Journal articles on the topic 'Nonlinear terahertz conductivity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 23 journal articles for your research on the topic 'Nonlinear terahertz conductivity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
XU, X. G., and J. C. CAO. "NONLINEAR RESPONSE INDUCED STRONG ABSORPTANCE OF GRAPHENE IN THE TERAHERTZ REGIME." Modern Physics Letters B 24, no. 21 (2010): 2243–49. http://dx.doi.org/10.1142/s0217984910024626.
Full textLi, Quan, Shuang Wang, and Tai Chen. "Nonlinear Modulation of Plasmonic Resonances in Graphene-Integrated Triangular Dimers at Terahertz Frequencies." Materials 12, no. 15 (2019): 2466. http://dx.doi.org/10.3390/ma12152466.
Full textZhong, Y., W. Feng, Zheng Liu, C. Zhang, and J. C. Cao. "Nonlinear optical conductivity of Weyl semimetals in the terahertz regime." Physica B: Condensed Matter 555 (February 2019): 81–84. http://dx.doi.org/10.1016/j.physb.2018.11.051.
Full textSHOROKHOV, ALEXEY V., and KIRILL N. ALEKSEEV. "THEORETICAL BACKGROUNDS OF NONLINEAR THz SPECTROSCOPY OF SEMICONDUCTOR SUPERLATTICES." International Journal of Modern Physics B 23, no. 20n21 (2009): 4448–58. http://dx.doi.org/10.1142/s0217979209063584.
Full textKang, Ji-Hun, Dai-Sik Kim, and Minah Seo. "Terahertz wave interaction with metallic nanostructures." Nanophotonics 7, no. 5 (2018): 763–93. http://dx.doi.org/10.1515/nanoph-2017-0093.
Full textDemsar, Jure, Richard D. Averitt, Antoinette J. Taylor, et al. "Photoinduced Conductivity Dynamics Studies of MgB2 Thin Films." International Journal of Modern Physics B 17, no. 18n20 (2003): 3675–81. http://dx.doi.org/10.1142/s0217979203021605.
Full textTeng, Da, Kai Wang, and Zhe Li. "Graphene-Coated Nanowire Waveguides and Their Applications." Nanomaterials 10, no. 2 (2020): 229. http://dx.doi.org/10.3390/nano10020229.
Full textSingh, Ranjan, Jie Xiong, Abul K. Azad, et al. "Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials." Nanophotonics 1, no. 1 (2012): 117–23. http://dx.doi.org/10.1515/nanoph-2012-0007.
Full textChe, Yong-Li, Xiao-Long Cao, and Jian-Quan Yao. "Tunable and switchable resonance in optically-controlled nested metamaterials at terahertz frequencies." Modern Physics Letters B 30, no. 03 (2016): 1650011. http://dx.doi.org/10.1142/s0217984916500111.
Full textLiu, Zheng, Matthew Sanderson, Chao Zhang, and J. C. Cao. "Nonlinear optical conductivity of bilayer graphene with Rashba spin-orbit interaction in the terahertz regime." Journal of Applied Physics 118, no. 4 (2015): 043106. http://dx.doi.org/10.1063/1.4927512.
Full textBLUDOV, YU V., AIRES FERREIRA, N. M. R. PERES, and M. I. VASILEVSKIY. "A PRIMER ON SURFACE PLASMON-POLARITONS IN GRAPHENE." International Journal of Modern Physics B 27, no. 10 (2013): 1341001. http://dx.doi.org/10.1142/s0217979213410014.
Full textGhayoor, Reza, and Alireza Keshavarz. "Transmission Properties of the Periodic Structures Based on Graphene Nonlinear Optical Conductivity in a Terahertz Field." International Journal of Optics and Photonics 13, no. 1 (2019): 35–42. http://dx.doi.org/10.29252/ijop.13.1.35.
Full textTang, Chao, Qingshan Niu, Yuanhao He, Huaxin Zhu, Ben-Xin Wang, and Xiangyang Zhang. "High-Q terahertz Fano-like resonance effect based on robust metamaterial resonator." Modern Physics Letters B 33, no. 21 (2019): 1950248. http://dx.doi.org/10.1142/s0217984919502488.
Full textYe, Yunyang, Jiao Tang, Zhiwei Zheng, et al. "Tunable Low Threshold Optical Tristability at Terahertz Frequencies via a Pair of Parallel Graphene Layers’ Configuration." Advances in Condensed Matter Physics 2018 (September 18, 2018): 1–6. http://dx.doi.org/10.1155/2018/5679759.
Full textMaeng, Inhee, Seongchu Lim, Seung Jin Chae, Young Hee Lee, Hyunyong Choi, and Joo-Hiuk Son. "Gate-Controlled Nonlinear Conductivity of Dirac Fermion in Graphene Field-Effect Transistors Measured by Terahertz Time-Domain Spectroscopy." Nano Letters 12, no. 2 (2012): 551–55. http://dx.doi.org/10.1021/nl202442b.
Full textPATANÈ, A. "NEGATIVE DIFFERENTIAL VELOCITY IN ARTIFICIAL CRYSTALS PROBED BY HIGH MAGNETIC FIELDS." International Journal of Modern Physics B 23, no. 12n13 (2009): 2766–68. http://dx.doi.org/10.1142/s0217979209062335.
Full textKozhitov, L. V., A. V. Shadrinov, D. G. Muratov, E. Yu Korovin, and A. V. Popkova. "Electromagnetic and mechanical properties of nanocomposites polyacrylonitrile/carbon nanotubes." Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering 20, no. 3 (2017): 206–12. http://dx.doi.org/10.17073/1609-3577-2017-3-206-212.
Full textLiu, Yangqi, Xiang Li, Tingting Yang, et al. "Mechanism of terahertz reflection enhancement on photo-excited MEH-PPV/PEDOT:PSS/Si hybrid structure." Modern Physics Letters B, August 13, 2021, 2150457. http://dx.doi.org/10.1142/s0217984921504571.
Full textLitvinov, Vladimir, and Alexander Manasson. "High-Frequency Generation in Low-Mobility Superlattices." MRS Proceedings 831 (2004). http://dx.doi.org/10.1557/proc-831-e11.9.
Full textAng, Yee Sin, J. C. Cao, and Chao Zhang. "Nonlinear optical conductivity of two-dimensional semiconductors with Rashba spin-orbit coupling in terahertz regime." European Physical Journal B 87, no. 2 (2014). http://dx.doi.org/10.1140/epjb/e2014-41015-8.
Full textXu, Haowei, Hua Wang, Jian Zhou, Yunfan Guo, Jing Kong, and Ju Li. "Colossal switchable photocurrents in topological Janus transition metal dichalcogenides." npj Computational Materials 7, no. 1 (2021). http://dx.doi.org/10.1038/s41524-021-00499-4.
Full textNi, Zhuoliang, B. Xu, M. Á. Sánchez-Martínez, et al. "Linear and nonlinear optical responses in the chiral multifold semimetal RhSi." npj Quantum Materials 5, no. 1 (2020). http://dx.doi.org/10.1038/s41535-020-00298-y.
Full textOkamura, Y., S. Minami, Y. Kato, et al. "Giant magneto-optical responses in magnetic Weyl semimetal Co3Sn2S2." Nature Communications 11, no. 1 (2020). http://dx.doi.org/10.1038/s41467-020-18470-0.
Full text