signals was investigated. An increase of the OPA bandwidth by a factor of approximately three was achieved in a noncollinear configuration.
QC 20101013
APA, Harvard, Vancouver, ISO, and other styles
20

Fragemann, Anna. "Optical parametric amplification with periodically poled KTiOPO4." Doctoral thesis, KTH, Physics, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-531.

Full text
Abstract:

This thesis explores the use of engineered nonlinear crystals from the KTiOPO4 (KTP) family as the gain material in optical parametric amplifiers (OPAs), with the aim to achieve more knowledge about the benefits and limitations of these devices. The work aims further at extending the possible applications of OPAs by constructing and investigating several efficient and well performing amplifiers.

An OPA consists of a strong pump source, which transfers its energy to a weak seed beam while propagating through a nonlinear crystal. The crystals employed in this work are members of the KTP family, which are attractive due to their large nonlinear coefficients, high resistance to damage and wide transparency range. The flexibility of OPAs with respect to different wavelength regions and pulse regimes was examined by employing various dissimilar seed and pump sources.

The possibility to adapt an OPA to a specific pump and seed wavelength and achieve efficient energy conversion between the beams, originates from quasi-phasematching, which is achieved in periodically poled (PP) nonlinear crystals. Quasi-phasematched samples can be obtained by changing the position of certain atoms in a ferroelectric crystal and thereby reversing the spontaneous polarisation.

In this thesis several material properties of PP crystals from the KTP family were examined. The wavelength and temperature dispersion of the refractive index were determined for PP RbTiOPO4, which is essential for future use of this material. Another experiment helped to increase the insight into the volumes close to domain walls in PP crystals

Further, several OPAs were built and their ability to efficiently amplify the seed beam without changing its spectral or spatial properties was studied. Small signal gains of up to 55 dB and conversion efficiencies of more than 35 % were achieved for single pass arrangements employing 8 mm long PPKTP crystals. Apart from constructing three setups, which generated powerful nanosecond, picosecond and femtosecond pulses, the possibility to amplify broadband signals was investigated. An increase of the OPA bandwidth by a factor of approximately three was achieved in a noncollinear configuration.

APA, Harvard, Vancouver, ISO, and other styles
21

Lange, Carsten. "Advanced nonlinear stability analysis of boiling water nuclear reactors." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-24954.

Full text
Abstract:
This thesis is concerned with nonlinear analyses of BWR stability behaviour, contributing to a deeper understanding in this field. Despite negative feedback-coefficients of a BWR, there are operational points (OP) at which oscillatory instabilities occur. So far, a comprehensive and an in-depth understanding of the nonlinear BWR stability behaviour are missing, even though the impact of the significant physical parameters is well known. In particular, this concerns parameter regions in which linear stability indicators, like the asymptotic decay ratio, lose their meaning. Nonlinear stability analyses are usually carried out using integral (system) codes, describing the dynamical system by a system of nonlinear partial differential equations (PDE). One aspect of nonlinear BWR stability analyses is to get an overview about different types of nonlinear stability behaviour and to examine the conditions of their occurrence. For these studies the application of system codes alone is inappropriate. Hence, in the context of this thesis, a novel approach to nonlinear BWR stability analyses, called RAM-ROM method, is developed. In the framework of this approach, system codes and reduced order models (ROM) are used as complementary tools to examine the stability characteristics of fixed points and periodic solutions of the system of nonlinear differential equations, describing the stability behaviour of a BWR loop. The main advantage of a ROM, which is a system of ordinary differential equations (ODE), is the possible coupling with specific methods of the nonlinear dynamics. This method reveals nonlinear phenomena in certain regions of system parameters without the need for solving the system of ROM equations. The stability properties of limit cycles generated in Hopf bifurcation points and the conditions of their occurrence are of particular interest. Finally, the nonlinear phenomena predicted by the ROM will be analysed in more details by the system code. Hence, the thesis is not focused on rendering more precisely linear stability indicators like DR. The objective of the ROM development is to develop a model as simple as possible from the mathematical and numerical point of view, while preserving the physics of the BWR stability behaviour. The ODEs of the ROM are deduced from the PDEs describing the dynamics of a BWR. The system of ODEs includes all spatial effects in an approximated (spatial averaged) manner, e.g. the space-time dependent neutron flux is expanded in terms of a complete set of orthogonal spatial neutron flux modes. In order to simulate the stability characteristics of the in-phase and out-of-phase oscillation mode, it is only necessary to take into account the fundamental mode and the first azimuthal mode. The ROM, originally developed at PSI in collaboration with the University of Illinois (PSI-Illinois-ROM), was upgraded in significant points: • Development and implementation of a new calculation methodology for the mode feedback reactivity coefficients (void and fuel temperature reactivity) • Development and implementation of a recirculation loop model; analysis and discussion of its impact on the in-phase and out-of-phase oscillation mode • Development of a novel physically justified approach for the calculation of the ROM input data • Discussion of the necessity of consideration of the effect of subcooled boiling in an approximate manner With the upgraded ROM, nonlinear BWR stability analyses are performed for three OPs (one for NPP Leibstadt (cycle7), one for NPP Ringhals (cycle14) and one for NPP Brunsbüttel (cycle16) for which measuring data of stability tests are available. In this thesis, the novel approach to nonlinear BWR stability analyses is extensively presented for NPP Leibstadt. In particular, the nonlinear analysis is carried out for an operational point (OP), in which an out-of-phase power oscillation has been observed in the scope of a stability test at the beginning of cycle 7 (KKLc7_rec4). The ROM predicts a saddle-node bifurcation of cycles, occurring in the linear stable region, close to the KKLc7_rec4-OP. This result allows a new interpretation of the stability behaviour around the KKLc7_rec4-OP. The results of this thesis confirm that the RAM-ROM methodology is qualified for nonlinear BWR stability analyses
Die vorliegende Dissertation leistet einen Beitrag zum tieferen Verständnis des nichtlinearen Stabilitätsverhaltens von Siedewasserreaktoren (SWR). Trotz der Tatsache, dass in diesem technischen System nur negative innere Rückkopplungskoeffizienten auftreten, können in bestimmten Arbeitspunkten oszillatorische Instabilitäten auftreten. Obwohl relativ gute Kenntnisse über die signifikanten physikalischen Einflussgrößen vorliegen, fehlt bisher ein umfassendes Verständnis des SWR-Stabilitätsverhaltens. Das betrifft insbesondere die Bereiche der Systemparameter, in denen lineare Stabilitätsindikatoren, wie zum Beispiel das asymptotische Decay Ratio (DR), ihren Sinn verlieren. Die nichtlineare Stabilitätsanalyse wird im Allgemeinen mit Systemcodes (nichtlineare partielle Differentialgleichungen, PDG) durchgeführt. Jedoch kann mit Systemcodes kein oder nur ein sehr lückenhafter Überblick über die Typen von nichtlinearen Phänomenen, die in bestimmten System-Parameterbereichen auftreten, erhalten werden. Deshalb wurde im Rahmen der vorliegenden Arbeit eine neuartige Methode (RAM-ROM Methode) zur nichtlinearen SWR-Stabilitätsanalyse erprobt, bei der integrale Systemcodes und sog. vereinfachte SWR-Modelle (ROM) als sich gegenseitig ergänzende Methoden eingesetzt werden, um die Stabilitätseigenschaften von Fixpunkten und periodischen Lösungen (Grenzzyklen) des nichtlinearen Differentialgleichungssystems, welches das Stabilitätsverhalten des SWR beschreibt, zu bestimmen. Das ROM, in denen das dynamische System durch gewöhnliche Differentialgleichungen (GDG) beschrieben wird, kann relativ einfach mit leistungsfähigen Methoden aus der nichtlinearen Dynamik, wie zum Beispiel die semianalytische Bifurkationsanalyse, gekoppelt werden. Mit solchen Verfahren kann, ohne das DG-System explizit lösen zu müssen, ein Überblick über mögliche Typen von stabilen und instabilen oszillatorischen Verhalten des SWR erhalten werden. Insbesondere sind die Stabilitätseigenschaften von Grenzzyklen, die in Hopf-Bifurkationspunkten entstehen, und die Bedingungen, unter denen sie auftreten, von Interesse. Mit dem Systemcode (RAMONA5) werden dann die mit dem ROM vorhergesagten Phänomene in den entsprechenden Parameterbereichen detaillierter untersucht (Validierung des ROM). Die Methodik dient daher nicht der Verfeinerung der Berechnung linearer Stabilitätsindikatoren (wie das DR). Das ROM-Gleichungssystem entsteht aus den PDGs des Systemcodes durch geeignete (nichttriviale) räumliche Mittelung der PDG. Es wird davon ausgegangen, dass die Reduzierung der räumlichen Komplexität die Stabilitätseigenschaften des SWR nicht signifikant verfälschen, da durch geeignete Mittlungsverfahren, räumliche Effekte näherungsweise in den GDGs berücksichtig werden. Beispielsweise wird die raum- und zeitabhängige Neutronenflussdichte nach räumlichen Moden entwickelt, wobei für eine Simulation der Stabilitätseigenschaften der In-phase- und Out-of-Phase-Leistungsoszillationen nur der Fundamentalmode und der erste azimuthale Mode berücksichtigt werden muss. Das ROM, welches ursprünglich am Paul Scherrer Institut (PSI, Schweiz) in Zusammenarbeit mit der Universität Illinois (USA) entwickelt wurde, ist in zwei wesentlichen Punkten erweitert und verbessert worden: • Entwicklung und Implementierung einer neuen Methode zur Berechnung der Rückkopplungsreaktivitäten • Entwicklung und Implementierung eines Modells zur Beschreibung der Rezirkulationsschleife (insbesondere wurde der Einfluss der Rezirkulationsschleife auf den In-Phase-Oszillationszustand und auf den Out-of-Phase-Oszillationszustand untersucht) • Entwicklung einer physikalisch begründeten Methode zur Berechnung der ROM-Inputdaten • Abschätzung des Einflusses des unterkühlten Siedens im Rahmen der ROM-Näherungen Mit dem erweiterten ROM wurden nichtlineare Stabilitätsanalysen für drei Arbeitspunkte (KKW Leibstadt (Zyklus 7) KKW Ringhals (Zyklus 14) und KKW Brunsbüttel (Zyklus 16)), für die Messdaten vorliegen, durchgeführt. In der Dissertationsschrift wird die RAM-ROM Methode ausführlich am Beispiel eines Arbeitspunktes (OP) des KKW Leibstadt (KKLc7_rec4-OP), in dem eine aufklingende regionale Leistungsoszillation bei einem Stabilitätstest gemessen worden ist, demonstriert. Das ROM sagt die Existenz eines Umkehrpunktes (saddle-node bifurcation of cycles, fold-bifurcation) voraus, der sich im linear stabilen Gebiet nahe der Stabilitätsgrenze befindet. Mit diesem ROM-Ergebnis ist eine neue Interpretation der Stabilitätseigenschaften des KKLc7_rec4-OP möglich. Die Resultate der in der Dissertation durchgeführten RAM-ROM Analyse bestätigen, dass das weiterentwickelte ROM für die Analyse des Stabilitätsverhaltens realer Leistungsreaktoren qualifiziert wurde
APA, Harvard, Vancouver, ISO, and other styles
22

稲垣, 瑞穂, Mizuho INAGAKI, 幸男 石田, Yukio ISHIDA, 誠. 早川, Makoto HAYAKAWA, 聡. 安田, and Satoshi YASUDA. "クリアランス内で衝突を伴うロータの非線形強制振動と自励振動 (1/2次分数調波共振付近の引込現象と結合振動)." 日本機械学会, 2003. http://hdl.handle.net/2237/9044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kothapalli, VeeraVenkata Satyanarayana. "Ultrasound Contrast Agents Loaded with Magnetic Nanoparticles : Acoustic and Mechanical Characterization." Licentiate thesis, KTH, Medicinsk avbildning, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-134616.

Full text
Abstract:
The current methodologies in body scanning diagnostic uses different simultaneous imaging modalities like Ultrasound (US), magnetic resonance imaging (MRI), single photon emission tomography (SPECT) and positron emission tomography (PET). The field requires combination of different modalities for effective use in clinical diagnostics. Such incorporation of different modalities has already been achieved. For example, PET-CT hybrid scanner is designed to acquire align functional and anatomical images and recently US-MRI scanner has successfully shown to improve diagnosis of prostate cancer. The non ionizing radiation hybrid US-MRI is of great interest in health care industry. Further these US and MRI modalities uses different contrast agents like micro-sized gas bubbles (MBs) encapsulated by surfactant for US and superparamagnetic nanoparticles for MRI imaging modalities to further enables new diagnostic opportunities and therapeutic applications. Recently in our 3MiCRON project, we have developed the multimodal contrast agent that could be supported for both US and MRI. This was achieved by coating the magnetic nanoparticles to the poly vinyl alcohol (PVA) surfactant shelled MBs. The nanoparticles in the shell effect the structure can alter the MBs performance as an ultrasound contrast agent. The present thesis is conducted to examine the acoustic and mechanical properties of such multimodal contrast agents. These multimodal contrast agents were prepared by coating the surface of PVA-shelled MBs by two following strategies: (1) The superparamagnetic iron oxide (Fe3O4) nano-particles (SPIONs) were chemically anchored to the surface of poly vinyl alcohol (PVA) shelled MBs namely MBs-chem and (2) in the second strategy the SPIONs were physical entrapped into the PVA shell while formation of PVA surface on the gas bubble were named as MBs-phys. To understand the scattering efficiency and viscoelastic properties of these modified agents, we investigated the backscattering power, attenuation coefficient and phase velocity measurements. Our acoustic experimental results indicate that both the modified MBs and non-modified plain PVA-shelled ultrasound contrast agents have the same echogenic response. The investigation of mechanical properties of modified MBs revealed that the attached SPIONs on the PVA shell has reduced the stiffness of MBs-chem shell, while, the SPIONs inside the shell has increased MBs-phys stiffness. As a result, MBs-chem exhibits soft shell behavior under ultrasound exposure than both MBs-phys. Finally, the images were obtained through the MRI investigations at the department of Radiology, Karolinksa Institute, has demonstrated that both MB types have enough magnetic susceptibility that further provides good detectability in vitro and in vivo. As an outlook, the modified magnetic gas bubbles, i.e. both MBs-chem and MBs-phys can be proposed as a potential contrast agent for both US and MR imaging and can be further utilized in potential therapeutic applications.

QC 20131126

APA, Harvard, Vancouver, ISO, and other styles
24

Gutierrez, Enver Manuel Amador Ramirez. "Interação multi-escala entre o oceano e a atmosfera e a variabilidade de baixa frequência." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/14/14133/tde-27062013-112941/.

Full text
Abstract:
No presente trabalho utiliza-se um m´etodo multi-escala para estudar de forma te´orica as intera¸coes nao lineares entre o oceano e a atmosfera atrav´es de ressonancia onda-onda. Desenvolve-se uma hierarquia de modelos acoplados oceano-atmosfera nao lineares que foram escalonados convenientemente para representar as principais escalas de variabilidade clim´atica (i.e., intrasazonal, interanual, e decenal). A enfase dos modelos desenvolvidos foi dado para a regiao tropical. As fontes de nao linearidade inclu´das no modelo sao de dois tipos: I) nao linearidade intr´nsica (advectiva) e II) nao linearidade relacionada com os termos da f´sica e ambas sao abordadas neste trabalho. Para obter as equa¸coes que regem a dinamica de intera¸coes ressonantes a partir da hierarquia de modelos acoplados, aplicou-se um m´etodo perturbativo multi-escala. As solu¸coes sao escritas em termos de solu¸coes de ordem dominante e solu¸coes seculares. Para as solu¸coes de ordem dominante e seculares utilizam-se as fun¸coes base do problema linear, em uma aproxima¸cao do tipo Galerkin. As propriedades das fun¸coes base permitem calcular de forma anal´tica os coeficientes de intera¸cao associados com os termos nao lineares, assim como tamb´em permitem projetar estes termos nos modos de oscila¸cao natural do sistema (ressonancia). Com este m´etodo obt´em-se modelos reduzidos que permitem determinar as contribui¸coes de diversos processos para a evolu¸cao em escala lenta de um determinado modo de variabilidade natural. Para aplicar estes conceitos ao problema de acoplamento oceano-atmosfera utiliza-se como Ansatz (hip´otese inicial para a solu¸cao do problema) um tripleto composto por duas ondas atmosf´ericas e uma onda oceanica, sendo uma onda de Kelvin e de Rossby na atmosfera e uma onda Kelvin no oceano. O tripleto escolhido representa uma aproxima¸cao de v´arios fenomenos encontrados na regiao tropical, e.g. o desenvolvimento do El Nino, a intera¸cao da oscila¸cao de Madden-Julian com o oceano, a intera¸cao entre el Nino e variabilidade intrasazonal. No presente trabalho ´e mostrado que existe a ressonancia envolvendo ondas atmosf´ericas e oceanicas e que a modula¸cao em baixa frequencia produto desta ressonancia pode afetar desde escalas r´apidas sin´oticas equatoriais, intrasazonais, interanuais e at´e variabilidade da ordem de dezenas de anos. Palavras chave: Dinamica Equatorial nao linear, Intera¸coes Ressonantes, Modelos Acoplados Oceano-Atmosfera, El Nino, Oscila¸cao de Madden Julian, Oscila¸coes Decenais (Decadal)
In the present work a multiscale method is used to study resonant nonlinear wave-wave interactions between the ocean and the atmosphere. A hierarchy of coupled atmosphere-ocean models is developed using typical scalings found in the tropical region with the aim to represent some of the dominant modes of climate variability (intraseasonal, interannual and decadal). The sources of nonlinearity included into model are of two types: I) intrinsic nonlinearity (advective form) and II) nonlinearity related to physical terms. A multi-scale perturbation method is applied to obtain equations governing dynamics of ressonant interactions. The solutions are described in terms of dominant and secular solutions. For the dominant modes basis functions of the linear problem are used in a approximation of the Galerkin type. The properties of the basis functions allows the analytical computation of the interaction coefficients associated with non-linear terms and the projection into the natural oscillation modes of the system (resonance). Using this method it is possible to obtain reduced models to determine the contributions of several processes to the slow time evolution of a specific mode of natural variability. To apply these concepts to the problem of atmosphere-ocean coupling an Ansatz composed of a three waves (two atmospheric Rossby and Kelvin waves and an ocean Kelvin wave) is used. The triad chosen represents a aproximation of several phenomena found in the tropical region, e.g. desenvolving of El Nino, interaction of the Madden-Julian oscillation with the ocean, interaction between El Nino and intra-seasonal variability, etc. It is shown that system allows a resonance involving atmospheric and oceanic waves and that the low-frequency modulation resulting from these ressonance can affect the system from fast equatorial synoptic scales to decadal timescales, including the intermediate scales i.e., intraseasonal and interannual.
APA, Harvard, Vancouver, ISO, and other styles
25

稲垣, 瑞穂, Mizuho INAGAKI, 幸男 石田, Yukio ISHIDA, 晃正 林, and Akimasa HAYASHI. "クリアランス内で衝突を伴うロータの非線形強制振動と自励振動 (非線形ばね・減衰モデルによる分数調波振動の解析)." 日本機械学会, 2005. http://hdl.handle.net/2237/9040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Schumann, Michael. "Nonlinear dynamics in oscillating waterfalls." PDXScholar, 1992. https://pdxscholar.library.pdx.edu/open_access_etds/4421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Peng, Chen-Chih. "Methods for improving crane performance and ease of use." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50343.

Full text
Abstract:
Cranes are widely used in material-handling and transportation applications, e.g. in shipyards, construction sites, and warehouses. As they are critical to the economic vitality of modern-day industries, improving crane performance and ease of use are important contributors to industrial productivity, low production costs, and workplace safety. In a typical crane operation, a payload is lifted, moved to its destination, and then lowered into place. This dissertation aims to improve crane performance and reduce task difficulty for the human operator in the movements mentioned above, namely: 1) Moving payloads laterally in the horizontal plane, 2) Lifting payloads off the ground, and 3) Lowering or laying down payloads on the ground. The design of a novel and intuitive human-machine control interface is the focus for improving operations that involve moving payloads laterally. The interface allows operators to drive a crane by simply moving a hand-held device through the desired path. The position of the device, which is tracked by sensors, is used to generate command signals to drive the crane. This command is then input-shaped such that payload oscillations are greatly reduced, making it much easier for the operator to drive the crane. Several facets of this crane control method are examined, such as control structure and stability, usability contexts, modes of operation, and quantitative measures (by means of human operator studies) of performance improvements over standard crane control interfaces. Lifting up a payload can be difficult for the operator, if the hoist is not properly centered above the payload. In these potentially dangerous and costly ``off-centered" lifts, the payload may slide on the ground and/or oscillate in the air after it is hoisted. Newtonian and Coulomb friction models that focus on the stiction-sliding-separation contact dynamics are derived and experimentally verified to study off-centered lifts. Then, with the goal of aiding operators during lift operations, simple but practical, self-centering solutions are proposed and implemented. Laying down or lowering a payload to the ground can also be challenging for operators in certain situations. For example, laying down a long, slender payload from a vertical orientation in the air, to a horizontal position on a flat surface. If the operator does not properly coordinate the motions of the crane in the vertical and horizontal directions simultaneously, then the potential hazards that may occur during these operations include: 1) slipping of the pivot about which the payload rotates, leading to sudden and dangerous payload movements; and 2) excessive hoist cable angles that lead to ``side-pull" problems. Newtonian and Coulomb friction models are derived to describe this lay-down scenario. The forces and motions experienced by the payload are then used to determine the motion trajectories that the crane and payload should follow to execute a successful lay-down maneuver. Finally, a special chapter is included to address the oscillation control of systems that have on-off nonlinear actuators, such as cranes powered by relay-controlled circuits. Due to their simplicity, ruggedness, and long service life, this type of crane can be commonly found in older factories or in applications where precise motion control is not a strict requirement. However, controlling payload oscillations on this type of crane is challenging for two reasons: 1) Relays that can only be turned on or off allow for only limited control over the crane velocity; and 2) These cranes typically have nonlinear asymmetrical acceleration and deceleration properties. Methods are derived for determining the relay switch-times that move single-pendulum and double-pendulum payloads with low residual oscillations.
APA, Harvard, Vancouver, ISO, and other styles
28

Head, Kenneth Larry. "Modeling and identification of nonlinear oscillations." Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184651.

Full text
Abstract:
The topic of this dissertation, modeling and identification of nonlinear oscillation, represents an area of mathematical systems theory that has received little attention in the past. Primarily, the types of oscillation of interest are those found in biological systems where theoretical foundations for mathematical models are insufficient. These oscillations are also observed in other systems including electrical, mechanical, and chemical. The contributions of this dissertation are a generalized class of autonomous differential equations that are found to exhibit stable limit cycles, and an investigation of a method of system identification that can be used to estimate the model parameters. Here the observed signal is modeled as the response of a nonlinear system that can be described by differential equations. Modeling the signal in this way shifts the emphasis from signal characteristics, such as spectral content, to system characteristics, such as parameter values and system structure. This shift in emphasis may provide a better method for monitoring complex systems that exhibit periodic behavior such as patients under anesthesia. A class of autonomous differential equations, called the generalized oscillator models, are presented as one nᵗʰ-order differential equations with nonlinear coefficients. The coefficients are chosen to change sign depending on the magnitude of the phase variables. The coefficients are negative near the origin and positive away from the origin. Motivated by the generalized Routh-Hurwitz criterion, this coefficient sign changing produces the desired oscillation. Properties of the generalized oscillator model are investigated using the describing function method of analysis and numerical simulation. Several descriptive examples are presented. Based on the generalized oscillator model as a set of candidate models, the system identification problem is formed as a mathematical programming problem. The method of quasilinearization is investigated as method of solving the identification problem. Two examples are presented that demonstrate the method. It is shown that in general, the method of quasilinearization as a solution to the system identification problem will not converge regardless of the initial starting point. This result indicates that although the quasilinearization method is useful for solving two-point boundary value problems, it is not useful (in its present form) for solving the system identification problem.
APA, Harvard, Vancouver, ISO, and other styles
29

Wilson, Sean Odell. "Nonlinear oscillations of a triatomic molecule." Thesis, Monterey California. Naval Postgraduate School, 2002. http://hdl.handle.net/10945/5664.

Full text
Abstract:
Approved for public release; distribution is unlimited
ude decreases if the difference of the frequency of the two modes is reduced. We consider the simplest case of a symmetric rectilinear molecule where the coupling has a cubic nonlinearity in addition to a linear restoring force. Approximate analytical results are in good agreement with numerical simulations of the exact equations of motion, although in some cases the actual behavior fundamentally deviates from the perturbative theory. Two physical demonstrations of the instability are described, where the apparatus are a system of gliders coupled by springs and magnets on an air track. Possible quantum mechanical implications are discussed. This work is a fundamental generalization of the parametric instability of two linearly coupled nonlinear oscillators that was reported in a previous investigation.
APA, Harvard, Vancouver, ISO, and other styles
30

Wilson, Sean O. "Nonlinear oscillations of a triatomic molecule /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://library.nps.navy.mil/uhtbin/hyperion-image/02Jun%5FWilson%5FSean.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Gentry, Jeanette J. "Nonlinear oscillations under multifrequency parametric excitation." Thesis, Virginia Tech, 1988. http://hdl.handle.net/10919/43402.

Full text
Abstract:

A second-order system of differential equations containing a multifrequency parametric excitation and weak quadratic and cubic nonlinearities is investigated. The method of multiple scales is used to carry out a general analysis, and three resonance conditions are considered in detail. First, the case in which the sum of two excitation frequencies is near two times a natural frequency, λs + λt ~q, is examined. Second, the influence of an internal resonance, Ï q~3Ï r, on the previous case is studied. Finally, the effect of the internal resonance wr~3wq on the resonance λs + λt ~q is investigated. Results are presented as plots of response amplitudes as functions of a detuning parameter, excitation amplitude, and, for the first case, a measure of the relative values of λs + λt.


Master of Science
APA, Harvard, Vancouver, ISO, and other styles
32

Yagi, Masakazu. "Analysis of Nonlinear Oscillations Using Computer Algebra." 京都大学 (Kyoto University), 2008. http://hdl.handle.net/2433/61310.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(工学)
甲第14049号
工博第2961号
新制||工||1439(附属図書館)
26328
UT51-2008-F441
京都大学大学院工学研究科電気工学専攻
(主査)教授 和田 修己, 教授 引原 隆士, 准教授 久門 尚史, 教授 萩原 朋道
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
33

Chen, Guang. "General Variational Principles : theory and applications to the approximate solutions of nonlinear and/or nonconservative oscillations." Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/14996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Junca, Stéphane. "Oscillating waves for nonlinear conservation laws." Habilitation à diriger des recherches, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00845827.

Full text
Abstract:
The manuscript presents my research on hyperbolic Partial Differential Equations (PDE), especially on conservation laws. My works began with this thought in my mind: ''Existence and uniqueness of solutions is not the end but merely the beginning of a theory of differential equations. The really interesting questions concern the behavior of solutions.'' (P.D. Lax, The formation and decay of shock waves 1974). To study or highlight some behaviors, I started by working on geometric optics expansions (WKB) for hyperbolic PDEs. For conservation laws, existence of solutions is still a problem (for large data, $L^\infty$ data), so I early learned method of characteristics, Riemann problem, $BV$ spaces, Glimm and Godunov schemes, \ldots In this report I emphasize my last works since 2006 when I became assistant professor. I use geometric optics method to investigate a conjecture of Lions-Perthame-Tadmor on the maximal smoothing effect for scalar multidimensional conservation laws. With Christian Bourdarias and Marguerite Gisclon from the LAMA (Laboratoire de \\ Mathématiques de l'Université de Savoie), we have obtained the first mathematical results on a $2\times2$ system of conservation laws arising in gas chromatography. Of course, I tried to put high oscillations in this system. We have obtained a propagation result exhibiting a stratified structure of the velocity, and we have shown that a blow up occurs when there are too high oscillations on the hyperbolic boundary. I finish this subject with some works on kinetic équations. In particular, a kinetic formulation of the gas chromatography system, some averaging lemmas for Vlasov equation, and a recent model of a continuous rating system with large interactions are discussed. Bernard Rousselet (Laboratoire JAD Université de Nice Sophia-Antipolis) introduced me to some periodic solutions related to crak problems and the so called nonlinear normal modes (NNM). Then I became a member of the European GDR: ''Wave Propagation in Complex Media for Quantitative and non Destructive Evaluation.'' In 2008, I started a collaboration with Bruno Lombard, LMA (Laboratoire de Mécanique et d'Acoustique, Marseille). We details mathematical results and challenges we have identified for a linear elasticity model with nonlinear interfaces. It leads to consider original neutral delay differential systems.
APA, Harvard, Vancouver, ISO, and other styles
35

Shaeri, Arash. "Theoretical analysis of forced nonlinear oscillations in motorcycles." Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kalamangalam, G. P. "Nonlinear oscillations and chaos in chemical cardiorespiratory control." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296830.

Full text
Abstract:
We report progress made on an analytic investigation of low-frequency cardiorespiratory variability in humans. The work is based on an existing physiological model of chemically-mediated blood-gas control via the central and peripheral chemoreceptors, that of Grodins, Buell & Bart (1967). Scaling and simplification of the Grodins model yields a rich variety of dynamical subsets; the thesis focusses on the dynamics obtained under the normoxic assumption (i.e., when oxygen is decoupled from the system). In general, the method of asymptotic reduction yields submodels that validate or invalidate numerous (and more heuristic) extant efforts in the literature. Some of the physiologically-relevant behaviour obtained here has therefore been reported before, but a large number of features are reported for the first time. A particular novelty is the explicit demonstration of cardiorespiratory coupling via chemosensory control. The physiology and literature reviewed in Chapters 1 and 2 set the stage for the investigation. Chapter 3 scales and simplifies the Grodins model; Chapters 4, 5, 6 consider carbon dioxide dynamics at the central chemoreceptor. Chapter 7 begins analysis of the dynamics mediated by the peripheral receptor. Essentially all of the dynamical behaviour is due to the effect of time delays occurring within the conservation relations (which are ordinary differential equations). The pathophysiology highlighted by the analysis is considerable, and includes central nervous system disorders, heart failure, metabolic diseases, lung disorders, vascular pathologies, physiological changes during sleep, and ascent to high altitude. Chapter 8 concludes the thesis with a summary of achievements and directions for further work.
APA, Harvard, Vancouver, ISO, and other styles
37

Bi̇li̇r, Bülent. "Bifurcation analysis of nonlinear oscillations in power systems /." free to MU campus, to others for purchase, 2000. http://wwwlib.umi.com/cr/mo/fullcit?p9999273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Tucher, Christopher A. "Steady-state oscillations of linear and nonlinear systems /." Online version of thesis, 1992. http://hdl.handle.net/1850/10990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Shi, Guangyu. "Nonlinear static and dynamic analyses of large-scale lattice-type structures and nonlinear active control by piezo actuators." Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/19176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Carter, Ryan E. "Contact modeling for a nonlinear impact oscillator." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0011848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Longtin, André. "Nonlinear oscillations, noise and chaos in neural delayed feedback." Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74311.

Full text
Abstract:
Bifurcations and complex oscillations in the human pupil light reflex (PLR) are studied. Autonomous pupil area oscillations are produced by substituting electronically controllable nonlinear feedback for the normal negative feedback of this reflex. A physiologically sound theoretical framework in which to study pupillary oscillations is developed. The model, framed as a delay-differential equation (DDE), agrees quantitatively with the simpler periodic behaviors and qualitatively with the complex behaviors. Much of the aperiodicity in the data can be ascribed to noise and transients rather than to chaos. The critical behavior of the PLR at oscillation onset is different with piecewise constant rather than smooth negative feedback. In the former, relative fluctuations in period are larger than those in amplitude, and vice versa in the latter. Properties of the time solutions and densities of a stochastic DDE are used to explain this experimental result. The Hopf bifurcation in this system is postponed by both additive and multiplicative colored noise. Theoretical insight into the behavior of stationary densities of DDE's and the origin of the postponement is given, and implications for analyzing bifurcations in neural delayed feedback systems are discussed.
APA, Harvard, Vancouver, ISO, and other styles
42

Pathath, Prasanna K. [Verfasser]. "Nonlinear Oscillations in Continuous Crystallization Processes / Prasanna K Pathath." Aachen : Shaker, 2006. http://d-nb.info/1166514765/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Higaki, Hiroyuki. "Linear and Nonlinear Electrostatic Oscillations in Nonneutral Electron Plasmas." Kyoto University, 1998. http://hdl.handle.net/2433/157096.

Full text
Abstract:
本文データは平成22年度国立国会図書館の学位論文(博士)のデジタル化実施により作成された画像ファイルを基にpdf変換したものである
Kyoto University (京都大学)
0048
新制・課程博士
博士(人間・環境学)
甲第7071号
人博第22号
9||112(吉田南総合図書館)
新制||人||6(附属図書館)
UT51-98-C184
京都大学大学院人間・環境学研究科人間・環境学専攻
(主査)教授 毛利 明博, 教授 林 哲介, 教授 後藤 喬雄, 助教授 田中 仁
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
44

Kashinath, Karthik. "Nonlinear thermoacoustic oscillations of a ducted laminar premixed flame." Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/264291.

Full text
Abstract:
Finding limit cycles and their stability is one of the central problems of nonlinear thermoacoustics. However, a limit cycle is not the only type of self-excited oscillation in a nonlinear system. Nonlinear systems can have quasi-periodic and chaotic oscillations. This thesis examines the different types of oscillation in a numerical model of a ducted premixed flame, the bifurcations that lead to these oscillations and the influence of external forcing on these oscillations. Criteria for the existence and stability of limit cycles in single mode thermoacoustic systems are derived analytically. These criteria, along with the flame describing function, are used to find the types of bifurcation and minimum triggering amplitudes. The choice of model for the velocity perturbation field around the flame is shown to have a strong influence on the types of bifurcation in the system. Therefore, a reduced order model of the velocity perturbation field in a forced laminar premixed flame is obtained from Direct Numerical Simulation. It is shown that the model currently used in the literature precludes subcritical bifurcations and multi-stability. The self-excited thermoacoustic system is simulated in the time domain with many modes in the acoustics and analysed using methods from nonlinear dynamical systems theory. The transitions to the periodic, quasiperiodic and chaotic oscillations are via sub/supercritical Hopf, Neimark-Sacker and period-doubling bifurcations. Routes to chaos are established in this system. It is shown that the single mode system, which gives the same results as a describing function approach, fails to capture the period-$2$, period-$k$, quasi-periodic and chaotic oscillations or the bifurcations and multi-stability seen in the multi-modal case, and underpredicts the amplitude. Instantaneous flame images reveal that the wrinkles on the flame surface and pinch off of flame pockets are regular for periodic oscillations, while they are irregular and have multiple time and length scales for quasi-periodic and chaotic oscillations. Cusp formation, their destruction by flame propagation normal to itself, and pinch-off and rapid burning of pockets of reactants are shown to be responsible for generating a heat release rate that is a highly nonlinear function of the velocity perturbations. It is also shown that for a given acoustic model of the duct, many discretization modes are required to capture the rich dynamics and nonlinear feedback between heat release and acoustics seen in experiments. The influence of external harmonic forcing on self-excited periodic, quasi-periodic and chaotic oscillations are examined. The transition to lock-in, the forcing amplitude required for lock-in and the system response at lock-in are characterized. At certain frequencies, even low-amplitude forcing is sufficient to suppress period-$1$ oscillations to amplitudes that are 90$\%$ lower than that of the unforced state. Therefore, open-loop forcing can be an effective strategy for the suppression of thermoacoustic oscillations. This thesis shows that a ducted premixed flame behaves similarly to low-dimensional chaotic systems and that methods from nonlinear dynamical systems theory are superior to the describing function approach in the frequency domain and time domain analysis currently used in nonlinear thermoacoustics.
APA, Harvard, Vancouver, ISO, and other styles
45

Allen, John S. "Nonlinear oscillations of gas bubbles in viscous and viscoelastic fluids /." Thesis, Connect to this title online; UW restricted, 1997. http://hdl.handle.net/1773/7151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lee, Jungkun. "Optimal linearization of anharmonic oscillators /." Online version of thesis, 1991. http://hdl.handle.net/1850/11021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Steinbach, David. "Oscillator Phase Noise Reduction Using Nonlinear Design Techniques." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/32902.

Full text
Abstract:
Phase noise from radio frequency (RF) oscillators is one of the major limiting factors affecting communication system performance. Phase noise directly effects short-term frequency stability, Bit-Error-Rate (BER), and phase-locked loop adjacent-channel interference. RF oscillator circuits contain at least one active device, usually a transistor. The active device has noise properties which generally dominate the noise characteristic limits of an oscillator. Since all noise sources, except thermal noise, are generally proportional to average current flow through the active device, it is logical that reducing the current flow through the device will lead to lower noise levels. A theory based on the time-varying properties of oscillators proposes that narrowing the current pulse width in the active device will decrease the time that noise is present in the circuit and therefore, decrease phase noise even further. The time-domain waveforms and phase noise of an active-biased 700MHz oscillator are analyzed, showing heavy saturation and high harmonic content. Redesigns of the example oscillator in active-bias and four-resistor-bias configurations show improved phase noise and lower harmonic levels at the output. Five oscillator designs of each bias configuration, each having a different pulse width, are simulated. As predicted by the theory, the narrowest current pulse corresponds to the lowest phase noise of the simulated oscillators.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
48

YU, BO. "NONLINEAR DYNAMICS OF CABLE GALLOPING VIA A TWO-DEGREE-OF-FREEDOM NONLINEAR OSCILLATOR." OpenSIUC, 2016. https://opensiuc.lib.siu.edu/dissertations/1245.

Full text
Abstract:
The galloping vibrations of a single transmission cable that may vibrate transversely and torsionally has been investigated via a two-degree-of-freedom oscillator. The analytical solutions of periodic motions for this two-degree-of-freedom system are represented by the finite Fourier series. The analytical bifurcation trees of periodic motions to chaos of a transmission line under both steady and unsteady flows are discussed from the generalized harmonic balance method. The analytical solutions for stable and unstable periodic motions in such a two degree-of-freedom system are achieved, and the corresponding stability and bifurcation was discussed. The limit cycle for the linear cable structure are obtained by gradually decreasing the sinusoidal excitation amplitude. In addition, the numerical simulations of stable and unstable periodic motions are illustrated. The rich dynamical behavior in such a nonlinear cable structure are discovered, and this investigation may help one better understand the galloping phenomena for any elastic structures.
APA, Harvard, Vancouver, ISO, and other styles
49

Limam, Wafa. "Nonlinear oscillations of self-excited systems under multifrequency parametric excitation." Thesis, Virginia Tech, 1989. http://hdl.handle.net/10919/43905.

Full text
Abstract:
A self·excited system with weak nonlinearities and multifrequency parametric excitation is investigated in this study. The method of multiple scales is used to analyze the system under four different resonances relating parametric excitation frequencies with the natural frequencies. In the first case, the parametric excitation frequency is approximately equal to twice the natural frequency, λ≃2ω. In the second case, the parametric excitation frequency is approximately equal to the natural frequency, λ≃ω. The third case treats a system with two parametric excitation frequencies under the condition λ₁±λ₂≃2ω. In the last case, a two-degree-of-freedom system with natural frequencies ω, and ω, is considered and the resonance λ₁+ λ₂≃ωr- ωq , is analyzed. Different parameters (the 1' load amplitudes, a detuning parameter, and a system stiffness parameter) are varied in each case and the responses obtained are presented in plots. The stability of the solutions is affected by all the parameters mentioned, especially the load amplitudes and the detuning parameter.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
50

Toomey, Emily. "Microwave response of nonlinear oscillations in resistively shunted superconducting nanowires." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/113924.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science , 2017.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 83-86).
Many superconducting technologies such as rapid single flux quantum computing (RSFQ) and superconducting quantum interference devices (SQUIDs) rely on the modulation of nonlinear dynamics in Josephson junctions for functionality. More recently, however, superconducting devices have been developed based on the switching and thermal heating of nanowires for use in fields such as single photon detection and digital logic. In this Master's thesis, I will use resistive shunting to control the nonlinear heating of a superconducting nanowire and compare the resulting dynamics to those observed in Josephson junctions. In particular, I will use a microwave drive to modulate the nonlinear behavior of the shunted nanowire, and will relate the observed results to the AC Josephson effect. New nanowire devices based on these conclusions may have promising applications in fields such as parametric amplification and frequency multiplexing.
by Emily Toomey.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography