To see the other types of publications on this topic, follow the link: Nonlinear theory of electromigration.

Journal articles on the topic 'Nonlinear theory of electromigration'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nonlinear theory of electromigration.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hruška, Vlastimil, Jana Svobodová, Martin Beneš, and Bohuslav Gaš. "A nonlinear electrophoretic model for PeakMaster: Part III. Electromigration dispersion in systems that contain a neutral complex-forming agent and a fully charged analyte. Theory." Journal of Chromatography A 1267 (December 2012): 102–8. http://dx.doi.org/10.1016/j.chroma.2012.06.086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lodder, A. "Electromigration theory unified." Europhysics Letters (EPL) 72, no. 5 (2005): 774–80. http://dx.doi.org/10.1209/epl/i2005-10306-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gardner, D. S., J. D. Meindl, and K. C. Saraswat. "Interconnection and electromigration scaling theory." IEEE Transactions on Electron Devices 34, no. 3 (1987): 633–43. http://dx.doi.org/10.1109/t-ed.1987.22974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Christov, Ivan C. "Nonlinear waves in electromigration dispersion in a capillary." Wave Motion 71 (June 2017): 42–52. http://dx.doi.org/10.1016/j.wavemoti.2016.06.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Zhen, and Sandip Ghosal. "The nonlinear electromigration of analytes into confined spaces." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, no. 2146 (2012): 3139–52. http://dx.doi.org/10.1098/rspa.2012.0221.

Full text
Abstract:
We consider the problem of electromigration of a sample ion (analyte) within a uniform background electrolyte when the confining channel undergoes a sudden contraction. One example of such a situation arises in microfluidics in the electrokinetic injection of the analyte into a micro-capillary from a reservoir of much larger size. Here, the sample concentration propagates as a wave driven by the electric field. The dynamics is governed by the Nerst–Planck–Poisson system of equations for ionic transport. A reduced one-dimensional nonlinear equation, describing the evolution of the sample concen
APA, Harvard, Vancouver, ISO, and other styles
6

Landauer, Rolf. "Comment on Lodder's “exact” electromigration theory." Solid State Communications 72, no. 9 (1989): 867–68. http://dx.doi.org/10.1016/0038-1098(89)90416-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sorbello, Richard S. "Corrections to Lodder's “exact” electromigration theory." Solid State Communications 76, no. 5 (1990): 747–49. http://dx.doi.org/10.1016/0038-1098(90)90129-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rous, P. J., T. L. Einstein, and Ellen D. Williams. "Theory of surface electromigration on metals: application to self-electromigration on Cu(111)." Surface Science 315, no. 1-2 (1994): L995—L1002. http://dx.doi.org/10.1016/0039-6028(94)90532-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Montemayor-Aldrete, J. A., C. Vázquez-Villanueva, P. Ugalde-Vélez, et al. "Non-equilibrium statistical theory for electromigration damage." Physica A: Statistical Mechanics and its Applications 387, no. 24 (2008): 6115–25. http://dx.doi.org/10.1016/j.physa.2008.06.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Verbruggen, A. H. "Fundamental questions in the theory of electromigration." IBM Journal of Research and Development 32, no. 1 (1988): 93–98. http://dx.doi.org/10.1147/rd.321.0093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kandel, Daniel, and Efthimios Kaxiras. "Microscopic Theory of Electromigration on Semiconductor Surfaces." Physical Review Letters 76, no. 7 (1996): 1114–17. http://dx.doi.org/10.1103/physrevlett.76.1114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Sorbello, Richard S. "Theory of the direct force in electromigration." Physical Review B 31, no. 2 (1985): 798–804. http://dx.doi.org/10.1103/physrevb.31.798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Dubský, Pavel, Martin Dvořák, and Martin Ansorge. "Affinity capillary electrophoresis: the theory of electromigration." Analytical and Bioanalytical Chemistry 408, no. 30 (2016): 8623–41. http://dx.doi.org/10.1007/s00216-016-9799-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

CUMMINGS, L. J., G. RICHARDSON, and M. BEN AMAR. "Models of void electromigration." European Journal of Applied Mathematics 12, no. 2 (2001): 97–134. http://dx.doi.org/10.1017/s0956792501004326.

Full text
Abstract:
We study the motion of voids in conductors subject to intense electrical current densities. We use a free-boundary model in which the flow of current around the insulating void is coupled to a law of motion (kinematic condition) for the void boundary. In the first part of the paper, we apply a new complex variable formulation of the model to an infinite domain and use this to (i) consider the stability of circular and flat front travelling waves, (ii) show that, in the unbounded metal domain, the only travelling waves of finite void area are circular, and (iii) consider possible static solutio
APA, Harvard, Vancouver, ISO, and other styles
15

Rous, P. J. "Theory of surface electromigration on heterogeneous metal surfaces." Applied Surface Science 175-176 (May 2001): 212–17. http://dx.doi.org/10.1016/s0169-4332(01)00045-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Wu, Kang, and R. Mark Bradley. "Theory of electromigration failure in polycrystalline metal films." Physical Review B 50, no. 17 (1994): 12468–88. http://dx.doi.org/10.1103/physrevb.50.12468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lodder, A. "On Sorbello's corrections to the new electromigration theory." Solid State Communications 79, no. 2 (1991): 147–48. http://dx.doi.org/10.1016/0038-1098(91)90079-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Das, Siddhartha, and Suman Chakraborty. "Transport and Separation of Charged Macromolecules under Nonlinear Electromigration in Nanochannels." Langmuir 24, no. 15 (2008): 7704–10. http://dx.doi.org/10.1021/la703892q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dekker, J. P., A. Lodder, and J. van Ek. "Theory for the electromigration wind force in dilute alloys." Physical Review B 56, no. 19 (1997): 12167–77. http://dx.doi.org/10.1103/physrevb.56.12167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lodder, A. "Clarification of the direct-force controversy in electromigration theory." Solid State Communications 79, no. 2 (1991): 143–46. http://dx.doi.org/10.1016/0038-1098(91)90078-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bauer, C. L., and W. W. Mullins. "On the theory of steady‐state electromigration in thin films." Applied Physics Letters 61, no. 25 (1992): 2987–89. http://dx.doi.org/10.1063/1.108011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Gebauer, Petr. "Theory of electrophoretic focusing on an inverse electromigration dispersion profile." ELECTROPHORESIS 41, no. 7-8 (2020): 471–80. http://dx.doi.org/10.1002/elps.201900229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Jones, W. "Linear response theory of the electromigration driving force in liquid alloys." Philosophical Magazine B 58, no. 6 (1988): 593–602. http://dx.doi.org/10.1080/13642818808211459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Li, L. H., V. Dasika, D. Heskett, and W. H. Tang. "Optical microscopy imaging method for detection of electromigration: Theory and experiment." physica status solidi (a) 204, no. 5 (2007): 1589–95. http://dx.doi.org/10.1002/pssa.200622455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Barsi, Christopher, and Jason W. Fleischer. "Nonlinear Abbe theory." Nature Photonics 7, no. 8 (2013): 639–43. http://dx.doi.org/10.1038/nphoton.2013.171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Glad, S. Torkel. "Nonlinear system theory." Automatica 23, no. 4 (1987): 545–46. http://dx.doi.org/10.1016/0005-1098(87)90085-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kang, Seokwon, Seondo Park, and Yun Daniel Park. "Nonlinear flexural response of a suspended Au nanobeam structure undergoing an electromigration-lead breakdown." AIP Advances 10, no. 9 (2020): 095301. http://dx.doi.org/10.1063/5.0020550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lin, Minghui, and Cemal Basaran. "Electromigration induced stress analysis using fully coupled mechanical–diffusion equations with nonlinear material properties." Computational Materials Science 34, no. 1 (2005): 82–98. http://dx.doi.org/10.1016/j.commatsci.2004.10.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Linares, Felipe, Ademir Pastor, and Marcia Scialom. "Existence of solutions for the surface electromigration equation." Nonlinearity 34, no. 8 (2021): 5213–33. http://dx.doi.org/10.1088/1361-6544/abfae6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bradley, R. M., and Kang Wu. "Crack propagation in a dynamic fuse model of electromigration." Journal of Physics A: Mathematical and General 27, no. 2 (1994): 327–33. http://dx.doi.org/10.1088/0305-4470/27/2/017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chiappinelli, Raffaele. "Nonlinear Rayleigh Quotients and Nonlinear Spectral Theory." Symmetry 11, no. 7 (2019): 928. http://dx.doi.org/10.3390/sym11070928.

Full text
Abstract:
We give a new and simplified definition of spectrumfor a nonlinear operator F acting in a real Banach space X, and study some of its features in terms of (qualitative and) quantitative properties of F such as the measure of noncompactness, α ( F ) , of F. Then, using as a main tool the Ekeland Variational Principle, we focus our attention on the spectral properties of F when F is a gradient operator in a real Hilbert space, and in particular on the role played by its Rayleigh quotient R ( F ) and by the best lower and upper bounds, m ( F ) and M ( F ) , of R ( F ) .
APA, Harvard, Vancouver, ISO, and other styles
32

NARUKAWA, Yasuo. "Nonlinear Utility Theory/Cumurative Prospect Theory." Journal of Japan Society for Fuzzy Theory and Intelligent Informatics 16, no. 4 (2004): 296–302. http://dx.doi.org/10.3156/jsoft.16.296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ghosal, S., and Z. Chen. "Electromigration dispersion in a capillary in the presence of electro-osmotic flow." Journal of Fluid Mechanics 697 (March 9, 2012): 436–54. http://dx.doi.org/10.1017/jfm.2012.76.

Full text
Abstract:
AbstractThe differential migration of ions in an applied electric field is the basis for the separation of chemical species by capillary electrophoresis. Axial diffusion of the concentration peak limits the separation efficiency. Electromigration dispersion is observed when the concentration of sample ions is comparable to that of the background ions. Under such conditions, the local electrical conductivity is significantly altered in the sample zone making the electric field, and, therefore, the ion migration velocity, concentration dependent. The resulting nonlinear wave exhibits shock-like
APA, Harvard, Vancouver, ISO, and other styles
34

Crosby, Kevin M., R. Mark Bradley, and Hervé Boularot. "Electromigration-induced void drift and coalescence: Simulations and a dynamic scaling theory." Physical Review B 56, no. 14 (1997): 8743–51. http://dx.doi.org/10.1103/physrevb.56.8743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kuusi, Tuomo, and Giuseppe Mingione. "Vectorial nonlinear potential theory." Journal of the European Mathematical Society 20, no. 4 (2018): 929–1004. http://dx.doi.org/10.4171/jems/780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ishibashi, Yoshihiro, and Hiroshi Orihara. "Theory of nonlinear response." Ferroelectrics 156, no. 1 (1994): 185–90. http://dx.doi.org/10.1080/00150199408215948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Morita, Akio. "Theory of nonlinear response." Physical Review A 34, no. 2 (1986): 1499–504. http://dx.doi.org/10.1103/physreva.34.1499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zhang, Cun-Hui. "A Nonlinear Renewal Theory." Annals of Probability 16, no. 2 (1988): 793–824. http://dx.doi.org/10.1214/aop/1176991788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Andrushkevich, V. S., Yu G. Gamayunov, and E. V. Patrusheva. "A nonlinear clinotron theory." Journal of Communications Technology and Electronics 55, no. 3 (2010): 330–36. http://dx.doi.org/10.1134/s1064226910030125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Bauchau, O. A., and C. H. Hong. "Nonlinear Composite Beam Theory." Journal of Applied Mechanics 55, no. 1 (1988): 156–63. http://dx.doi.org/10.1115/1.3173622.

Full text
Abstract:
The modeling of naturally curved and twisted beams undergoing arbitrarily large displacements and rotations, but small strains, is a common problem in numerous engineering applications. This paper has three goals: (1) present a new formulation of this problem which includes transverse shearing deformations, torsional warping effects, and elastic couplings resulting from the use of composite materials, (2) show that the small strain assumption must be applied in a consistent fashion for composite beams, and (3) present some numerical results based on this new formulation to assess its accuracy,
APA, Harvard, Vancouver, ISO, and other styles
41

Baños, Alfonso. "Nonlinear quantitative feedback theory." International Journal of Robust and Nonlinear Control 17, no. 2-3 (2006): 181–202. http://dx.doi.org/10.1002/rnc.1104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ishibashi, Yoshihiro. "Theory of nonlinear response." Ferroelectrics 236, no. 1 (2000): 71–79. http://dx.doi.org/10.1080/00150190008016042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

O'Regan, Donal. "Nonlinear operator approximation theory." Numerical Functional Analysis and Optimization 19, no. 5-6 (1998): 587–92. http://dx.doi.org/10.1080/01630569808816847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Adams, David R. "Weighted nonlinear potential theory." Transactions of the American Mathematical Society 297, no. 1 (1986): 73. http://dx.doi.org/10.1090/s0002-9947-1986-0849468-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kerswell, R. R. "Nonlinear Nonmodal Stability Theory." Annual Review of Fluid Mechanics 50, no. 1 (2018): 319–45. http://dx.doi.org/10.1146/annurev-fluid-122316-045042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Prasad, Phoolan. "A nonlinear ray theory." Wave Motion 20, no. 1 (1994): 21–31. http://dx.doi.org/10.1016/0165-2125(94)90029-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Böhmer, Klaus, and Robert Schaback. "A nonlinear discretization theory." Journal of Computational and Applied Mathematics 254 (December 2013): 204–19. http://dx.doi.org/10.1016/j.cam.2013.03.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Norouzzadeh, A., R. Ansari, and M. Darvizeh. "From nonlinear micromorphic to nonlinear micropolar shell theory." Applied Mathematical Modelling 100 (December 2021): 689–727. http://dx.doi.org/10.1016/j.apm.2021.07.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Mahadevan, Mohan, and R. Mark Bradley. "Phase field model of surface electromigration in single crystal metal thin films." Physica D: Nonlinear Phenomena 126, no. 3-4 (1999): 201–13. http://dx.doi.org/10.1016/s0167-2789(98)00276-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kang, S. H., and E. Shin. "A three-dimensional nonlinear analysis of electromigration-induced resistance change and Joule heating in microelectronic interconnects." Solid-State Electronics 45, no. 2 (2001): 341–46. http://dx.doi.org/10.1016/s0038-1101(00)00245-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!