To see the other types of publications on this topic, follow the link: Nonlinear statistical models.

Journal articles on the topic 'Nonlinear statistical models'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nonlinear statistical models.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ford, I., and A. R. Gallant. "Nonlinear Statistical Models." Biometrics 45, no. 2 (1989): 694. http://dx.doi.org/10.2307/2531513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wolak, Frank A., and A. Ronald Gallant. "Nonlinear Statistical Models." Journal of Business & Economic Statistics 6, no. 4 (1988): 518. http://dx.doi.org/10.2307/1391473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tsai, Chih-Ling, and A. Ronald Gallant. "Nonlinear Statistical Models." Journal of the American Statistical Association 84, no. 405 (1989): 336. http://dx.doi.org/10.2307/2289891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bates, Douglas. "Nonlinear Statistical Models." Technometrics 30, no. 4 (1988): 453–54. http://dx.doi.org/10.1080/00401706.1988.10488443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Katti, S. K., and Prabha Betne. "Nonlinear Statistical Models." Technometrics 36, no. 4 (1994): 433–34. http://dx.doi.org/10.1080/00401706.1994.10485867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Parker, Gene. "Statistical change detection using nonlinear models." Journal of the Acoustical Society of America 101, no. 5 (1997): 3044. http://dx.doi.org/10.1121/1.418677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Duffin, Connor, Edward Cripps, Thomas Stemler, and Mark Girolami. "Statistical finite elements for misspecified models." Proceedings of the National Academy of Sciences 118, no. 2 (2020): e2015006118. http://dx.doi.org/10.1073/pnas.2015006118.

Full text
Abstract:
We present a statistical finite element method for nonlinear, time-dependent phenomena, illustrated in the context of nonlinear internal waves (solitons). We take a Bayesian approach and leverage the finite element method to cast the statistical problem as a nonlinear Gaussian state–space model, updating the solution, in receipt of data, in a filtering framework. The method is applicable to problems across science and engineering for which finite element methods are appropriate. The Korteweg–de Vries equation for solitons is presented because it reflects the necessary complexity while being su
APA, Harvard, Vancouver, ISO, and other styles
8

Dare, Tyler, Rebecca McDaniel, and Ayesha Shah. "Nonlinear, statistical models of tire-pavement noise." Noise Control Engineering Journal 64, no. 3 (2016): 324–34. http://dx.doi.org/10.3397/1/376382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhu, Hong-Tu, and Sik-Yum Lee. "Statistical analysis of nonlinear factor analysis models." British Journal of Mathematical and Statistical Psychology 52, no. 2 (1999): 225–42. http://dx.doi.org/10.1348/000711099159080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lin, Jin-Guan, Feng-Chang Xie, and Bo-Cheng Wei. "Statistical Diagnostics for Skew-t-Normal Nonlinear Models." Communications in Statistics - Simulation and Computation 38, no. 10 (2009): 2096–110. http://dx.doi.org/10.1080/03610910903249502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ross, Gavin J. S., Prajneshu, and C. Sarada. "Reparameterization of nonlinear statistical models: a case study." Journal of Applied Statistics 37, no. 12 (2010): 2015–26. http://dx.doi.org/10.1080/02664760903207332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Campbell, Edward P. "Statistical Modeling in Nonlinear Systems." Journal of Climate 18, no. 16 (2005): 3388–99. http://dx.doi.org/10.1175/jcli3459.1.

Full text
Abstract:
Abstract The use of linear statistical methods in building climate prediction models is examined, particularly the use of anomalies. The author’s perspective is that the climate system is a nonlinear interacting system, so the impact of modeling using anomalies rather than observed data directly is considered. With reference to the Lorenz system and a simple model for regime dependence, it is shown that anomalies impair our ability to reconstruct nonlinear dynamics. Some alternative approaches in the literature that offer an attractive way forward are explored, focusing on Bayesian hierarchica
APA, Harvard, Vancouver, ISO, and other styles
13

Mariani, Maria C., Francis Biney, and Osei K. Tweneboah. "Analyzing Medical Data by Using Statistical Learning Models." Mathematics 9, no. 9 (2021): 968. http://dx.doi.org/10.3390/math9090968.

Full text
Abstract:
In this work, we investigated the prognosis of three medical data specifically, breast cancer, heart disease, and prostate cancer by using 10 machine learning models. We applied all 10 models to each dataset to identify patterns in them. Furthermore, we use the models to diagnose risk factors that increases the chance of these diseases. All the statistical learning techniques discussed were grouped into linear and nonlinear models based on their similarities and learning styles. The models performances were significantly improved by selecting models while taking into account the bias-variance
APA, Harvard, Vancouver, ISO, and other styles
14

Barton, Curtis N., Robert C. Braunberg, and Leonard Friedman. "Nonlinear Statistical Models for the Joint Action of Toxins." Biometrics 49, no. 1 (1993): 95. http://dx.doi.org/10.2307/2532605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Que, Ye, Zhensheng Huang, and Riquan Zhang. "Statistical estimation in partially nonlinear models with random effects." Statistical Theory and Related Fields 1, no. 2 (2017): 227–33. http://dx.doi.org/10.1080/24754269.2017.1396425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Cysneiros, Francisco José A., and Luis Hernando Vanegas. "Residuals and their statistical properties in symmetrical nonlinear models." Statistics & Probability Letters 78, no. 18 (2008): 3269–73. http://dx.doi.org/10.1016/j.spl.2008.06.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

周, 梦齐. "Statistical Analysis for Nonlinear Joint Mean and Variance Models." Statistical and Application 03, no. 02 (2014): 68–75. http://dx.doi.org/10.12677/sa.2014.32010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

程, 忠. "Statistical Diagnostics for Nonlinear Models with Right-Censored Data." Statistics and Application 07, no. 06 (2018): 614–21. http://dx.doi.org/10.12677/sa.2018.76070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gao, Jiti, and Hua Liang. "Statistical Inference in Single-Index and Partially Nonlinear Models." Annals of the Institute of Statistical Mathematics 49, no. 3 (1997): 493–517. http://dx.doi.org/10.1023/a:1003118812392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Greenberg, William, Ludmila Uvarova, and Tatyana Naumovich. "Mathematical models in nonlinear statistical mechanics second international conference." Transport Theory and Statistical Physics 26, no. 3 (1997): 379–82. http://dx.doi.org/10.1080/00411459708020294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Greenberg, William. "Mathematical models in nonlinear statistical mechanics third international conference." Transport Theory and Statistical Physics 28, no. 2 (1999): 191–94. http://dx.doi.org/10.1080/00411459908205657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Irwin, Mark E., Noel Cressie, and Gardar Johannesson. "Spatial-temporal nonlinear filtering based on hierarchical statistical models." Test 11, no. 2 (2002): 249–302. http://dx.doi.org/10.1007/bf02595708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Tsykin, E. N. "Multiple nonlinear statistical models for runoff simulation and prediction." Journal of Hydrology 77, no. 1-4 (1985): 209–26. http://dx.doi.org/10.1016/0022-1694(85)90207-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Patzelt, Felix, and Jean-Philippe Bouchaud. "Nonlinear price impact from linear models." Journal of Statistical Mechanics: Theory and Experiment 2017, no. 12 (2017): 123404. http://dx.doi.org/10.1088/1742-5468/aa9335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

LuValle, M. J., T. L. Welsher, and K. Svoboda. "Acceleration transforms and statistical kinetic models." Journal of Statistical Physics 52, no. 1-2 (1988): 311–30. http://dx.doi.org/10.1007/bf01016417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ruj�n, P�l. "Cellular automata and statistical mechanical models." Journal of Statistical Physics 49, no. 1-2 (1987): 139–222. http://dx.doi.org/10.1007/bf01009958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Tsykin, E. N. "Multiple Statistical models for simulation and prediction of nonlinear processes." Stochastic Analysis and Applications 3, no. 4 (1985): 485–509. http://dx.doi.org/10.1080/07362998508809075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Blankenship, Erin E., Walter W. Stroup, Sean P. Evans, and Stevan Z. Knezevic. "Statistical inference for calibration points in nonlinear mixed effects models." Journal of Agricultural, Biological, and Environmental Statistics 8, no. 4 (2003): 455–68. http://dx.doi.org/10.1198/1085711032642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Dennis, Brian, Robert A. Desharnais, J. M. Cushing, and R. F. Costantino. "Nonlinear Demographic Dynamics: Mathematical Models, Statistical Methods, and Biological Experiments." Ecological Monographs 65, no. 3 (1995): 261–82. http://dx.doi.org/10.2307/2937060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Feng, San Ying, Gao Rong Li, and Jun Hua Zhang. "Efficient statistical inference for partially nonlinear errors-in-variables models." Acta Mathematica Sinica, English Series 30, no. 9 (2014): 1606–20. http://dx.doi.org/10.1007/s10114-014-1358-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

So, Mike K. P., and Ray S. W. Chung. "Statistical inference for conditional quantiles in nonlinear time series models." Journal of Econometrics 189, no. 2 (2015): 457–72. http://dx.doi.org/10.1016/j.jeconom.2015.03.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Bates, Bryson C. "Nonlinear, discrete flood event models, 2. Assessment of statistical nonlinearity." Journal of Hydrology 99, no. 1-2 (1988): 77–89. http://dx.doi.org/10.1016/0022-1694(88)90079-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Hinds, M. A., and G. A. Milliken. "Statistical Methods for Using Nonlinear Models to Compare Silage Treatments." Biometrical Journal 29, no. 7 (1987): 825–34. http://dx.doi.org/10.1002/bimj.4710290711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sinha, A., and P. Roy. "PT symmetric models with nonlinear pseudosupersymmetry." Journal of Mathematical Physics 46, no. 3 (2005): 032102. http://dx.doi.org/10.1063/1.1843273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

MacKay, N. J. "Boundary integrability of nonlinear sigma models." Theoretical and Mathematical Physics 142, no. 2 (2005): 270–74. http://dx.doi.org/10.1007/s11232-005-0069-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Benzi, Roberto, Boris Levant, Itamar Procaccia, and Edriss S. Titi. "Statistical properties of nonlinear shell models of turbulence from linear advection models: rigorous results." Nonlinearity 20, no. 6 (2007): 1431–41. http://dx.doi.org/10.1088/0951-7715/20/6/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ciuperca, Gabriela. "A Method to Treat Some Dynamical Statistical Models." Journal of Biological Systems 06, no. 04 (1998): 357–75. http://dx.doi.org/10.1142/s0218339098000236.

Full text
Abstract:
In this paper we present a method for the estimation of the parameters of models described by a nonlinear system of differential equations: we study the maximum likelihood estimator and the jackknife estimator for parameters of the system and for the covariance matrix of the state variables and we seek possible linear relations between parameters. We take into account the difficulty due to the small number of observations. The optimal experimental design for this kind of problem is determined. We give an application of this method for the glucose metabolism of goats.
APA, Harvard, Vancouver, ISO, and other styles
38

Eglit, Y. Y., К. Y. Eglite, A. R. Balybin, and A. S. Gramatskiy. "ALGORITHM FOR ESTIMATING PARAMETERS OF THE NONLINEAR SYSTEM." System analysis and logistics 2, no. 28 (2021): 52–57. http://dx.doi.org/10.31799/2077-5687-2021-2-52-57.

Full text
Abstract:
The article presents an algorithm for estimating the parameters of nonlinear systems, which is one of the main tasks of classical statistical analysis. The parametric estimation of the coefficients of models that are based on experimental data is the basis. The basis for evaluating parameters. Key words: estimation algorithm, nonlinear systems, statistical analysis, nonlinear function, experiment, models.
APA, Harvard, Vancouver, ISO, and other styles
39

Cugliandolo, Leticia F., David S. Dean, and Hajime Yoshino. "Nonlinear susceptibilities of spherical models." Journal of Physics A: Mathematical and Theoretical 40, no. 16 (2007): 4285–303. http://dx.doi.org/10.1088/1751-8113/40/16/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Jiang, Yu Ying, and Yong Ming Zhang. "Statistical Inference for a Kind of Nonlinear Regression Model." Advanced Materials Research 616-618 (December 2012): 2149–52. http://dx.doi.org/10.4028/www.scientific.net/amr.616-618.2149.

Full text
Abstract:
As we all know, statistical inference of linear models has been a hot topic of statistical and econometric research. However, in many practical problems, the variable of interest and covariates are often nonlinear relationship. The performance of the statistical inference using linear models model can be very poor. In this paper, the statistical inference of a nonlinear regression model under some additional restricted conditions is investigated. The restricted estimator for the unknown parameter is proposed. Under some mild conditions, the asymptotic normality of the proposed estimator is est
APA, Harvard, Vancouver, ISO, and other styles
41

Calderhead, Ben, and Mark Girolami. "Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods." Interface Focus 1, no. 6 (2011): 821–35. http://dx.doi.org/10.1098/rsfs.2011.0051.

Full text
Abstract:
Mechanistic models based on systems of nonlinear differential equations can help provide a quantitative understanding of complex physical or biological phenomena. The use of such models to describe nonlinear interactions in molecular biology has a long history; however, it is only recently that advances in computing have allowed these models to be set within a statistical framework, further increasing their usefulness and binding modelling and experimental approaches more tightly together. A probabilistic approach to modelling allows us to quantify uncertainty in both the model parameters and
APA, Harvard, Vancouver, ISO, and other styles
42

Statistical Consultants, Inc. "PCNONLIN and NONLIN84: Software for the Statistical Analysis of Nonlinear Models." American Statistician 40, no. 1 (1986): 52. http://dx.doi.org/10.2307/2683122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Centurelli, Francesco, Alberto Di Martino, Giuseppe Scotti, Pasquale Tommasino, and Alessandro Trifiletti. "Extraction of CAD-compatible statistical nonlinear models of GaAs HEMT MMICs." Microwave and Optical Technology Letters 51, no. 9 (2009): 2163–66. http://dx.doi.org/10.1002/mop.24543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Li, Runze, and Lei Nie. "Efficient Statistical Inference Procedures for Partially Nonlinear Models and their Applications." Biometrics 64, no. 3 (2007): 904–11. http://dx.doi.org/10.1111/j.1541-0420.2007.00937.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ord, J. K., A. B. Koehler, and R. D. Snyder. "Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models." Journal of the American Statistical Association 92, no. 440 (1997): 1621–29. http://dx.doi.org/10.1080/01621459.1997.10473684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Mahfouz, Mohamed, Ahmed Badawi, Brandon Merkl, et al. "Patella sex determination by 3D statistical shape models and nonlinear classifiers." Forensic Science International 173, no. 2-3 (2007): 161–70. http://dx.doi.org/10.1016/j.forsciint.2007.02.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Yang, Yuqing, and Shongming Huang. "On the statistical and biological behaviors of nonlinear mixed forest models." European Journal of Forest Research 132, no. 5-6 (2013): 727–36. http://dx.doi.org/10.1007/s10342-013-0705-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bates, Bryson C. "Nonlinear, discrete flood event models, 2. Assessment of statistical nonlinearity — Correction." Journal of Hydrology 113, no. 1-4 (1990): 369–70. http://dx.doi.org/10.1016/0022-1694(90)90184-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Panwar, Sanjeev, K. N. Singh, Ranjit Kumar Paul, et al. "Forecasting fish yield using statistical nonlinear growth models – A reparameterization concept." Indian Journal of Extension Education 56, no. 3 (2020): 9–14. http://dx.doi.org/10.5958/2454-552x.2020.00002.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Meyer, H., J.-C. Anglès d'Auriac, and H. Bruus. "Spectral properties of statistical mechanics models." Journal of Physics A: Mathematical and General 29, no. 18 (1996): L483—L488. http://dx.doi.org/10.1088/0305-4470/29/18/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!