Academic literature on the topic 'Nonlocal Neumann boundary conditions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nonlocal Neumann boundary conditions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nonlocal Neumann boundary conditions"

1

You, Huaiqian, Xin Yang Lu, Nathaniel Trask, and Yue Yu. "An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems." ESAIM: Mathematical Modelling and Numerical Analysis 55 (2021): S811—S851. http://dx.doi.org/10.1051/m2an/2020058.

Full text
Abstract:
In this paper we consider 2D nonlocal diffusion models with a finite nonlocal horizon parameter δ characterizing the range of nonlocal interactions, and consider the treatment of Neumann-like boundary conditions that have proven challenging for discretizations of nonlocal models. We propose a new generalization of classical local Neumann conditions by converting the local flux to a correction term in the nonlocal model, which provides an estimate for the nonlocal interactions of each point with points outside the domain. While existing 2D nonlocal flux boundary conditions have been shown to ex
APA, Harvard, Vancouver, ISO, and other styles
2

You, Huaiqian, XinYang Lu, Nathaniel Task, and Yue Yu. "An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems." ESAIM: Mathematical Modelling and Numerical Analysis 54, no. 4 (2020): 1373–413. http://dx.doi.org/10.1051/m2an/2019089.

Full text
Abstract:
In this paper we consider 2D nonlocal diffusion models with a finite nonlocal horizon parameter δ characterizing the range of nonlocal interactions, and consider the treatment of Neumann-like boundary conditions that have proven challenging for discretizations of nonlocal models. We propose a new generalization of classical local Neumann conditions by converting the local flux to a correction term in the nonlocal model, which provides an estimate for the nonlocal interactions of each point with points outside the domain. While existing 2D nonlocal flux boundary conditions have been shown to ex
APA, Harvard, Vancouver, ISO, and other styles
3

Dipierro, Serena, Xavier Ros-Oton, and Enrico Valdinoci. "Nonlocal problems with Neumann boundary conditions." Revista Matemática Iberoamericana 33, no. 2 (2017): 377–416. http://dx.doi.org/10.4171/rmi/942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Turmetov, B. Kh, and V. V. Karachik. "NEUMANN BOUNDARY CONDITION FOR A NONLOCAL BIHARMONIC EQUATION." Bulletin of the South Ural State University series "Mathematics. Mechanics. Physics" 14, no. 2 (2022): 51–58. http://dx.doi.org/10.14529/mmph220205.

Full text
Abstract:
The solvability conditions for a class of boundary value problems for a nonlocal biharmonic equation in the unit ball with the Neumann conditions on the boundary are studied. The nonlocality of the equation is generated by some orthogonal matrix. The presence and uniqueness of a solution to the proposed Neumann boundary condition is examined, and an integral representation of the solution to the Dirichlet problem in terms of the Green's function for the biharmonic equation in the unit ball is obtained. First, some auxiliary statements are established: the Green's function of the Dirichlet prob
APA, Harvard, Vancouver, ISO, and other styles
5

Bogoya, Mauricio, and Cesar A. Gómez S. "On a nonlocal diffusion model with Neumann boundary conditions." Nonlinear Analysis: Theory, Methods & Applications 75, no. 6 (2012): 3198–209. http://dx.doi.org/10.1016/j.na.2011.12.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aksoylu, Burak, and Fatih Celiker. "Nonlocal problems with local Dirichlet and Neumann boundary conditions." Journal of Mechanics of Materials and Structures 12, no. 4 (2017): 425–37. http://dx.doi.org/10.2140/jomms.2017.12.425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sharafidinov, D. D., and B. Kh Turmetov. "ON THE SOLVABILITY OF CERTAIN INITIAL-BOUNDARY VALUE PROBLEMS FOR A NONLOCAL HYPERBOLIC EQUATION." Q A Iasaýı atyndaǵy Halyqaralyq qazaq-túrіk ýnıversıtetіnіń habarlary (fızıka matematıka ınformatıka serııasy) 31, no. 4 (2024): 7–18. https://doi.org/10.47526/2024-4/2524-0080.12.

Full text
Abstract:
This paper investigates the well-posedness of initial-boundary value problems for a nonlocal analogue of the hyperbolic equation. The elliptic part of the considered equations involves a nonlocal analogue of the Laplace operator. We find the eigenfunctions and eigenvalues of boundary value problems for a nonlocal analogue of the Laplace operator. The eigenfunctions of the problems are represented as even and odd parts with respect to the considered mapping. The symmetry properties of the eigenfunctions of boundary value problems with Dirichlet and Neumann conditions are investigated. These pro
APA, Harvard, Vancouver, ISO, and other styles
8

Karachik, Valery, Batirkhan Turmetov, and Hongfen Yuan. "Four Boundary Value Problems for a Nonlocal Biharmonic Equation in the Unit Ball." Mathematics 10, no. 7 (2022): 1158. http://dx.doi.org/10.3390/math10071158.

Full text
Abstract:
Solvability issues of four boundary value problems for a nonlocal biharmonic equation in the unit ball are investigated. Dirichlet, Neumann, Navier and Riquier–Neumann boundary value problems are studied. For the problems under consideration, existence and uniqueness theorems are proved. Necessary and sufficient conditions for the solvability of all problems are obtained and an integral representations of solutions are given in terms of the corresponding Green’s functions.
APA, Harvard, Vancouver, ISO, and other styles
9

Gomez, C. A., and J. A. Caicedo. "ON A RESCALED NONLOCAL DIFFUSION PROBLEM WITH NEUMANN BOUNDARY CONDITIONS." Advances in Mathematics: Scientific Journal 10, no. 8 (2021): 3013–22. http://dx.doi.org/10.37418/amsj.10.8.2.

Full text
Abstract:
In this work, we consider the rescaled nonlocal diffusion problem with Neumann Boundary Conditions \[ \begin{cases} u_t^{\epsilon}(x,t)=\displaystyle\frac{1}{\epsilon^2} \int_{\Omega}J_{\epsilon}(x-y)(u^\epsilon(y,t)-u^\epsilon(x,t))dy\\ \qquad \qquad+\displaystyle\frac{1}{\epsilon}\int_{\partial \Omega}G_\epsilon(x-y)g(y,t)dS_y,\\ u^\epsilon(x,0)=u_0(x), \end{cases} \] where $\Omega\subset\mathbb{R}^{N}$ is a bounded, connected and smooth domain, $g$ a positive continuous function, $J_\epsilon(z)=C_1\frac{1}{\epsilon^N}J(\frac{z}{\epsilon}), G_\epsilon(x)=C_1\frac{1}{\epsilon^N}G(\frac{x}{\ep
APA, Harvard, Vancouver, ISO, and other styles
10

Agarwal, Praveen, Jochen Merker, and Gregor Schuldt. "Singular Integral Neumann Boundary Conditions for Semilinear Elliptic PDEs." Axioms 10, no. 2 (2021): 74. http://dx.doi.org/10.3390/axioms10020074.

Full text
Abstract:
In this article, we discuss semilinear elliptic partial differential equations with singular integral Neumann boundary conditions. Such boundary value problems occur in applications as mathematical models of nonlocal interaction between interior points and boundary points. Particularly, we are interested in the uniqueness of solutions to such problems. For the sublinear and subcritical case, we calculate, on the one hand, illustrative, rather explicit solutions in the one-dimensional case. On the other hand, we prove in the general case the existence and—via the strong solution of an integro-P
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Nonlocal Neumann boundary conditions"

1

Roman, Svetlana. "Green's functions for boundary-value problems with nonlocal boundary conditions." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20111227_092148-01085.

Full text
Abstract:
In the dissertation, second-order and higher-order differential and discrete equations with additional conditions which are described by linearly independent linear functionals are investigated. The solutions to these problems, formulae and the existence conditions of Green's functions are presented, if the general solution of a homogeneous equation is known. The relation between two Green's functions of two nonhomogeneous problems for the same equation but with different additional conditions is obtained. These results are applied to problems with nonlocal boundary conditions. In the introd
APA, Harvard, Vancouver, ISO, and other styles
2

Mäder-Baumdicker, Elena [Verfasser], and Ernst [Akademischer Betreuer] Kuwert. "The area preserving curve shortening flow with Neumann free boundary conditions = Der flächenerhaltende Curve Shortening Fluss mit einer freien Neumann-Randbedingung." Freiburg : Universität, 2014. http://d-nb.info/1123480648/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Benincasa, Tommaso <1981&gt. "Analysis and optimal control for the phase-field transition system with non-homogeneous Cauchy-Neumann boundary conditions." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/3066/1/benincasa_tommaso_tesi.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Benincasa, Tommaso <1981&gt. "Analysis and optimal control for the phase-field transition system with non-homogeneous Cauchy-Neumann boundary conditions." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/3066/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

PERROTTA, Antea. "Differential Formulation coupled to the Dirichlet-to-Neumann operator for scattering problems." Doctoral thesis, Università degli studi di Cassino, 2020. http://hdl.handle.net/11580/75845.

Full text
Abstract:
This Thesis proposes the use of the Dirichlet-to-Neumann (DtN) operator to improve the accuracy and the efficiency of the numerical solution of an electromagnetic scattering problem, described in terms of a differential formulation. From a general perspective, the DtN operator provides the “connection” (the mapping) between the Dirichlet and the Neumann data onto a proper closed surface. This allows truncation of the computational domain when treating a scattering problem in an unbounded media. Moreover, the DtN operator provides an exact boundary condition, in contrast to other methods such a
APA, Harvard, Vancouver, ISO, and other styles
6

Marchner, Philippe. "Non-reflecting boundary conditions and domain decomposition methods for industrial flow acoustics." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0094.

Full text
Abstract:
Ce travail de thèse est consacré aux méthodes de décomposition de domaine de Schwarz sans recouvrement pour la résolution de problèmes industriels hautes fréquences d'acoustique en écoulement. Les méthodes de résolution en régime harmonique sont difficiles à paralléliser en raison de leur caractère oscillatoire, si bien que les méthodes actuelles sont limitées par une fréquence maximale, imposée par la mémoire disponible de l'ordinateur. Les méthodes de Schwarz sans recouvrement divisent le domaine en sous-domaines d'un point de vue continu et fournissent un cadre approprié en vue d'une parall
APA, Harvard, Vancouver, ISO, and other styles
7

Coco, Armando. "Finite-Difference Ghost-Cell Multigrid Methods for Elliptic problems with Mixed Boundary Conditions and Discontinuous Coefficients." Doctoral thesis, Università di Catania, 2012. http://hdl.handle.net/10761/1107.

Full text
Abstract:
The work of this thesis is devoted to the development of an original and general numerical method for solving the elliptic equation in an arbitrary domain (described by a level-set function) with general boundary conditions (Dirichlet, Neumann, Robin, ...) using Cartesian grids. It can be then considered an immersed boundary method, and the scheme we use is based on a finite-difference ghost-cell technique. The entire problem is solved by an effective multigrid solver, whose components have been suitably constructed in order to be applied to the scheme. The method is extended to the more chal
APA, Harvard, Vancouver, ISO, and other styles
8

Cao, Shunxiang. "Numerical Methods for Fluid-Solid Coupled Simulations: Robin Interface Conditions and Shock-Dominated Applications." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/93514.

Full text
Abstract:
This dissertation investigates the development of numerical algorithms for coupling computational fluid dynamics (CFD) and computational solid dynamics (CSD) solvers, and the use of these solvers for simulating fluid-solid interaction (FSI) problems involving large deformation, shock waves, and multiphase flow. The dissertation consists of two parts. The first part investigates the use of Robin interface conditions to resolve the well-known numerical added-mass instability, which affects partitioned coupling procedures for solving problems with incompressible flow and strong added-mass effect.
APA, Harvard, Vancouver, ISO, and other styles
9

Roman, Svetlana. "Gryno funkcijos uždaviniams su nelokaliosiomis kraštinėmis sąlygomis." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20111227_092259-85107.

Full text
Abstract:
Disertacijoje tiriami antros ir aukštesnės eilės diferencialinis ir diskretusis uždaviniai su įvairiomis, tame tarpe ir nelokaliosiomis, sąlygomis, kurios yra aprašytos tiesiškai nepriklausomais tiesiniais funkcionalais. Pateikiamos šių uždavinių Gryno funkcijų išraiškos ir jų egzistavimo sąlygos, jei žinoma homogeninės lygties fundamentalioji sistema. Gautas dviejų Gryno funkcijų sąryšis uždaviniams su ta pačia lygtimi, bet su papildomomis sąlygomis. Rezultatai pritaikomi uždaviniams su nelokaliosiomis kraštinėmis sąlygomis. Įvadiniame skyriuje aprašyta tiriamoji problema ir temos objektas,
APA, Harvard, Vancouver, ISO, and other styles
10

Bensiali, Bouchra. "Approximations numériques en situations complexes : applications aux plasmas de tokamak." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4332/document.

Full text
Abstract:
Motivée par deux problématiques liées aux plasmas de tokamak, cette thèse propose deux méthodes d'approximation numérique pour deux problèmes mathématiques s'y rattachant. D'une part, pour l'étude du transport turbulent de particules, une méthode numérique basée sur les schémas de subdivision est présentée pour la simulation de trajectoires de particules dans un champ de vitesse fortement variable. D'autre part, dans le cadre de la modélisation de l'interaction plasma-paroi, une méthode de pénalisation est proposée pour la prise en compte de conditions aux limites de type Neumann ou Robin. Ana
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Nonlocal Neumann boundary conditions"

1

E, Zorumski William, and Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. National Aeronautics and Space Administration, Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

E, Zorumski William, and Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. National Aeronautics and Space Administration, Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

E, Zorumski William, and Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. National Aeronautics and Space Administration, Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

E, Zorumski W., Watson Willie R, and Langley Research Center, eds. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions. National Aeronautics and Space Administration, Langley Research Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

E, Zorumski W., Watson Willie R, and Langley Research Center, eds. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions. National Aeronautics and Space Administration, Langley Research Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sun, Xian-He. A high-order direct solver for helmholtz equations with neumann boundary conditions. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sun, Xian-He. A high-order direct solver for helmholtz equations with neumann boundary conditions. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, Xian-He. A high-order direct solver for Helmholtz equations with Neumann boundary conditions. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sun, Xian-He. A high-order direct solver for helmholtz equations with neumann boundary conditions. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. National Aeronautics and Space Administration, Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Nonlocal Neumann boundary conditions"

1

Sayas, Francisco-Javier, Thomas S. Brown, and Matthew E. Hassell. "Neumann boundary conditions." In Variational Techniques for Elliptic Partial Differential Equations. CRC Press, 2019. http://dx.doi.org/10.1201/9780429507069-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Arendt, Wolfgang, and Karsten Urban. "Neumann and Robin boundary conditions." In Partial Differential Equations. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13379-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Droniou, Jérôme, Robert Eymard, Thierry Gallouët, Cindy Guichard, and Raphaèle Herbin. "Neumann, Fourier and Mixed Boundary Conditions." In Mathématiques et Applications. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-79042-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Adomian, George. "Decomposition Solutions for Neumann Boundary Conditions." In Solving Frontier Problems of Physics: The Decomposition Method. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8289-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Mingxin, and Peter Y. H. Pang. "Systems with Homogeneous Neumann Boundary Conditions." In Nonlinear Second Order Elliptic Equations. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8692-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Motreanu, Dumitru, Viorica Venera Motreanu, and Nikolaos Papageorgiou. "Nonlinear Elliptic Equations with Neumann Boundary Conditions." In Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9323-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Leung, Anthony W. "Large Systems under Neumann Boundary Conditions, Bifurcations." In Systems of Nonlinear Partial Differential Equations. Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-015-3937-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Feltrin, Guglielmo. "Neumann and Periodic Boundary Conditions: Existence Results." In Positive Solutions to Indefinite Problems. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94238-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Feltrin, Guglielmo. "Neumann and Periodic Boundary Conditions: Multiplicity Results." In Positive Solutions to Indefinite Problems. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94238-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Aksoylu, Burak, Fatih Celiker, and Orsan Kilicer. "Nonlocal Operators with Local Boundary Conditions: An Overview." In Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-22977-5_34-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nonlocal Neumann boundary conditions"

1

Parks, Michael. "On Neumann-type Boundary Conditions for Nonlocal Models." In Proposed for presentation at the Mechanistic Machine Learning and Digital Twins for Computational Science, Engineering & Technology held September 27-29, 2021 in San Diego, CA. US DOE, 2021. http://dx.doi.org/10.2172/1889347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"On Neumann-type Boundary Conditions for Nonlocal ModelsTheoretical." In Proposed for presentation at the Theoretical and Applied Aspects for Nonlocal Models held July 17-22, 2022 in Banff, Alberta Canada. US DOE, 2022. http://dx.doi.org/10.2172/2004071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Parks, Michael, and Petronela Radu. "On Neumann-type Boundary Conditions for Nonlocal Models." In Proposed for presentation at the 9th U.S. National Congress on Theoretical and Applied Mechanics held June 20-24, 2022 in Austin, TX. US DOE, 2022. http://dx.doi.org/10.2172/2003693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Scabbia, F. "Surface node method for the peridynamic simulation of elastodynamic problems with Neumann boundary conditions." In Aeronautics and Astronautics. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902813-66.

Full text
Abstract:
Abstract. Peridynamics is a nonlocal theory that can effectively handle discontinuities, including crack initiation and propagation. However, near the boundaries, the incomplete nonlocal regions are the cause of the peridynamic surface effect, resulting in unphysical stiffness variation. Additionally, imposing local boundary conditions in a peridynamic (nonlocal) model is often necessary. To address these issues, the surface node method has been proposed for improving accuracy near the boundaries of the body. Although this method has been verified for a variety of problems, it has not been app
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Fan, and Lingling Zhang. "Blow-up phenomenon of parabolic equations with nonlocal terms under Neumann boundary conditions." In 2021 3rd International Conference on Industrial Artificial Intelligence (IAI). IEEE, 2021. http://dx.doi.org/10.1109/iai53119.2021.9619348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

D'Elia, Marta. "Challenges in nonlocal modeling: nonlocal boundary conditions and nonlocal interfaces." In Proposed for presentation at the WCCM 2020 held January 11-15, 2021 in Virtual. US DOE, 2020. http://dx.doi.org/10.2172/1833494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

LOMBARDO, M. C., and M. SAMMARTINO. "NONLOCAL BOUNDARY CONDITIONS FOR THE NAVIER–STOKES EQUATIONS." In Proceedings of the 13th Conference on WASCOM 2005. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773616_0047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Arda, Mustafa, and Metin Aydogdu. "Nonlocal effect on boundary conditions of cantilever nanobeam." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0026430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gámez, José L. "Local bifurcation for elliptic problems: Neumann versus Dirichlet boundary conditions." In The First 60 Years of Nonlinear Analysis of Jean Mawhin. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702906_0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kuryliak, D. B., and Z. T. Nazarchuk. "Wave scattering by wedge with Dirichlet and Neumann boundary conditions." In Proceedings of III International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. DIPED-98. IEEE, 1998. http://dx.doi.org/10.1109/diped.1998.730938.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nonlocal Neumann boundary conditions"

1

D'Elia, Marta, and Yue Yu. On the prescription of boundary conditions for nonlocal Poisson's and peridynamics models. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1817978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

D'Elia, Marta, Pavel Bochev, Mauro Perego, Jeremy Trageser, and David Littlewood. An optimization-based strategy for peridynamic-FEM coupling and for the prescription of nonlocal boundary conditions. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1825041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!