To see the other types of publications on this topic, follow the link: Nonlocal second order operators.

Dissertations / Theses on the topic 'Nonlocal second order operators'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 18 dissertations / theses for your research on the topic 'Nonlocal second order operators.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Us, Oleksiy. "On the qualitative theory of second order elliptic operators." Thesis, University of Bristol, 2001. http://hdl.handle.net/1983/da98356b-08c1-4377-a57b-3abd0b62ed5a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brabazon, Keeran J. "Multigrid methods for nonlinear second order partial differential operators." Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/8481/.

Full text
Abstract:
This thesis is concerned with the efficient numerical solution of nonlinear partial differential equations (PDEs) of elliptic and parabolic type. Such PDEs arise frequently in models used to describe many physical phenomena, from the diffusion of a toxin in soil to the flow of viscous fluids. The main focus of this research is to better understand the implementation and performance of nonlinear multigrid methods for the solution of elliptic and parabolic PDEs, following their discretisation. For the most part finite element discretisations are considered, but other techniques are also discussed. Following discretisation of a PDE the two most frequently used nonlinear multigrid methods are Newton-Multigrid and the Full Approximation Scheme (FAS). These are both very efficient algorithms, and have the advantage that when they are applied to practical problems, their execution times scale linearly with the size of the problem being solved. Even though this has yet to be proved in theory for most problems, these methods have been widely adopted in practice in order to solve highly complex nonlinear (systems of) PDEs. Many research groups use either Newton-MG or FAS without much consideration as to which should be preferred, since both algorithms perform satisfactorily. In this thesis we address the question as to which method is likely to be more computationally efficient in practice. As part of this investigation the implementation of the algorithms is considered in a framework which allows the direct comparison of the computational effort of the two iterations. As well as this, the convergence properties of the methods are considered, applied to a variety of model problems. Extensive results are presented in the comparison, which are explained by available theory whenever possible. The strength and range of results presented allows us to confidently conclude that for a practical problem, discretised using a finite element discretisation, an improved efficiency and stability of a Newton-MG iteration, compared to an FAS iteration, is likely to be observed. The relative advantage of a Newton-MG method is likely to be larger the more complex the problem being solved becomes.
APA, Harvard, Vancouver, ISO, and other styles
3

Noble, Raymond Keith. "Some problems associated with linear differential operators." Thesis, Cardiff University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mason, Colin Stuart. "Boundary perturbations and ultracontractivity of singular second order elliptic operators." Thesis, King's College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.395943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Xue. "Neumann problems for second order elliptic operators with singular coefficients." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/neumann-problems-for-second-order-elliptic-operators-with-singular-coefficients(2e65b780-df58-4429-89df-6d87777843c8).html.

Full text
Abstract:
In this thesis, we prove the existence and uniqueness of the solution to a Neumann boundary problem for an elliptic differential operator with singular coefficients, and reveal the relationship between the solution to the partial differential equation (PDE in abbreviation) and the solution to a kind of backward stochastic differential equations (BSDE in abbreviation).This study is motivated by the research on the Dirichlet problem for an elliptic operator (\cite{Z}). But it turns out that different methods are needed to deal with the reflecting diffusion on a bounded domain. For example, the integral with respect to the boundary local time, which is a nondecreasing process associated with the reflecting diffusion, needs to be estimated. This leads us to a detailed study of the reflecting diffusion. As a result, two-sided estimates on the heat kernels are established. We introduce a new type of backward differential equations with infinity horizon and prove the existence and uniqueness of both L2 and L1 solutions of the BSDEs. In this thesis, we use the BSDE to solve the semilinear Neumann boundary problem. However, this research on the BSDEs has its independent interest. Under certain conditions on both the "singular" coefficient of the elliptic operator and the "semilinear coefficient" in the deterministic differential equation, we find an explicit probabilistic solution to the Neumann problem, which supplies a L2 solution of a BSDE with infinite horizon. We also show that, less restrictive conditions on the coefficients are needed if the solution to the Neumann boundary problem only provides a L1 solution to the BSDE.
APA, Harvard, Vancouver, ISO, and other styles
6

Shimoda, Taishi. "Hypoellipticity of second order differential operators with sign-changing principal symbols /." Sendai : Tohoku Univ, 2000. http://www.loc.gov/catdir/toc/fy0713/2007329003.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Teka, Kubrom Hisho. "The obstacle problem for second order elliptic operators in nondivergence form." Diss., Kansas State University, 2012. http://hdl.handle.net/2097/14035.

Full text
Abstract:
Doctor of Philosophy
Department of Mathematics
Ivan Blank
We study the obstacle problem with an elliptic operator in nondivergence form with principal coefficients in VMO. We develop all of the basic theory of existence, uniqueness, optimal regularity, and nondegeneracy of the solutions. These results, in turn, allow us to begin the study of the regularity of the free boundary, and we show existence of blowup limits, a basic measure stability result, and a measure-theoretic version of the Caffarelli alternative proven in Caffarelli's 1977 paper ``The regularity of free boundaries in higher dimensions." Finally, we show that blowup limits are in general not unique at free boundary points.
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, Nanhee. "Carleman estimates for the general second order operators and applications to inverse problems." Diss., Wichita State University, 2010. http://hdl.handle.net/10057/3652.

Full text
Abstract:
We derive Carleman estimates with two large parameters for a general partial di erential operator of second order under explicit su cient global conditions of pseudo-convexity on the weight function. We use these estimates to derive the most natural Carleman type estimates for the anisotropic system of elasticity with residual stress. Also, we give applications to uniqueness and stability of the continuation, observability, and identi cation of the residual stress from boundary measurements.
Thesis (Ph.D.)--Wichita State University, College of Liberal Arts and Sciences, Dept. of Mathematics and Statistics
APA, Harvard, Vancouver, ISO, and other styles
9

Debroux, Noémie. "Mathematical modelling of image processing problems : theoretical studies and applications to joint registration and segmentation." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMIR02/document.

Full text
Abstract:
Dans cette thèse, nous nous proposons d'étudier et de traiter conjointement plusieurs problèmes phares en traitement d'images incluant le recalage d'images qui vise à apparier deux images via une transformation, la segmentation d'images dont le but est de délimiter les contours des objets présents au sein d'une image, et la décomposition d'images intimement liée au débruitage, partitionnant une image en une version plus régulière de celle-ci et sa partie complémentaire oscillante appelée texture, par des approches variationnelles locales et non locales. Les relations étroites existant entre ces différents problèmes motivent l'introduction de modèles conjoints dans lesquels chaque tâche aide les autres, surmontant ainsi certaines difficultés inhérentes au problème isolé. Le premier modèle proposé aborde la problématique de recalage d'images guidé par des résultats intermédiaires de segmentation préservant la topologie, dans un cadre variationnel. Un second modèle de segmentation et de recalage conjoint est introduit, étudié théoriquement et numériquement puis mis à l'épreuve à travers plusieurs simulations numériques. Le dernier modèle présenté tente de répondre à un besoin précis du CEREMA (Centre d'Études et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement) à savoir la détection automatique de fissures sur des images d'enrobés bitumineux. De part la complexité des images à traiter, une méthode conjointe de décomposition et de segmentation de structures fines est mise en place, puis justifiée théoriquement et numériquement, et enfin validée sur les images fournies
In this thesis, we study and jointly address several important image processing problems including registration that aims at aligning images through a deformation, image segmentation whose goal consists in finding the edges delineating the objects inside an image, and image decomposition closely related to image denoising, and attempting to partition an image into a smoother version of it named cartoon and its complementary oscillatory part called texture, with both local and nonlocal variational approaches. The first proposed model addresses the topology-preserving segmentation-guided registration problem in a variational framework. A second joint segmentation and registration model is introduced, theoretically and numerically studied, then tested on various numerical simulations. The last model presented in this work tries to answer a more specific need expressed by the CEREMA (Centre of analysis and expertise on risks, environment, mobility and planning), namely automatic crack recovery detection on bituminous surface images. Due to the image complexity, a joint fine structure decomposition and segmentation model is proposed to deal with this problem. It is then theoretically and numerically justified and validated on the provided images
APA, Harvard, Vancouver, ISO, and other styles
10

Calvo, D., and Bert-Wolfgang Schulze. "Edge symbolic structures of second generation." Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2009/2994/.

Full text
Abstract:
Operators on a manifold with (geometric) singularities are degenerate in a natural way. They have a principal symbolic structure with contributions from the different strata of the configuration. We study the calculus of such operators on the level of edge symbols of second generation, based on specific quantizations of the corner-degenerate interior symbols, and show that this structure is preserved under compositions.
APA, Harvard, Vancouver, ISO, and other styles
11

Pester, Cornelia. "A posteriori error estimation for non-linear eigenvalue problems for differential operators of second order with focus on 3D vertex singularities." Doctoral thesis, Berlin Logos-Verl, 2006. http://deposit.ddb.de/cgi-bin/dokserv?id=2806614&prov=M&dok_var=1&dok_ext=htm.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Pester, Cornelia. "A posteriori error estimation for non-linear eigenvalue problems for differential operators of second order with focus on 3D vertex singularities." Doctoral thesis, Logos Verlag Berlin, 2005. https://monarch.qucosa.de/id/qucosa%3A18520.

Full text
Abstract:
This thesis is concerned with the finite element analysis and the a posteriori error estimation for eigenvalue problems for general operator pencils on two-dimensional manifolds. A specific application of the presented theory is the computation of corner singularities. Engineers use the knowledge of the so-called singularity exponents to predict the onset and the propagation of cracks. All results of this thesis are explained for two model problems, the Laplace and the linear elasticity problem, and verified by numerous numerical results.
APA, Harvard, Vancouver, ISO, and other styles
13

Nguyen, Thi Tuyen. "Comportement en temps long des solutions de quelques équations de Hamilton-Jacobi du premier et second ordre, locales et non-locales, dans des cas non-périodiques." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S089/document.

Full text
Abstract:
La motivation principale de cette thèse est l'étude du comportement en temps grand des solutions non-bornées d'équations de Hamilton-Jacobi visqueuses dans RN en présence d'un terme d'Ornstein-Uhlenbeck. Nous considérons la même question dans le cas d'une équation de Hamilton-Jacobi du premier ordre. Dans le premier cas, qui constitue le cœur de la thèse, nous généralisons les résultats de Fujita, Ishii et Loreti (2006) dans plusieurs directions. La première est de considérer des opérateurs de diffusion plus généraux en remplaçant le Laplacien par une matrice de diffusion quelconque. Nous considérons ensuite des opérateurs non-locaux intégro-différentiels de type Laplacien fractionnaire. Le second type d'extension concerne le Hamiltonien qui peut dépendre de x et est seulement supposé sous-linéaire par rapport au gradient
The main aim of this thesis is to study large time behavior of unbounded solutions of viscous Hamilton-Jacobi equations in RN in presence of an Ornstein-Uhlenbeck drift. We also consider the same issue for a first order Hamilton-Jacobi equation. In the first case, which is the core of the thesis, we generalize the results obtained by Fujita, Ishii and Loreti (2006) in several directions. The first one is to consider more general operators. We first replace the Laplacian by a general diffusion matrix and then consider a non-local integro-differential operator of fractional Laplacian type. The second kind of extension is to deal with more general Hamiltonians which are merely sublinear
APA, Harvard, Vancouver, ISO, and other styles
14

Edelstein, R. M. "A classification of second order equations via nonlocal transformations." Thesis, 2000. http://hdl.handle.net/10413/3694.

Full text
Abstract:
The study of second order ordinary differential equations is vital given their proliferation in mechanics. The group theoretic approach devised by Lie is one of the most successful techniques available for solving these equations. However, many second order equations cannot be reduced to quadratures due to the lack of a sufficient number of point symmetries. We observe that increasing the order will result in a third order differential equation which, when reduced via an alternate symmetry, may result in a solvable second order equation. Thus the original second order equation can be solved. In this dissertation we will attempt to classify second order differential equations that can be solved in this manner. We also provide the nonlocal transformations between the original second order equations and the new solvable second order equations. Our starting point is third order differential equations. Here we concentrate on those invariant under two- and three-dimensional Lie algebras.
Thesis (M.Sc.)-University of Natal, Durban, 2000.
APA, Harvard, Vancouver, ISO, and other styles
15

Boshego, Norman. "Spectral analysis of self-adjoint second order differential operators." Thesis, 2015. http://hdl.handle.net/10539/18592.

Full text
Abstract:
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in ful lment of the requirements for the degree of Master of Science. Johannesburg, March 2015.
The primary purpose of this study is to investigate the asymptotic distribution of the eigenvalues of self-adjoint second order di erential operators. We rst analyse the problem where the functions g and h are equal to zero. To improve on the terms of the eigenvalue problem for g; h = 0, we consider the eigenvalue problem for general functions g and h. Here we calculate explicitly the rst four terms of the eigenvalue asymptotics problem.
APA, Harvard, Vancouver, ISO, and other styles
16

"On the Spectrum of a Class of Second Order Periodic Elliptic Differential Operators." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi1037.ps.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Shen, Lin-hong, and 沈林弘. "Homogenization of some special degenerate second order linear elliptic operators and its numerical computation." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/09316679482569904004.

Full text
Abstract:
碩士
國立清華大學
數學系
103
Abstract Homogenization of some special degenerate second order linear elliptic operators and its numerical computation Lin-Hong Shen, Avisor:Assistant Professor Chia-Chieh Chu Department of Mathematics National Tsing Hua University, Hsin-Chu City,Taiwan In many area, homogenization is an alternative way to find out the asymptotic behaviour of partial differential equation. This arti- cle is about homogenization process of degenerate second order linear elliptic operators. In this article, we give both theoretical and com- putational analysis to the asymptotic behaviour of the solution of the equation. −div(a( x )Duh) = f on Ω , uh |∂Ω= 0 on ∂Ω , when Eh tends to zero, where aij (x) is Y -periodic, nonnegative defi- nite for almost every x in domain Ω and vanishes at some points in Ω. We find out that the homogenization process of degenerate ellip- tic equation in rectangle domain is still available for some particular coefficient functions with its inverse is integrable Key words: homogenization, degenerate elliptic equation, asymp- totic behaviour, numerical analysis
APA, Harvard, Vancouver, ISO, and other styles
18

Pester, Cornelia [Verfasser]. "A posteriori error estimation for non-linear eigenvalue problems for differential operators of second order with focus on 3D vertex singularities / vorgelegt von Cornelia Pester." 2006. http://d-nb.info/980933056/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography