To see the other types of publications on this topic, follow the link: Nonnegative matrix factorization (NMF).

Dissertations / Theses on the topic 'Nonnegative matrix factorization (NMF)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Nonnegative matrix factorization (NMF).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Mohammadiha, Nasser. "Speech Enhancement Using Nonnegative MatrixFactorization and Hidden Markov Models." Doctoral thesis, KTH, Kommunikationsteori, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-124642.

Full text
Abstract:
Reducing interference noise in a noisy speech recording has been a challenging task for many years yet has a variety of applications, for example, in handsfree mobile communications, in speech recognition, and in hearing aids. Traditional single-channel noise reduction schemes, such as Wiener filtering, do not work satisfactorily in the presence of non-stationary background noise. Alternatively, supervised approaches, where the noise type is known in advance, lead to higher-quality enhanced speech signals. This dissertation proposes supervised and unsupervised single-channel noise reduction algorithms. We consider two classes of methods for this purpose: approaches based on nonnegative matrix factorization (NMF) and methods based on hidden Markov models (HMM).  The contributions of this dissertation can be divided into three main (overlapping) parts. First, we propose NMF-based enhancement approaches that use temporal dependencies of the speech signals. In a standard NMF, the important temporal correlations between consecutive short-time frames are ignored. We propose both continuous and discrete state-space nonnegative dynamical models. These approaches are used to describe the dynamics of the NMF coefficients or activations. We derive optimal minimum mean squared error (MMSE) or linear MMSE estimates of the speech signal using the probabilistic formulations of NMF. Our experiments show that using temporal dynamics in the NMF-based denoising systems improves the performance greatly. Additionally, this dissertation proposes an approach to learn the noise basis matrix online from the noisy observations. This relaxes the assumption of an a-priori specified noise type and enables us to use the NMF-based denoising method in an unsupervised manner. Our experiments show that the proposed approach with online noise basis learning considerably outperforms state-of-the-art methods in different noise conditions.  Second, this thesis proposes two methods for NMF-based separation of sources with similar dictionaries. We suggest a nonnegative HMM (NHMM) for babble noise that is derived from a speech HMM. In this approach, speech and babble signals share the same basis vectors, whereas the activation of the basis vectors are different for the two signals over time. We derive an MMSE estimator for the clean speech signal using the proposed NHMM. The objective evaluations and performed subjective listening test show that the proposed babble model and the final noise reduction algorithm outperform the conventional methods noticeably. Moreover, the dissertation proposes another solution to separate a desired source from a mixture with arbitrarily low artifacts.  Third, an HMM-based algorithm to enhance the speech spectra using super-Gaussian priors is proposed. Our experiments show that speech discrete Fourier transform (DFT) coefficients have super-Gaussian rather than Gaussian distributions even if we limit the speech data to come from a specific phoneme. We derive a new MMSE estimator for the speech spectra that uses super-Gaussian priors. The results of our evaluations using the developed noise reduction algorithm support the super-Gaussianity hypothesis.

QC 20130916

APA, Harvard, Vancouver, ISO, and other styles
2

Palkki, Ryan D. "Chemical identification under a poisson model for Raman spectroscopy." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45935.

Full text
Abstract:
Raman spectroscopy provides a powerful means of chemical identification in a variety of fields, partly because of its non-contact nature and the speed at which measurements can be taken. The development of powerful, inexpensive lasers and sensitive charge-coupled device (CCD) detectors has led to widespread use of commercial and scientific Raman systems. However, relatively little work has been done developing physics-based probabilistic models for Raman measurement systems and crafting inference algorithms within the framework of statistical estimation and detection theory. The objective of this thesis is to develop algorithms and performance bounds for the identification of chemicals from their Raman spectra. First, a Poisson measurement model based on the physics of a dispersive Raman device is presented. The problem is then expressed as one of deterministic parameter estimation, and several methods are analyzed for computing the maximum-likelihood (ML) estimates of the mixing coefficients under our data model. The performance of these algorithms is compared against the Cramer-Rao lower bound (CRLB). Next, the Raman detection problem is formulated as one of multiple hypothesis detection (MHD), and an approximation to the optimal decision rule is presented. The resulting approximations are related to the minimum description length (MDL) approach to inference. In our simulations, this method is seen to outperform two common general detection approaches, the spectral unmixing approach and the generalized likelihood ratio test (GLRT). The MHD framework is applied naturally to both the detection of individual target chemicals and to the detection of chemicals from a given class. The common, yet vexing, scenario is then considered in which chemicals are present that are not in the known reference library. A novel variation of nonnegative matrix factorization (NMF) is developed to address this problem. Our simulations indicate that this algorithm gives better estimation performance than the standard two-stage NMF approach and the fully supervised approach when there are chemicals present that are not in the library. Finally, estimation algorithms are developed that take into account errors that may be present in the reference library. In particular, an algorithm is presented for ML estimation under a Poisson errors-in-variables (EIV) model. It is shown that this same basic approach can also be applied to the nonnegative total least squares (NNTLS) problem. Most of the techniques developed in this thesis are applicable to other problems in which an object is to be identified by comparing some measurement of it to a library of known constituent signatures.
APA, Harvard, Vancouver, ISO, and other styles
3

Everling, Nils. "Extending the explanatory power of factor pricing models using topic modeling." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210253.

Full text
Abstract:
Factor models attribute stock returns to a linear combination of factors. A model with great explanatory power (R2) can be used to estimate the systematic risk of an investment. One of the most important factors is the industry which the company of the stock operates in. In commercial risk models this factor is often determined with a manually constructed stock classification scheme such as GICS. We present Natural Language Industry Scheme (NLIS), an automatic and multivalued classification scheme based on topic modeling. The topic modeling is performed on transcripts of company earnings calls and identifies a number of topics analogous to industries. We use non-negative matrix factorization (NMF) on a term-document matrix of the transcripts to perform the topic modeling. When set to explain returns of the MSCI USA index we find that NLIS consistently outperforms GICS, often by several hundred basis points. We attribute this to NLIS’ ability to assign a stock to multiple industries. We also suggest that the proportions of industry assignments for a given stock could correspond to expected future revenue sources rather than current revenue sources. This property could explain some of NLIS’ success since it closely relates to theoretical stock pricing.
Faktormodeller förklarar aktieprisrörelser med en linjär kombination av faktorer. En modell med hög förklaringsgrad (R2) kan användas föratt skatta en investerings systematiska risk. En av de viktigaste faktorerna är aktiebolagets industritillhörighet. I kommersiella risksystem bestäms industri oftast med ett aktieklassifikationsschema som GICS, publicerat av ett finansiellt institut. Vi presenterar Natural Language Industry Scheme (NLIS), ett automatiskt klassifikationsschema baserat på topic modeling. Vi utför topic modeling på transkript av aktiebolags investerarsamtal. Detta identifierar ämnen, eller topics, som är jämförbara med industrier. Topic modeling sker genom icke-negativmatrisfaktorisering (NMF) på en ord-dokumentmatris av transkripten. När NLIS används för att förklara prisrörelser hos MSCI USA-indexet finner vi att NLIS överträffar GICS, ofta med 2-3 procent. Detta tillskriver vi NLIS förmåga att ge flera industritillhörigheter åt samma aktie. Vi föreslår också att proportionerna hos industritillhörigheterna för en aktie kan motsvara förväntade inkomstkällor snarare än nuvarande inkomstkällor. Denna egenskap kan också vara en anledning till NLIS framgång då den nära relaterar till teoretisk aktieprissättning.
APA, Harvard, Vancouver, ISO, and other styles
4

Kuang, Da. "Nonnegative matrix factorization for clustering." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52299.

Full text
Abstract:
This dissertation shows that nonnegative matrix factorization (NMF) can be extended to a general and efficient clustering method. Clustering is one of the fundamental tasks in machine learning. It is useful for unsupervised knowledge discovery in a variety of applications such as text mining and genomic analysis. NMF is a dimension reduction method that approximates a nonnegative matrix by the product of two lower rank nonnegative matrices, and has shown great promise as a clustering method when a data set is represented as a nonnegative data matrix. However, challenges in the widespread use of NMF as a clustering method lie in its correctness and efficiency: First, we need to know why and when NMF could detect the true clusters and guarantee to deliver good clustering quality; second, existing algorithms for computing NMF are expensive and often take longer time than other clustering methods. We show that the original NMF can be improved from both aspects in the context of clustering. Our new NMF-based clustering methods can achieve better clustering quality and run orders of magnitude faster than the original NMF and other clustering methods. Like other clustering methods, NMF places an implicit assumption on the cluster structure. Thus, the success of NMF as a clustering method depends on whether the representation of data in a vector space satisfies that assumption. Our approach to extending the original NMF to a general clustering method is to switch from the vector space representation of data points to a graph representation. The new formulation, called Symmetric NMF, takes a pairwise similarity matrix as an input and can be viewed as a graph clustering method. We evaluate this method on document clustering and image segmentation problems and find that it achieves better clustering accuracy. In addition, for the original NMF, it is difficult but important to choose the right number of clusters. We show that the widely-used consensus NMF in genomic analysis for choosing the number of clusters have critical flaws and can produce misleading results. We propose a variation of the prediction strength measure arising from statistical inference to evaluate the stability of clusters and select the right number of clusters. Our measure shows promising performances in artificial simulation experiments. Large-scale applications bring substantial efficiency challenges to existing algorithms for computing NMF. An important example is topic modeling where users want to uncover the major themes in a large text collection. Our strategy of accelerating NMF-based clustering is to design algorithms that better suit the computer architecture as well as exploit the computing power of parallel platforms such as the graphic processing units (GPUs). A key observation is that applying rank-2 NMF that partitions a data set into two clusters in a recursive manner is much faster than applying the original NMF to obtain a flat clustering. We take advantage of a special property of rank-2 NMF and design an algorithm that runs faster than existing algorithms due to continuous memory access. Combined with a criterion to stop the recursion, our hierarchical clustering algorithm runs significantly faster and achieves even better clustering quality than existing methods. Another bottleneck of NMF algorithms, which is also a common bottleneck in many other machine learning applications, is to multiply a large sparse data matrix with a tall-and-skinny dense matrix. We use the GPUs to accelerate this routine for sparse matrices with an irregular sparsity structure. Overall, our algorithm shows significant improvement over popular topic modeling methods such as latent Dirichlet allocation, and runs more than 100 times faster on data sets with millions of documents.
APA, Harvard, Vancouver, ISO, and other styles
5

Calabrese, Stephen. "Nonnegative Matrix Factorization and Document Classification." DigitalCommons@CalPoly, 2015. https://digitalcommons.calpoly.edu/theses/1462.

Full text
Abstract:
Applications of Non-negative Matrix Factorization are ubiquitous, and there are several well known algorithms available. This paper is concerned with the preprocessing of the documents and how the preprocessing effects document classification. The preprocessing discussed in this paper will run the classification on a variety of inner dimensions to see how my initialization compares to random initialization across an assortment of inner dimensions. The document classification is accomplished by using Non-negative Matrix Factorization and a Support Vector Machine. Several of the well known algorithms call for a random initialization of matrices before starting an iterative process to a locally best solution. Not only is the initialization often random, but choosing the size of the inner dimension also remains a difficult and mysterious task.\\ This paper explores the possible gains in categorization accuracy given a more intelligently chosen initialization as opposed to a random initialization through the use of the Reuters-21578 document collection. This paper presents two new and different approaches for initialization of the data matrix. The first approach uses the most important words for a given document that are least important to all the other documents. The second approach will incorporate the words that appear in the title and header of the documents that are not stop words. The motivation for this is that the title usually tells the reader what the document is about. As a result, the words should be relevant to the category of the document. This paper will also present an entire framework for testing and comparing different Non-negative Matrix Factorization initialization methods. A thorough overview of the implementation and results are presented to ease the interfacing with future work.
APA, Harvard, Vancouver, ISO, and other styles
6

Redko, Ievgen. "Nonnegative matrix factorization for transfer learning." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCD059.

Full text
Abstract:
L’apprentissage par transfert consiste `a utiliser un jeu de taches pour influencerl’apprentissage et améliorer les performances sur une autre tache.Cependant, ce paradigme d’apprentissage peut en réalité gêner les performancessi les taches (sources et cibles) sont trop dissemblables. Un défipour l’apprentissage par transfert est donc de développer des approchesqui détectent et évitent le transfert négatif des connaissances utilisant tr`espeu d’informations sur la tache cible. Un cas particulier de ce type d’apprentissageest l’adaptation de domaine. C’est une situation o`u les tachessources et cibles sont identiques mais dans des domaines différents. Danscette thèse, nous proposons des approches adaptatives basées sur la factorisationmatricielle non-figurative permettant ainsi de trouver une représentationadéquate des données pour ce type d’apprentissage. En effet, unereprésentation utile rend généralement la structure latente dans les donnéesexplicite, et réduit souvent la dimensionnalité´e des données afin que d’autresméthodes de calcul puissent être appliquées. Nos contributions dans cettethèse s’articulent autour de deux dimensions complémentaires : théoriqueet pratique.Tout d’abord, nous avons propose deux méthodes différentes pour résoudrele problème de l’apprentissage par transfert non supervise´e bas´e sur destechniques de factorisation matricielle non-négative. La première méthodeutilise une procédure d’optimisation itérative qui vise `a aligner les matricesde noyaux calculées sur les bases des données provenant de deux taches.La seconde représente une approche linéaire qui tente de découvrir unplongement pour les deux taches minimisant la distance entre les distributionsde probabilité correspondantes, tout en préservant la propriété depositivité.Nous avons également propos´e un cadre théorique bas´e sur les plongementsHilbert-Schmidt. Cela nous permet d’améliorer les résultats théoriquesde l’adaptation au domaine, en introduisant une mesure de distancenaturelle et intuitive avec de fortes garanties de calcul pour son estimation.Les résultats propos´es combinent l’etancheite des bornes de la théoried’apprentissage de Rademacher tout en assurant l’estimation efficace deses facteurs cl´es.Les contributions théoriques et algorithmiques proposées ont et évaluéessur un ensemble de données de référence dans le domaine avec des résultatsprometteurs
The ability of a human being to extrapolate previously gained knowledge to other domains inspired a new family of methods in machine learning called transfer learning. Transfer learning is often based on the assumption that objects in both target and source domains share some common feature and/or data space. If this assumption is false, most of transfer learning algorithms are likely to fail. In this thesis we propose to investigate the problem of transfer learning from both theoretical and applicational points of view.First, we present two different methods to solve the problem of unsuper-vised transfer learning based on Non-negative matrix factorization tech-niques. First one proceeds using an iterative optimization procedure that aims at aligning the kernel matrices calculated based on the data from two tasks. Second one represents a linear approach that aims at discovering an embedding for two tasks that decreases the distance between the cor-responding probability distributions while preserving the non-negativity property.We also introduce a theoretical framework based on the Hilbert-Schmidt embeddings that allows us to improve the current state-of-the-art theo-retical results on transfer learning by introducing a natural and intuitive distance measure with strong computational guarantees for its estimation. The proposed results combine the tightness of data-dependent bounds de-rived from Rademacher learning theory while ensuring the efficient esti-mation of its key factors.Both theoretical contributions and the proposed methods were evaluated on a benchmark computer vision data set with promising results. Finally, we believe that the research direction chosen in this thesis may have fruit-ful implications in the nearest future
APA, Harvard, Vancouver, ISO, and other styles
7

Frederic, John. "Examination of Initialization Techniques for Nonnegative Matrix Factorization." Digital Archive @ GSU, 2008. http://digitalarchive.gsu.edu/math_theses/63.

Full text
Abstract:
While much research has been done regarding different Nonnegative Matrix Factorization (NMF) algorithms, less time has been spent looking at initialization techniques. In this thesis, four different initializations are considered. After a brief discussion of NMF, the four initializations are described and each one is independently examined, followed by a comparison of the techniques. Next, each initialization's performance is investigated with respect to the changes in the size of the data set. Finally, a method by which smaller data sets may be used to determine how to treat larger data sets is examined.
APA, Harvard, Vancouver, ISO, and other styles
8

Parathai, Phetcharat. "Blind source separation using statistical nonnegative matrix factorization." Thesis, University of Newcastle upon Tyne, 2015. http://hdl.handle.net/10443/2830.

Full text
Abstract:
Blind Source Separation (BSS) attempts to automatically extract and track a signal of interest in real world scenarios with other signals present. BSS addresses the problem of recovering the original signals from an observed mixture without relying on training knowledge. This research studied three novel approaches for solving the BSS problem based on the extensions of non-negative matrix factorization model and the sparsity regularization methods. 1) A framework of amalgamating pruning and Bayesian regularized cluster nonnegative tensor factorization with Itakura-Saito divergence for separating sources mixed in a stereo channel format: The sparse regularization term was adaptively tuned using a hierarchical Bayesian approach to yield the desired sparse decomposition. The modified Gaussian prior was formulated to express the correlation between different basis vectors. This algorithm automatically detected the optimal number of latent components of the individual source. 2) Factorization for single-channel BSS which decomposes an information-bearing matrix into complex of factor matrices that represent the spectral dictionary and temporal codes: A variational Bayesian approach was developed for computing the sparsity parameters for optimizing the matrix factorization. This approach combined the advantages of both complex matrix factorization (CMF) and variational-sparse analysis. An imitated-stereo mixture model developed by weighting and time-shifting the original single-channel mixture where source signals can be modelled by the AR processes. The proposed mixing mixture is analogous to a stereo signal created by two microphones with one being real and another virtual. The imitated-stereo mixture employed the nonnegative tensor factorization for separating the observed mixture. The separability analysis of the imitated-stereo mixture was derived using Wiener masking. All algorithms were tested with real audio signals. Performance of source separation was assessed by measuring the distortion between original source and the estimated one according to the signal-to-distortion (SDR) ratio. The experimental results demonstrate that the proposed uninformed audio separation algorithms have surpassed among the conventional BSS methods; i.e. IS-cNTF, SNMF and CMF methods, with average SDR improvement in the ranges from 2.6dB to 6.4dB per source.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhu, Fei. "Kernel nonnegative matrix factorization : application to hyperspectral imagery." Thesis, Troyes, 2016. http://www.theses.fr/2016TROY0024/document.

Full text
Abstract:
Cette thèse vise à proposer de nouveaux modèles pour la séparation de sources dans le cadre non linéaire des méthodes à noyaux en apprentissage statistique, et à développer des algorithmes associés. Le domaine d'application privilégié est le démélange en imagerie hyperspectrale. Tout d'abord, nous décrivons un modèle original de la factorisation en matrices non négatives (NMF), en se basant sur les méthodes à noyaux. Le modèle proposé surmonte la malédiction de préimage, un problème inverse hérité des méthodes à noyaux. Dans le même cadre proposé, plusieurs extensions sont développées pour intégrer les principales contraintes soulevées par les images hyperspectrales. Pour traiter des masses de données, des algorithmes de traitement en ligne sont développés afin d'assurer une complexité calculatoire fixée. Également, nous proposons une approche de factorisation bi-objective qui permet de combiner les modèles de démélange linéaire et non linéaire, où les décompositions de NMF conventionnelle et à noyaux sont réalisées simultanément. La dernière partie se concentre sur le démélange robuste aux bandes spectrales aberrantes. En décrivant le démélange selon le principe de la maximisation de la correntropie, deux problèmes de démélange robuste sont traités sous différentes contraintes soulevées par le problème de démélange hyperspectral. Des algorithmes de type directions alternées sont utilisés pour résoudre les problèmes d'optimisation associés
This thesis aims to propose new nonlinear unmixing models within the framework of kernel methods and to develop associated algorithms, in order to address the hyperspectral unmixing problem.First, we investigate a novel kernel-based nonnegative matrix factorization (NMF) model, that circumvents the pre-image problem inherited from the kernel machines. Within the proposed framework, several extensions are developed to incorporate common constraints raised in hypersepctral images analysis. In order to tackle large-scale and streaming data, we next extend the kernel-based NMF to an online fashion, by keeping a fixed and tractable complexity. Moreover, we propose a bi-objective NMF model as an attempt to combine the linear and nonlinear unmixing models. The decompositions of both the conventional NMF and the kernel-based NMF are performed simultaneously. The last part of this thesis studies a supervised unmixing model, based on the correntropy maximization principle. This model is shown robust to outlier bands. Two correntropy-based unmixing problems are addressed, considering different constraints in hyperspectral unmixing problem. The alternating direction method of multipliers (ADMM) is investigated to solve the related optimization problems
APA, Harvard, Vancouver, ISO, and other styles
10

寛康, 阿部, and Hiroyasu Abe. "Extensions of nonnegative matrix factorization for exploratory data analysis." Thesis, https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13001149/?lang=0, 2017. https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13001149/?lang=0.

Full text
Abstract:
非負値行列因子分解(NMF)は,全要素が非負であるデータ行列に対する行列分解法である.本論文では,実在するデータ行列に頻繁に見られる特徴や解釈容易性の向上を考慮に入れ,探索的にデータ分析を行うためのNMFの拡張について論じている.具体的には,零過剰行列や外れ値を含む行列を扱うための確率分布やダイバージェンス,さらには分解結果である因子行列の数や因子行列への直交制約について述べている.
Nonnegative matrix factorization (NMF) is a matrix decomposition technique to analyze nonnegative data matrices, which are matrices of which all elements are nonnegative. In this thesis, we discuss extensions of NMF for exploratory data analysis considering common features of a real nonnegative data matrix and an easy interpretation. In particular, we discuss probability distributions and divergences for zero-inflated data matrix and data matrix with outliers, two-factor vs. three-factor, and orthogonal constraint to factor matrices.
博士(文化情報学)
Doctor of Culture and Information Science
同志社大学
Doshisha University
APA, Harvard, Vancouver, ISO, and other styles
11

Wang, Jing. "Advances in nonnegative matrix factorization with application on data clustering." Thesis, Bournemouth University, 2018. http://eprints.bournemouth.ac.uk/30354/.

Full text
Abstract:
Clustering is an important direction in many fields, e.g., machine learning, data mining and computer vision. It aims to divide data into groups (clusters) for the purposes of summarization or improved understanding. With the rapid development of new technology, high-dimensional data become very common in many real world applications, such as satellite returned large number of images, robot received real-time video streaming, large-scale text database and the mass of information on the social networks (i.e., Facebook, Twitter), etc, however, most existing clustering approaches are heavily restricted by the large number of features, and tend to be inefficient and even infeasible. In this thesis, we focus on finding an optimal low dimensional representation of high-dimensional data, based nonnegative matrix factorization (NMF) framework, for better clustering. Specifically, there are three methods as follows: - Multiple Components Based Representation Learning Real data are usually complex and contain various components. For example, face images have expressions and genders. Each component mainly reflects one aspect of data and provides information others do not have. Therefore, exploring the semantic information of multiple components as well as the diversity among them is of great benefit to understand data comprehensively and in-depth. To this end, we propose a novel multi-component nonnegative matrix factorization. Instead of seeking for only one representation of data, our approach learns multiple representations simultaneously, with the help of the Hilbert Schmidt Independence Criterion (HSIC) as a diversity term. HSIC explores the diverse information among the representations, where each representation corresponds to a component. By integrating the multiple representations, a more comprehensive representation is then established. Extensive experimental results on real-world datasets have shown that MCNMF not only achieves more accurate performance over the state-of-the-arts using the aggregated representation, but also interprets data from different aspects with the multiple representations, which is beyond what current NMFs can offer. - Ordered Structure Preserving Representation Learning Real-world applications often process data, such as motion sequences and video clips, are with ordered structure, i.e., consecutive neighbouring data samples are very likely share similar features unless a sudden change occurs. Therefore, traditional NMF assumes the data samples and features to be independently distributed, making it not proper for the analysis of such data. To overcome this limitation, a novel NMF approach is proposed to take full advantage of the ordered nature embedded in the sequential data to improve the accuracy of data representation. With a L2,1-norm based neighbour penalty term, ORNMF enforces the similarity of neighbouring data. ORNMF also adopts the L2,1-norm based loss function to improve its robustness against noises and outliers. Moreover, ORNMF can find the cluster boundaries and get the number of clusters without the number of clusters to be given beforehand. A new iterative up- dating optimization algorithm is derived to solve ORNMF’s objective function. The proofs of the convergence and correctness of the scheme are also presented. Experiments on both synthetic and real-world datasets have demonstrated the effectiveness of ORNMF. - Diversity Enhanced Multi-view Representation Learning Multi-view learning aims to explore the correlations of different information, such as different features or modalities to boost the performance of data analysis. Multi-view data are very common in many real world applications because data is often collected from diverse domains or obtained from different feature extractors. For example, color and texture information can be utilized as different kinds of features in images and videos. Web pages are also able to be represented using the multi-view features based on text and hyperlinks. Taken alone, these views will often be deficient or incomplete because different views describe distinct perspectives of data. Therefore, we propose a Diverse Multi-view NMF approach to explore diverse information among multi-view representations for more comprehensive learning. With a novel diversity regularization term, DiNMF explicitly enforces the orthogonality of different data representations. Importantly, DiNMF converges linearly and scales well with large-scale data. By taking into account the manifold structures, we further extend the approach under a graph-based model to preserve the locally geometrical structure of the manifolds for multi-view setting. Compared to other multi-view NMF methods, the enhanced diversity of both approaches reduce the redundancy between the multi-view representations, and improve the accuracy of the clustering results. - Constrained Multi-View Representation Learning To incorporate prior information for learning accurately, we propose a novel semi- supervised multi-view NMF approach, which considers both the label constraints as well as the multi-view consistence simultaneously. In particular, the approach guarantees that data sharing the same label will have the same new representation and be mapped into the same class in the low-dimensional space regardless whether they come from the same view. Moreover, different from current NMF- based multi-view clustering methods that require the weight factor of each view to be specified individually, we introduce a single parameter to control the distribution of weighting factors for NMF-based multi-view clustering. Consequently, the weight factor of each view can be assigned automatically depending on the dissimilarity between each new representation matrix and the consensus matrix. Besides, Using the structured sparsity-inducing, L2,1-norm, our method is robust against noises and hence can achieve more stable clustering results.
APA, Harvard, Vancouver, ISO, and other styles
12

Lin, Yicong. "Topic Analysis of Hidden Trends in Patented Features Using Nonnegative Matrix Factorization." Scholarship @ Claremont, 2016. http://scholarship.claremont.edu/cmc_theses/1534.

Full text
Abstract:
Intellectual property has gained more attention in recent decades because innovations have become one of the most important resources. This paper implements a probabilistic topic model using nonnegative matrix factorization (NMF) to discover some of the key elements in computer patent, as the industry grew from 1990 to 2009. This paper proposes a new “shrinking model” based on NMF and also performs a close examination of some variations of the base model. Note that rather than studying the strategy to pick the optimized number of topics (“rank”), this paper is particularly interested in which factorization (including different kinds of initiation) methods are able to construct “topics” with the best quality given the predetermined rank. Performing NMF to the description text of patent features, we observe key topics emerge such as “platform” and “display” with strong presence across all years but we also see other short-lived significant topics such as “power” and “heat” which signify the saturation of the industry.
APA, Harvard, Vancouver, ISO, and other styles
13

Becker, Julian [Verfasser]. "Nonnegative Matrix Factorization with Adaptive Elements for Monaural Audio Source Separation / Julian Becker." Aachen : Shaker, 2016. http://d-nb.info/1118257979/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Winck, Ryder Christian. "Simultaneous control of coupled actuators using singular value decomposition and semi-nonnegative matrix factorization." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45907.

Full text
Abstract:
This thesis considers the application of singular value decomposition (SVD) and semi-nonnegative matrix factorization (SNMF) within feedback control systems, called the SVD System and SNMF System, to control numerous subsystems with a reduced number of control inputs. The subsystems are coupled using a row-column structure to allow mn subsystems to be controlled using m+n inputs. Past techniques for controlling systems in this row-column structure have focused on scheduling procedures that offer limited performance. The SVD and SNMF Systems permit simultaneous control of every subsystem, which increases the convergence rate by an order of magnitude compared with previous methods. In addition to closed loop control, open loop procedures using the SVD and SNMF are compared with previous scheduling procedures, demonstrating significant performance improvements. This thesis presents theoretical results for the controllability of systems using the row-column structure and for the stability and performance of the SVD and SNMF Systems. Practical challenges to the implementation of the SVD and SNMF Systems are also examined. Numerous simulation examples are provided, in particular, a dynamic simulation of a pin array device, called Digital Clay, and two physical demonstrations are used to assess the feasibility of the SVD and SNMF Systems for specific applications.
APA, Harvard, Vancouver, ISO, and other styles
15

Jafeth, Villasana Tinajero Pedro. "New Variants of Nonnegative Matrix Factorization with Application to Speech Coding and Speech Enhancement." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-253264.

Full text
Abstract:
In this thesis, new variants of nonnegative matrix factorization (NMF) based ona convolutional data model, -divergence and sparsication are developed andanalyzed. These NMF variants are collectively referred to as -CNMF. Commonsparsication techniques such as L1-norm minimization and elastic net arediscussed and a new regularizer is proposed. It is shown that the new regularizer,unlike the above-mentioned sparsication techniques, has control overthe number of active bases in the NMF dictionary. Moreover, the -CNMF isextended to multichannel signals: it learns a common dictionary by exploitingthe correlation between channels through a multichannel coecient matrix. Asa result, an algorithm for source separation based on multichannel -CNMF isdeveloped. The algorithm is further tested in a multilayer setting, in which thefrequency-shifted coecient matrices serve as input to the next higher layer.Finally, three variants of the algorithm are evaluated in the context of speechenhancement, focusing on the problem of speech extraction from complex auditoryscenes. Figures obtained from the SiSEC 2016 data show that the proposedalgorithms perform comparably or better than the state of the art.
Den här rapporten behandlar utveckling och analys av nya varianter av icke-negativ matrisfaktorisering (eng: nonnegative matrix factorization, NMF), som baseras på en datormodell med faltning, β-divergens och glesa matriser. Dessa varianter av NMF:er kallas allmänt för β-CNMF:er, där C:et står för “convolutional”. Vidare diskuteras vanliga tekniker för regularisering, såsom L1-normminimering och elastiska nät, och en ny formulering för regularisering föreslås. Det visar sig att denna nya formulering, till skillnad från ovan nämnda regulariseringstekniker, möjliggör kontroll av antalet aktiva basfunktioner i NMF:ens bibliotek. Utöver detta så utökas även β-CNMF:en till att behandla multikanalsignaler genom att tränas på en gemensam bibliotek som utnyttjar korskorrelationen mellan kanalerna. Detta möjliggör utveckling av en algoritm för källseparation av multikanalsignaler. Vidare så testas algoritmen i multipla led, där frekvensskiftade koefficientmatriser i ett led utgör indata till nästa led. Slutligen så bedöms tre olika varianter av algoritmen för talförbättring, med fokus på extrahering av tal ur komplexa ljudmiljöer. Mätningar från SiSEC 2016 visar att den föreslagna algoritmen presterar lika bra eller överträffar nu-varande befintliga algoritmer.
APA, Harvard, Vancouver, ISO, and other styles
16

Groetzner, Patrick Hermann [Verfasser], and Mirjam [Akademischer Betreuer] Dür. "A Method for Completely Positive and Nonnegative Matrix Factorization / Patrick Hermann Groetzner ; Betreuer: Mirjam Dür." Trier : Universität Trier, 2018. http://d-nb.info/1197807918/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Groetzner, Patrick [Verfasser], and Mirjam [Akademischer Betreuer] Dür. "A Method for Completely Positive and Nonnegative Matrix Factorization / Patrick Hermann Groetzner ; Betreuer: Mirjam Dür." Trier : Universität Trier, 2018. http://d-nb.info/1197807918/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Mei, Jiali. "Time series recovery and prediction with regression-enhanced nonnegative matrix factorization applied to electricity consumption." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS578/document.

Full text
Abstract:
Nous sommes intéressé par la reconstitution et la prédiction des séries temporelles multivariées à partir des données partiellement observées et/ou agrégées.La motivation du problème vient des applications dans la gestion du réseau électrique.Nous envisageons des outils capables de résoudre le problème d'estimation de plusieurs domaines.Après investiguer le krigeage, qui est une méthode de la litérature de la statistique spatio-temporelle, et une méthode hybride basée sur le clustering des individus, nous proposons un cadre général de reconstitution et de prédiction basé sur la factorisation de matrice nonnégative.Ce cadre prend en compte de manière intrinsèque la corrélation entre les séries temporelles pour réduire drastiquement la dimension de l'espace de paramètres.Une fois que le problématique est formalisé dans ce cadre, nous proposons deux extensions par rapport à l'approche standard.La première extension prend en compte l'autocorrélation temporelle des individus.Cette information supplémentaire permet d'améliorer la précision de la reconstitution.La deuxième extension ajoute une composante de régression dans la factorisation de matrice nonnégative.Celle-ci nous permet d'utiliser dans l'estimation du modèle des variables exogènes liées avec la consommation électrique, ainsi de produire des facteurs plus interprétatbles, et aussi améliorer la reconstitution.De plus, cette méthod nous donne la possibilité d'utiliser la factorisation de matrice nonnégative pour produire des prédictions.Sur le côté théorique, nous nous intéressons à l'identifiabilité du modèle, ainsi qu'à la propriété de la convergence des algorithmes que nous proposons.La performance des méthodes proposées en reconstitution et en prédiction est testé sur plusieurs jeux de données de consommation électrique à niveaux d'agrégation différents
We are interested in the recovery and prediction of multiple time series from partially observed and/or aggregate data.Motivated by applications in electricity network management, we investigate tools from multiple fields that are able to deal with such data issues.After examining kriging from spatio-temporal statistics and a hybrid method based on the clustering of individuals, we propose a general framework based on nonnegative matrix factorization.This frameworks takes advantage of the intrisic correlation between the multivariate time series to greatly reduce the dimension of the parameter space.Once the estimation problem is formalized in the nonnegative matrix factorization framework, two extensions are proposed to improve the standard approach.The first extension takes into account the individual temporal autocorrelation of each of the time series.This increases the precision of the time series recovery.The second extension adds a regression layer into nonnegative matrix factorization.This allows exogenous variables that are known to be linked with electricity consumption to be used in estimation, hence makes the factors obtained by the method to be more interpretable, and also increases the recovery precision.Moreover, this method makes the method applicable to prediction.We produce a theoretical analysis on the framework which concerns the identifiability of the model and the convergence of the algorithms that are proposed.The performance of proposed methods to recover and forecast time series is tested on several multivariate electricity consumption datasets at different aggregation level
APA, Harvard, Vancouver, ISO, and other styles
19

Mandula, Ondrej. "Super-resolution methods for fluorescence microscopy." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8909.

Full text
Abstract:
Fluorescence microscopy is an important tool for biological research. However, the resolution of a standard fluorescence microscope is limited by diffraction, which makes it difficult to observe small details of a specimen’s structure. We have developed two fluorescence microscopy methods that achieve resolution beyond the classical diffraction limit. The first method represents an extension of localisation microscopy. We used nonnegative matrix factorisation (NMF) to model a noisy dataset of highly overlapping fluorophores with intermittent intensities. We can recover images of individual sources from the optimised model, despite their high mutual overlap in the original dataset. This allows us to consider blinking quantum dots as bright and stable fluorophores for localisation microscopy. Moreover, NMF allows recovery of sources each having a unique shape. Such a situation can arise, for example, when the sources are located in different focal planes, and NMF can potentially be used for three dimensional superresolution imaging. We discuss the practical aspects of applying NMF to real datasets, and show super-resolution images of biological samples labelled with quantum dots. It should be noted that this technique can be performed on any wide-field epifluorescence microscope equipped with a camera, which makes this super-resolution method very accessible to a wide scientific community. The second optical microscopy method we discuss in this thesis is a member of the growing family of structured illumination techniques. Our main goal is to apply structured illumination to thick fluorescent samples generating a large out-of-focus background. The out-of-focus fluorescence background degrades the illumination pattern, and the reconstructed images suffer from the influence of noise. We present a combination of structured illumination microscopy and line scanning. This technique reduces the out-of-focus fluorescence background, which improves the quality of the illumination pattern and therefore facilitates reconstruction. We present super-resolution, optically sectioned images of a thick fluorescent sample, revealing details of the specimen’s inner structure. In addition, in this thesis we also discuss a theoretical resolution limit for noisy and pixelated data. We correct a previously published expression for the so-called fundamental resolution measure (FREM) and derive FREM for two fluorophores with intermittent intensity. We show that the intensity intermittency of the sources (observed for quantum dots, for example) can increase the “resolution” defined in terms of FREM.
APA, Harvard, Vancouver, ISO, and other styles
20

Kim, Jingu. "Nonnegative matrix and tensor factorizations, least squares problems, and applications." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42909.

Full text
Abstract:
Nonnegative matrix factorization (NMF) is a useful dimension reduction method that has been investigated and applied in various areas. NMF is considered for high-dimensional data in which each element has a nonnegative value, and it provides a low-rank approximation formed by factors whose elements are also nonnegative. The nonnegativity constraints imposed on the low-rank factors not only enable natural interpretation but also reveal the hidden structure of data. Extending the benefits of NMF to multidimensional arrays, nonnegative tensor factorization (NTF) has been shown to be successful in analyzing complicated data sets. Despite the success, NMF and NTF have been actively developed only in the recent decade, and algorithmic strategies for computing NMF and NTF have not been fully studied. In this thesis, computational challenges regarding NMF, NTF, and related least squares problems are addressed. First, efficient algorithms of NMF and NTF are investigated based on a connection from the NMF and the NTF problems to the nonnegativity-constrained least squares (NLS) problems. A key strategy is to observe typical structure of the NLS problems arising in the NMF and the NTF computation and design a fast algorithm utilizing the structure. We propose an accelerated block principal pivoting method to solve the NLS problems, thereby significantly speeding up the NMF and NTF computation. Implementation results with synthetic and real-world data sets validate the efficiency of the proposed method. In addition, a theoretical result on the classical active-set method for rank-deficient NLS problems is presented. Although the block principal pivoting method appears generally more efficient than the active-set method for the NLS problems, it is not applicable for rank-deficient cases. We show that the active-set method with a proper starting vector can actually solve the rank-deficient NLS problems without ever running into rank-deficient least squares problems during iterations. Going beyond the NLS problems, it is presented that a block principal pivoting strategy can also be applied to the l1-regularized linear regression. The l1-regularized linear regression, also known as the Lasso, has been very popular due to its ability to promote sparse solutions. Solving this problem is difficult because the l1-regularization term is not differentiable. A block principal pivoting method and its variant, which overcome a limitation of previous active-set methods, are proposed for this problem with successful experimental results. Finally, a group-sparsity regularization method for NMF is presented. A recent challenge in data analysis for science and engineering is that data are often represented in a structured way. In particular, many data mining tasks have to deal with group-structured prior information, where features or data items are organized into groups. Motivated by an observation that features or data items that belong to a group are expected to share the same sparsity pattern in their latent factor representations, We propose mixed-norm regularization to promote group-level sparsity. Efficient convex optimization methods for dealing with the regularization terms are presented along with computational comparisons between them. Application examples of the proposed method in factor recovery, semi-supervised clustering, and multilingual text analysis are presented.
APA, Harvard, Vancouver, ISO, and other styles
21

Thapa, Nirmal. "CONTEXT AWARE PRIVACY PRESERVING CLUSTERING AND CLASSIFICATION." UKnowledge, 2013. http://uknowledge.uky.edu/cs_etds/15.

Full text
Abstract:
Data are valuable assets to any organizations or individuals. Data are sources of useful information which is a big part of decision making. All sectors have potential to benefit from having information. Commerce, health, and research are some of the fields that have benefited from data. On the other hand, the availability of the data makes it easy for anyone to exploit the data, which in many cases are private confidential data. It is necessary to preserve the confidentiality of the data. We study two categories of privacy: Data Value Hiding and Data Pattern Hiding. Privacy is a huge concern but equally important is the concern of data utility. Data should avoid privacy breach yet be usable. Although these two objectives are contradictory and achieving both at the same time is challenging, having knowledge of the purpose and the manner in which it will be utilized helps. In this research, we focus on some particular situations for clustering and classification problems and strive to balance the utility and privacy of the data. In the first part of this dissertation, we propose Nonnegative Matrix Factorization (NMF) based techniques that accommodate constraints defined explicitly into the update rules. These constraints determine how the factorization takes place leading to the favorable results. These methods are designed to make alterations on the matrices such that user-specified cluster properties are introduced. These methods can be used to preserve data value as well as data pattern. As NMF and K-means are proven to be equivalent, NMF is an ideal choice for pattern hiding for clustering problems. In addition to the NMF based methods, we propose methods that take into account the data structures and the attribute properties for the classification problems. We separate the work into two different parts: linear classifiers and nonlinear classifiers. We propose two different solutions based on the classifiers. We study the effect of distortion on the utility of data. We propose three distortion measurement metrics which demonstrate better characteristics than the traditional metrics. The effectiveness of the measures is examined on different benchmark datasets. The result shows that the methods have the desirable properties such as invariance to translation, rotation, and scaling.
APA, Harvard, Vancouver, ISO, and other styles
22

Shen, Chong. "Topic Analysis of Tweets on the European Refugee Crisis Using Non-negative Matrix Factorization." Scholarship @ Claremont, 2016. http://scholarship.claremont.edu/cmc_theses/1388.

Full text
Abstract:
The ongoing European Refugee Crisis has been one of the most popular trending topics on Twitter for the past 8 months. This paper applies topic modeling on bulks of tweets to discover the hidden patterns within these social media discussions. In particular, we perform topic analysis through solving Non-negative Matrix Factorization (NMF) as an Inexact Alternating Least Squares problem. We accelerate the computation using techniques including tweet sampling and augmented NMF, compare NMF results with different ranks and visualize the outputs through topic representation and frequency plots. We observe that supportive sentiments maintained a strong presence while negative sentiments such as safety concerns have emerged over time.
APA, Harvard, Vancouver, ISO, and other styles
23

Pham, Viet Nga. "Programmation DC et DCA pour l'optimisation non convexe/optimisation globale en variables mixtes entières : Codes et Applications." Phd thesis, INSA de Rouen, 2013. http://tel.archives-ouvertes.fr/tel-00833570.

Full text
Abstract:
Basés sur les outils théoriques et algorithmiques de la programmation DC et DCA, les travaux de recherche dans cette thèse portent sur les approches locales et globales pour l'optimisation non convexe et l'optimisation globale en variables mixtes entières. La thèse comporte 5 chapitres. Le premier chapitre présente les fondements de la programmation DC et DCA, et techniques de Séparation et Evaluation (B&B) (utilisant la technique de relaxation DC pour le calcul des bornes inférieures de la valeur optimale) pour l'optimisation globale. Y figure aussi des résultats concernant la pénalisation exacte pour la programmation en variables mixtes entières. Le deuxième chapitre est consacré au développement d'une méthode DCA pour la résolution d'une classe NP-difficile des programmes non convexes non linéaires en variables mixtes entières. Ces problèmes d'optimisation non convexe sont tout d'abord reformulées comme des programmes DC via les techniques de pénalisation en programmation DC de manière que les programmes DC résultants soient efficacement résolus par DCA et B&B bien adaptés. Comme première application en optimisation financière, nous avons modélisé le problème de gestion de portefeuille sous le coût de transaction concave et appliqué DCA et B&B à sa résolution. Dans le chapitre suivant nous étudions la modélisation du problème de minimisation du coût de transaction non convexe discontinu en gestion de portefeuille sous deux formes : la première est un programme DC obtenu en approximant la fonction objectif du problème original par une fonction DC polyèdrale et la deuxième est un programme DC mixte 0-1 équivalent. Et nous présentons DCA, B&B, et l'algorithme combiné DCA-B&B pour leur résolution. Le chapitre 4 étudie la résolution exacte du problème multi-objectif en variables mixtes binaires et présente deux applications concrètes de la méthode proposée. Nous nous intéressons dans le dernier chapitre à ces deux problématiques challenging : le problème de moindres carrés linéaires en variables entières bornées et celui de factorisation en matrices non négatives (Nonnegative Matrix Factorization (NMF)). La méthode NMF est particulièrement importante de par ses nombreuses et diverses applications tandis que les applications importantes du premier se trouvent en télécommunication. Les simulations numériques montrent la robustesse, rapidité (donc scalabilité), performance et la globalité de DCA par rapport aux méthodes existantes.
APA, Harvard, Vancouver, ISO, and other styles
24

Ravel, Sylvain. "Démixage d’images hyperspectrales en présence d’objets de petite taille." Thesis, Ecole centrale de Marseille, 2017. http://www.theses.fr/2017ECDM0006/document.

Full text
Abstract:
Cette thèse est consacrée au démixage en imagerie hyperspectrale en particulier dans le cas où des objets de petite taille sont présents dans la scène. Les images hyperspectrales contiennent une grande quantité d’information à la fois spectrale et spatiale, et chaque pixel peut être vu comme le spectre de réflexion de la zone imagée. Du fait de la faible résolution spatiale des capteurs le spectre de réflexion observé au niveau de chaque pixel est un mélange des spectres de réflexion de l’ensemble des composants imagés dans le pixel. Une problématique de ces images hyperspectrales est le démixage, qui consiste à décomposer l’image en une liste de spectres sources, appelés endmembers, correspondants aux spectres de réflexions des composants de la scène d’une part, et d’autre part la proportion de chacun de ces spectres source dans chaque pixel de l’image. De nombreuses méthodes de démixage existent mais leur efficacité reste amoindrie en présence de spectres sources dits rares (c’est-à-dire des spectres présents dans très peu de pixels, et souvent à un niveau subpixelique). Ces spectres rares correspondent à des composants présents en faibles quantités dans la scène et peuvent être vus comme des anomalies dont la détection est souvent cruciale pour certaines applications.Nous présentons dans un premier temps deux méthodes de détection des pixels rares dans une image, la première basée sur un seuillage de l’erreur de reconstruction après estimation des endmembers abondants, la seconde basée sur les coefficients de détails obtenus par la décomposition en ondelettes. Nous proposons ensuite une méthode de démixage adaptée au cas où une partie des endmembers sont connus a priori et montrons que cette méthode utilisée avec les méthodes de détection proposées permet le démixage des endmembers des pixels rares. Enfin nous étudions une méthode de rééchantillonnage basée sur la méthode du bootstrap pour amplifier le rôle de ces pixels rares et proposer des méthodes de démixage en présence d’objets de petite taille
This thesis is devoted to the unmixing issue in hyperspectral images, especiallyin presence of small sized objects. Hyperspectral images contains an importantamount of both spectral and spatial information. Each pixel of the image canbe assimilated to the reflection spectra of the imaged scene. Due to sensors’ lowspatial resolution, the observed spectra are a mixture of the reflection spectraof the different materials present in the pixel. The unmixing issue consists inestimating those materials’ spectra, called endmembers, and their correspondingabundances in each pixel. Numerous unmixing methods have been proposed butthey fail when an endmembers is rare (that is to say an endmember present inonly a few of the pixels). We call rare pixels, pixels containing those endmembers.The presence of those rare endmembers can be seen as anomalies that we want todetect and unmix. In a first time, we present two detection methods to retrievethis anomalies. The first one use a thresholding criterion on the reconstructionerror from estimated dominant endmembers. The second one, is based on wavelettransform. Then we propose an unmixing method adapted when some endmembersare known a priori. This method is then used with the presented detectionmethod to propose an algorithm to unmix the rare pixels’ endmembers. Finally,we study the application of bootstrap resampling method to artificially upsamplerare pixels and propose unmixing methods in presence of small sized targets
APA, Harvard, Vancouver, ISO, and other styles
25

Brisebarre, Godefroy. "Détection de changements en imagerie hyperspectrale : une approche directionnelle." Thesis, Ecole centrale de Marseille, 2014. http://www.theses.fr/2014ECDM0010.

Full text
Abstract:
L’imagerie hyperspectrale est un type d’imagerie émergent qui connaît un essor important depuis le début des années 2000. Grâce à une structure spectrale très fine qui produit un volume de donnée très important, elle apporte, par rapport à l’imagerie visible classique, un supplément d’information pouvant être mis à profit dans de nombreux domaines d’exploitation. Nous nous intéressons spécifiquement à la détection et l’analyse de changements entre deux images de la même scène, pour des applications orientées vers la défense.Au sein de ce manuscrit, nous commençons par présenter l’imagerie hyperspectrale et les contraintes associées à son utilisation pour des problématiques de défense. Nous présentons ensuite une méthode de détection et de classification de changements basée sur la recherche de directions spécifiques dans l’espace généré par le couple d’images, puis sur la fusion des directions proches. Nous cherchons ensuite à exploiter l’information obtenue sur les changements en nous intéressant aux possibilités de dé-mélange de séries temporelles d’images d’une même scène. Enfin, nous présentons un certain nombre d’extensions qui pourront être réalisées afin de généraliser ou améliorer les travaux présentés et nous concluons
Hyperspectral imagery is an emerging imagery technology which has known a growing interest since the 2000’s. This technology allows an impressive growth of the data registered from a specific scene compared to classical RGB imagery. Indeed, although the spatial resolution is significantly lower, the spectral resolution is very small and the covered spectral area is very wide. We focus on change detection between two images of a given scene for defense oriented purposes.In the following, we start by introducing hyperspectral imagery and the specificity of its exploitation for defence purposes. We then present a change detection and analysis method based on the search for specifical directions in the space generated by the image couple, followed by a merging of the nearby directions. We then exploit this information focusing on theunmixing capabilities of multitemporal hyperspectral data. Finally, we will present a range of further works that could be done in relation with our work and conclude about it
APA, Harvard, Vancouver, ISO, and other styles
26

Lecharlier, Loïc. "Blind inverse imaging with positivity constraints." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209240.

Full text
Abstract:
Dans les problèmes inverses en imagerie, on suppose généralement connu l’opérateur ou matrice décrivant le système de formation de l’image. De façon équivalente pour un système linéaire, on suppose connue sa réponse impulsionnelle. Toutefois, ceci n’est pas une hypothèse réaliste pour de nombreuses applications pratiques pour lesquelles cet opérateur n’est en fait pas connu (ou n’est connu qu’approximativement). On a alors affaire à un problème d’inversion dite “aveugle”. Dans le cas de systèmes invariants par translation, on parle de “déconvolution aveugle” car à la fois l’image ou objet de départ et la réponse impulsionnelle doivent être estimées à partir de la seule image observée qui résulte d’une convolution et est affectée d’erreurs de mesure. Ce problème est notoirement difficile et pour pallier les ambiguïtés et les instabilités numériques inhérentes à ce type d’inversions, il faut recourir à des informations ou contraintes supplémentaires, telles que la positivité qui s’est avérée un levier de stabilisation puissant dans les problèmes d’imagerie non aveugle. La thèse propose de nouveaux algorithmes d’inversion aveugle dans un cadre discret ou discrétisé, en supposant que l’image inconnue, la matrice à inverser et les données sont positives. Le problème est formulé comme un problème d’optimisation (non convexe) où le terme d’attache aux données à minimiser, modélisant soit le cas de données de type Poisson (divergence de Kullback-Leibler) ou affectées de bruit gaussien (moindres carrés), est augmenté par des termes de pénalité sur les inconnues du problème. La stratégie d’optimisation consiste en des ajustements alternés de l’image à reconstruire et de la matrice à inverser qui sont de type multiplicatif et résultent de la minimisation de fonctions coût “surrogées” valables dans le cas positif. Le cadre assez général permet d’utiliser plusieurs types de pénalités, y compris sur la variation totale (lissée) de l’image. Une normalisation éventuelle de la réponse impulsionnelle ou de la matrice est également prévue à chaque itération. Des résultats de convergence pour ces algorithmes sont établis dans la thèse, tant en ce qui concerne la décroissance des fonctions coût que la convergence de la suite des itérés vers un point stationnaire. La méthodologie proposée est validée avec succès par des simulations numériques relatives à différentes applications telle que la déconvolution aveugle d'images en astronomie, la factorisation en matrices positives pour l’imagerie hyperspectrale et la déconvolution de densités en statistique.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
27

Toumi, Ichrak. "Decomposition methods of NMR signal of complex mixtures : models ans applications." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4351/document.

Full text
Abstract:
L'objectif de ce travail était de tester des méthodes de SAS pour la séparation des spectres complexes RMN de mélanges dans les plus simples des composés purs. Dans une première partie, les méthodes à savoir JADE et NNSC ont été appliqué es dans le cadre de la DOSY , une application aux données CPMG était démontrée. Dans une deuxième partie, on s'est concentré sur le développement d'un algorithme efficace "beta-SNMF" . Ceci s'est montré plus performant que NNSC pour beta inférieure ou égale à 2. Etant donné que dans la littérature, le choix de beta a été adapté aux hypothèses statistiques sur le bruit additif, une étude statistique du bruit RMN de la DOSY a été faite pour obtenir une image plus complète de nos données RMN étudiées
The objective of the work was to test BSS methods for the separation of the complex NMR spectra of mixtures into the simpler ones of the pure compounds. In a first part, known methods namely JADE and NNSC were applied in conjunction for DOSY , performing applications for CPMG were demonstrated. In a second part, we focused on developing an effective algorithm "beta- SNMF ". This was demonstrated to outperform NNSC for beta less or equal to 2. Since in the literature, the choice of beta has been adapted to the statistical assumptions on the additive noise, a statistical study of NMR DOSY noise was done to get a more complete picture about our studied NMR data
APA, Harvard, Vancouver, ISO, and other styles
28

Lefèvre, Augustin. "Dictionary learning methods for single-channel source separation." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00797093.

Full text
Abstract:
In this thesis we provide three main contributions to blind source separation methods based on NMF. Our first contribution is a group-sparsity inducing penalty specifically tailored for Itakura-Saito NMF. In many music tracks, there are whole intervals where only one source is active at the same time. The group-sparsity penalty we propose allows to blindly indentify these intervals and learn source specific dictionaries. As a consequence, those learned dictionaries can be used to do source separation in other parts of the track were several sources are active. These two tasks of identification and separation are performed simultaneously in one run of group-sparsity Itakura-Saito NMF. Our second contribution is an online algorithm for Itakura-Saito NMF that allows to learn dictionaries on very large audio tracks. Indeed, the memory complexity of a batch implementation NMF grows linearly with the length of the recordings and becomes prohibitive for signals longer than an hour. In contrast, our online algorithm is able to learn NMF on arbitrarily long signals with limited memory usage. Our third contribution deals user informed NMF. In short mixed signals, blind learning becomes very hard and sparsity do not retrieve interpretable dictionaries. Our contribution is very similar in spirit to inpainting. It relies on the empirical fact that, when observing the spectrogram of a mixture signal, an overwhelming proportion of it consists in regions where only one source is active. We describe an extension of NMF to take into account time-frequency localized information on the absence/presence of each source. We also investigate inferring this information with tools from machine learning.
APA, Harvard, Vancouver, ISO, and other styles
29

Chen, Yuxin. "Apprentissage interactif de mots et d'objets pour un robot humanoïde." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLY003/document.

Full text
Abstract:
Les applications futures de la robotique, en particulier pour des robots de service à la personne, exigeront des capacités d’adaptation continue à l'environnement, et notamment la capacité à reconnaître des nouveaux objets et apprendre des nouveaux mots via l'interaction avec les humains. Bien qu'ayant fait d'énormes progrès en utilisant l'apprentissage automatique, les méthodes actuelles de vision par ordinateur pour la détection et la représentation des objets reposent fortement sur de très bonnes bases de données d’entrainement et des supervisions d'apprentissage idéales. En revanche, les enfants de deux ans ont une capacité impressionnante à apprendre à reconnaître des nouveaux objets et en même temps d'apprendre les noms des objets lors de l'interaction avec les adultes et sans supervision précise. Par conséquent, suivant l'approche de le robotique développementale, nous développons dans la thèse des approches d'apprentissage pour les objets, en associant leurs noms et leurs caractéristiques correspondantes, inspirées par les capacités des enfants, en particulier l'interaction ambiguë avec l’homme en s’inspirant de l'interaction qui a lieu entre les enfants et les parents.L'idée générale est d’utiliser l'apprentissage cross-situationnel (cherchant les points communs entre différentes présentations d’un objet ou d’une caractéristique) et la découverte de concepts multi-modaux basée sur deux approches de découverte de thèmes latents: la Factorisation en Natrices Non-Négatives (NMF) et l'Allocation de Dirichlet latente (LDA). Sur la base de descripteurs de vision et des entrées audio / vocale, les approches proposées vont découvrir les régularités sous-jacentes dans le flux de données brutes afin de parvenir à produire des ensembles de mots et leur signification visuelle associée (p.ex le nom d’un objet et sa forme, ou un adjectif de couleur et sa correspondance dans les images). Nous avons développé une approche complète basée sur ces algorithmes et comparé leur comportements face à deux sources d'incertitudes: ambiguïtés de références, dans des situations où plusieurs mots sont donnés qui décrivent des caractéristiques d'objets multiples; et les ambiguïtés linguistiques, dans des situations où les mots-clés que nous avons l'intention d'apprendre sont intégrés dans des phrases complètes. Cette thèse souligne les solutions algorithmiques requises pour pouvoir effectuer un apprentissage efficace de ces associations de mot-référent à partir de données acquises dans une configuration d'acquisition simplifiée mais réaliste qui a permis d'effectuer des simulations étendues et des expériences préliminaires dans des vraies interactions homme-robot. Nous avons également apporté des solutions pour l'estimation automatique du nombre de thèmes pour les NMF et LDA.Nous avons finalement proposé deux stratégies d'apprentissage actives: la Sélection par l'Erreur de Reconstruction Maximale (MRES) et l'Exploration Basée sur la Confiance (CBE), afin d'améliorer la qualité et la vitesse de l'apprentissage incrémental en laissant les algorithmes choisir les échantillons d'apprentissage suivants. Nous avons comparé les comportements produits par ces algorithmes et montré leurs points communs et leurs différences avec ceux des humains dans des situations d'apprentissage similaires
Future applications of robotics, especially personal service robots, will require continuous adaptability to the environment, and particularly the ability to recognize new objects and learn new words through interaction with humans. Though having made tremendous progress by using machine learning, current computational models for object detection and representation still rely heavily on good training data and ideal learning supervision. In contrast, two year old children have an impressive ability to learn to recognize new objects and at the same time to learn the object names during interaction with adults and without precise supervision. Therefore, following the developmental robotics approach, we develop in the thesis learning approaches for objects, associating their names and corresponding features, inspired by the infants' capabilities, in particular, the ambiguous interaction with humans, inspired by the interaction that occurs between children and parents.The general idea is to use cross-situational learning (finding the common points between different presentations of an object or a feature) and to implement multi-modal concept discovery based on two latent topic discovery approaches : Non Negative Matrix Factorization (NMF) and Latent Dirichlet Association (LDA). Based on vision descriptors and sound/voice inputs, the proposed approaches will find the underlying regularities in the raw dataflow to produce sets of words and their associated visual meanings (eg. the name of an object and its shape, or a color adjective and its correspondence in images). We developed a complete approach based on these algorithms and compared their behavior in front of two sources of uncertainties: referential ambiguities, in situations where multiple words are given that describe multiple objects features; and linguistic ambiguities, in situations where keywords we intend to learn are merged in complete sentences. This thesis highlights the algorithmic solutions required to be able to perform efficient learning of these word-referent associations from data acquired in a simplified but realistic acquisition setup that made it possible to perform extensive simulations and preliminary experiments in real human-robot interactions. We also gave solutions for the automatic estimation of the number of topics for both NMF and LDA.We finally proposed two active learning strategies, Maximum Reconstruction Error Based Selection (MRES) and Confidence Based Exploration (CBE), to improve the quality and speed of incremental learning by letting the algorithms choose the next learning samples. We compared the behaviors produced by these algorithms and show their common points and differences with those of humans in similar learning situations
APA, Harvard, Vancouver, ISO, and other styles
30

Vo, Xuan Thanh. "Apprentissage avec la parcimonie et sur des données incertaines par la programmation DC et DCA." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0193/document.

Full text
Abstract:
Dans cette thèse, nous nous concentrons sur le développement des méthodes d'optimisation pour résoudre certaines classes de problèmes d'apprentissage avec la parcimonie et/ou avec l'incertitude des données. Nos méthodes sont basées sur la programmation DC (Difference of Convex functions) et DCA (DC Algorithms) étant reconnues comme des outils puissants d'optimisation. La thèse se compose de deux parties : La première partie concerne la parcimonie tandis que la deuxième partie traite l'incertitude des données. Dans la première partie, une étude approfondie pour la minimisation de la norme zéro a été réalisée tant sur le plan théorique qu'algorithmique. Nous considérons une approximation DC commune de la norme zéro et développons quatre algorithmes basées sur la programmation DC et DCA pour résoudre le problème approché. Nous prouvons que nos algorithmes couvrent tous les algorithmes standards existants dans le domaine. Ensuite, nous étudions le problème de la factorisation en matrices non-négatives (NMF) et fournissons des algorithmes appropriés basés sur la programmation DC et DCA. Nous étudions également le problème de NMF parcimonieuse. Poursuivant cette étude, nous étudions le problème d'apprentissage de dictionnaire où la représentation parcimonieuse joue un rôle crucial. Dans la deuxième partie, nous exploitons la technique d'optimisation robuste pour traiter l'incertitude des données pour les deux problèmes importants dans l'apprentissage : la sélection de variables dans SVM (Support Vector Machines) et le clustering. Différents modèles d'incertitude sont étudiés. Les algorithmes basés sur DCA sont développés pour résoudre ces problèmes
In this thesis, we focus on developing optimization approaches for solving some classes of optimization problems in sparsity and robust optimization for data uncertainty. Our methods are based on DC (Difference of Convex functions) programming and DCA (DC Algorithms) which are well-known as powerful tools in optimization. This thesis is composed of two parts: the first part concerns with sparsity while the second part deals with uncertainty. In the first part, a unified DC approximation approach to optimization problem involving the zero-norm in objective is thoroughly studied on both theoretical and computational aspects. We consider a common DC approximation of zero-norm that includes all standard sparse inducing penalty functions, and develop general DCA schemes that cover all standard algorithms in the field. Next, the thesis turns to the nonnegative matrix factorization (NMF) problem. We investigate the structure of the considered problem and provide appropriate DCA based algorithms. To enhance the performance of NMF, the sparse NMF formulations are proposed. Continuing this topic, we study the dictionary learning problem where sparse representation plays a crucial role. In the second part, we exploit robust optimization technique to deal with data uncertainty for two important problems in machine learning: feature selection in linear Support Vector Machines and clustering. In this context, individual data point is uncertain but varies in a bounded uncertainty set. Different models (box/spherical/ellipsoidal) related to uncertain data are studied. DCA based algorithms are developed to solve the robust problems
APA, Harvard, Vancouver, ISO, and other styles
31

Nicodeme, Claire. "Evaluation de l'adhérence au contact roue-rail par analyse d'images spectrales." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEM024/document.

Full text
Abstract:
L’avantage du train depuis sa création est sa faible résistance à l’avancement du fait du contact fer-fer de la roue sur le rail conduisant à une adhérence réduite. Cependant cette adhérence faible est aussi un inconvénient majeur : étant dépendante des conditions environnementales, elle est facilement altérée lors d’une pollution du rail (végétaux, corps gras, eau, etc.). Aujourd’hui, les mesures prises face à des situations d'adhérence dégradée impactent directement les performances du système et conduisent notamment à une perte de capacité de transport. L’objectif du projet est d’utiliser les nouvelles technologies d’imagerie spectrale pour identifier sur les rails les zones à adhérence réduite et leur cause afin d’alerter et d’adapter rapidement les comportements. La stratégie d’étude a pris en compte les trois points suivants : • Le système de détection, installé à bord de trains commerciaux, doit être indépendant du train. • La détection et l’identification ne doivent pas interagir avec la pollution pour ne pas rendre la mesure obsolète. Pour ce faire le principe d’un Contrôle Non Destructif est retenu. • La technologie d’imagerie spectrale permet de travailler à la fois dans le domaine spatial (mesure de distance, détection d’objet) et dans le domaine fréquentiel (détection et reconnaissance de matériaux par analyse de signatures spectrales). Dans le temps imparti des trois ans de thèse, nous nous sommes focalisés sur la validation du concept par des études et analyses en laboratoire, réalisables dans les locaux de SNCF Ingénierie & Projets. Les étapes clés ont été la réalisation d’un banc d’évaluation et le choix du système de vision, la création d'une bibliothèque de signatures spectrales de référence et le développement d'algorithmes classification supervisées et non supervisées des pixels. Ces travaux ont été valorisés par le dépôt d'un brevet et la publication d'articles dans des conférences IEEE
The advantage of the train since its creation is in its low resistance to the motion, due to the contact iron-iron of the wheel on the rail leading to low adherence. However this low adherence is also a major drawback : being dependent on the environmental conditions, it is easily deteriorated when the rail is polluted (vegetation, grease, water, etc). Nowadays, strategies to face a deteriorated adherence impact the performance of the system and lead to a loss of transport capacity. The objective of the project is to use a new spectral imaging technology to identify on the rails areas with reduced adherence and their cause in order to quickly alert and adapt the train's behaviour. The study’s strategy took into account the three following points : -The detection system, installed on board of commercial trains, must be independent of the train. - The detection and identification process should not interact with pollution in order to keep the measurements unbiased. To do so, we chose a Non Destructive Control method. - Spectral imaging technology makes it possible to work with both spatial information (distance’s measurement, target detection) and spectral information (material detection and recognition by analysis of spectral signatures). In the assigned time, we focused on the validation of the concept by studies and analyses in laboratory, workable in the office at SNCF Ingénierie & Projets. The key steps were the creation of the concept's evaluation bench and the choice of a Vision system, the creation of a library containing reference spectral signatures and the development of supervised and unsupervised pixels classification. A patent describing the method and process has been filed and published
APA, Harvard, Vancouver, ISO, and other styles
32

Aygar, Alper. "Doppler Radar Data Processing And Classification." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609890/index.pdf.

Full text
Abstract:
In this thesis, improving the performance of the automatic recognition of the Doppler radar targets is studied. The radar used in this study is a ground-surveillance doppler radar. Target types are car, truck, bus, tank, helicopter, moving man and running man. The input of this thesis is the output of the real doppler radar signals which are normalized and preprocessed (TRP vectors: Target Recognition Pattern vectors) in the doctorate thesis by Erdogan (2002). TRP vectors are normalized and homogenized doppler radar target signals with respect to target speed, target aspect angle and target range. Some target classes have repetitions in time in their TRPs. By the use of these repetitions, improvement of the target type classification performance is studied. K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) algorithms are used for doppler radar target classification and the results are evaluated. Before classification PCA (Principal Component Analysis), LDA (Linear Discriminant Analysis), NMF (Nonnegative Matrix Factorization) and ICA (Independent Component Analysis) are implemented and applied to normalized doppler radar signals for feature extraction and dimension reduction in an efficient way. These techniques transform the input vectors, which are the normalized doppler radar signals, to another space. The effects of the implementation of these feature extraction algoritms and the use of the repetitions in doppler radar target signals on the doppler radar target classification performance are studied.
APA, Harvard, Vancouver, ISO, and other styles
33

Feng, Fangchen. "Séparation aveugle de source : de l'instantané au convolutif." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS232/document.

Full text
Abstract:
La séparation aveugle de source consiste à estimer les signaux de sources uniquement à partir des mélanges observés. Le problème peut être séparé en deux catégories en fonction du modèle de mélange: mélanges instantanés, où le retard et la réverbération (effet multi-chemin) ne sont pas pris en compte, et des mélanges convolutives qui sont plus généraux mais plus compliqués. De plus, le bruit additif au niveaux des capteurs et le réglage sous-déterminé, où il y a moins de capteurs que les sources, rendent le problème encore plus difficile.Dans cette thèse, tout d'abord, nous avons étudié le lien entre deux méthodes existantes pour les mélanges instantanés: analyse des composants indépendants (ICA) et analyse des composant parcimonieux (SCA). Nous avons ensuite proposé une nouveau formulation qui fonctionne dans les cas déterminés et sous-déterminés, avec et sans bruit. Les évaluations numériques montrent l'avantage des approches proposées.Deuxièmement, la formulation proposés est généralisés pour les mélanges convolutifs avec des signaux de parole. En intégrant un nouveau modèle d'approximation, les algorithmes proposés fonctionnent mieux que les méthodes existantes, en particulier dans des scénarios bruyant et / ou de forte réverbération.Ensuite, on prend en compte la technique de décomposition morphologique et l'utilisation de parcimonie structurée qui conduit à des algorithmes qui peuvent mieux exploiter les structures des signaux audio. De telles approches sont testées pour des mélanges convolutifs sous-déterminés dans un scénario non-aveugle.Enfin, en bénéficiant du modèle NMF (factorisation en matrice non-négative), nous avons combiné l'hypothèse de faible-rang et de parcimonie et proposé de nouvelles approches pour les mélanges convolutifs sous-déterminés. Les expériences illustrent la bonne performance des algorithmes proposés pour les signaux de musique, en particulier dans des scénarios de forte réverbération
Blind source separation (BSS) consists of estimating the source signals only from the observed mixtures. The problem can be divided into two categories according to the mixing model: instantaneous mixtures, where delay and reverberation (multi-path effect) are not taken into account, and convolutive mixtures which are more general but more complicated. Moreover, the additive noise at the sensor level and the underdetermined setting, where there are fewer sensors than the sources, make the problem even more difficult.In this thesis, we first studied the link between two existing methods for instantaneous mixtures: independent component analysis (ICA) and sparse component analysis (SCA). We then proposed a new formulation that works in both determined and underdetermined cases, with and without noise. Numerical evaluations show the advantage of the proposed approaches.Secondly, the proposed formulation is generalized for convolutive mixtures with speech signals. By integrating a new approximation model, the proposed algorithms work better than existing methods, especially in noisy and/or high reverberation scenarios.Then, we take into account the technique of morphological decomposition and the use of structured sparsity which leads to algorithms that can better exploit the structures of audio signals. Such approaches are tested for underdetermined convolutive mixtures in a non-blind scenario.At last, being benefited from the NMF model, we combined the low-rank and sparsity assumption and proposed new approaches for under-determined convolutive mixtures. The experiments illustrate the good performance of the proposed algorithms for music signals, especially in strong reverberation scenarios
APA, Harvard, Vancouver, ISO, and other styles
34

Jaureguiberry, Xabier. "Fusion pour la séparation de sources audio." Thesis, Paris, ENST, 2015. http://www.theses.fr/2015ENST0030/document.

Full text
Abstract:
La séparation aveugle de sources audio dans le cas sous-déterminé est un problème mathématique complexe dont il est aujourd'hui possible d'obtenir une solution satisfaisante, à condition de sélectionner la méthode la plus adaptée au problème posé et de savoir paramétrer celle-ci soigneusement. Afin d'automatiser cette étape de sélection déterminante, nous proposons dans cette thèse de recourir au principe de fusion. L'idée est simple : il s'agit, pour un problème donné, de sélectionner plusieurs méthodes de résolution plutôt qu'une seule et de les combiner afin d'en améliorer la solution. Pour cela, nous introduisons un cadre général de fusion qui consiste à formuler l'estimée d'une source comme la combinaison de plusieurs estimées de cette même source données par différents algorithmes de séparation, chaque estimée étant pondérée par un coefficient de fusion. Ces coefficients peuvent notamment être appris sur un ensemble d'apprentissage représentatif du problème posé par minimisation d'une fonction de coût liée à l'objectif de séparation. Pour aller plus loin, nous proposons également deux approches permettant d'adapter les coefficients de fusion au signal à séparer. La première formule la fusion dans un cadre bayésien, à la manière du moyennage bayésien de modèles. La deuxième exploite les réseaux de neurones profonds afin de déterminer des coefficients de fusion variant en temps. Toutes ces approches ont été évaluées sur deux corpus distincts : l'un dédié au rehaussement de la parole, l'autre dédié à l'extraction de voix chantée. Quelle que soit l'approche considérée, nos résultats montrent l'intérêt systématique de la fusion par rapport à la simple sélection, la fusion adaptative par réseau de neurones se révélant être la plus performante
Underdetermined blind source separation is a complex mathematical problem that can be satisfyingly resolved for some practical applications, providing that the right separation method has been selected and carefully tuned. In order to automate this selection process, we propose in this thesis to resort to the principle of fusion which has been widely used in the related field of classification yet is still marginally exploited in source separation. Fusion consists in combining several methods to solve a given problem instead of selecting a unique one. To do so, we introduce a general fusion framework in which a source estimate is expressed as a linear combination of estimates of this same source given by different separation algorithms, each source estimate being weighted by a fusion coefficient. For a given task, fusion coefficients can then be learned on a representative training dataset by minimizing a cost function related to the separation objective. To go further, we also propose two ways to adapt the fusion coefficients to the mixture to be separated. The first one expresses the fusion of several non-negative matrix factorization (NMF) models in a Bayesian fashion similar to Bayesian model averaging. The second one aims at learning time-varying fusion coefficients thanks to deep neural networks. All proposed methods have been evaluated on two distinct corpora. The first one is dedicated to speech enhancement while the other deals with singing voice extraction. Experimental results show that fusion always outperform simple selection in all considered cases, best results being obtained by adaptive time-varying fusion with neural networks
APA, Harvard, Vancouver, ISO, and other styles
35

Mangin, Olivier. "Emergence de concepts multimodaux : de la perception de mouvements primitifs à l'ancrage de mots acoustiques." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0002/document.

Full text
Abstract:
Cette thèse considère l'apprentissage de motifs récurrents dans la perception multimodale. Elle s'attache à développer des modèles robotiques de ces facultés telles qu'observées chez l'enfant, et elle s'inscrit en cela dans le domaine de la robotique développementale.Elle s'articule plus précisément autour de deux thèmes principaux qui sont d'une part la capacité d'enfants ou de robots à imiter et à comprendre le comportement d'humains, et d'autre part l'acquisition du langage. A leur intersection, nous examinons la question de la découverte par un agent en développement d'un répertoire de motifs primitifs dans son flux perceptuel. Nous spécifions ce problème et établissons son lien avec ceux de l'indétermination de la traduction décrit par Quine et de la séparation aveugle de source tels qu'étudiés en acoustique.Nous en étudions successivement quatre sous-problèmes et formulons une définition expérimentale de chacun. Des modèles d'agents résolvant ces problèmes sont également décrits et testés. Ils s'appuient particulièrement sur des techniques dites de sacs de mots, de factorisation de matrices et d'apprentissage par renforcement inverse. Nous approfondissons séparément les trois problèmes de l'apprentissage de sons élémentaires tels les phonèmes ou les mots, de mouvements basiques de danse et d'objectifs primaires composant des tâches motrices complexes. Pour finir nous étudions le problème de l'apprentissage d'éléments primitifs multimodaux, ce qui revient à résoudre simultanément plusieurs des problèmes précédents. Nous expliquons notamment en quoi cela fournit un modèle de l'ancrage de mots acoustiques
This thesis focuses on learning recurring patterns in multimodal perception. For that purpose it develops cognitive systems that model the mechanisms providing such capabilities to infants; a methodology that fits into thefield of developmental robotics.More precisely, this thesis revolves around two main topics that are, on the one hand the ability of infants or robots to imitate and understand human behaviors, and on the other the acquisition of language. At the crossing of these topics, we study the question of the how a developmental cognitive agent can discover a dictionary of primitive patterns from its multimodal perceptual flow. We specify this problem and formulate its links with Quine's indetermination of translation and blind source separation, as studied in acoustics.We sequentially study four sub-problems and provide an experimental formulation of each of them. We then describe and test computational models of agents solving these problems. They are particularly based on bag-of-words techniques, matrix factorization algorithms, and inverse reinforcement learning approaches. We first go in depth into the three separate problems of learning primitive sounds, such as phonemes or words, learning primitive dance motions, and learning primitive objective that compose complex tasks. Finally we study the problem of learning multimodal primitive patterns, which corresponds to solve simultaneously several of the aforementioned problems. We also details how the last problems models acoustic words grounding
APA, Harvard, Vancouver, ISO, and other styles
36

Alghamdi, Masheal M. "Semi-Supervised Half-Quadratic Nonnegative Matrix Factorization for Face Recognition." Thesis, 2014. http://hdl.handle.net/10754/317308.

Full text
Abstract:
Face recognition is a challenging problem in computer vision. Difficulties such as slight differences between similar faces of different people, changes in facial expressions, light and illumination condition, and pose variations add extra complications to the face recognition research. Many algorithms are devoted to solving the face recognition problem, among which the family of nonnegative matrix factorization (NMF) algorithms has been widely used as a compact data representation method. Different versions of NMF have been proposed. Wang et al. proposed the graph-based semi-supervised nonnegative learning (S2N2L) algorithm that uses labeled data in constructing intrinsic and penalty graph to enforce separability of labeled data, which leads to a greater discriminating power. Moreover the geometrical structure of labeled and unlabeled data is preserved through using the smoothness assumption by creating a similarity graph that conserves the neighboring information for all labeled and unlabeled data. However, S2N2L is sensitive to light changes, illumination, and partial occlusion. In this thesis, we propose a Semi-Supervised Half-Quadratic NMF (SSHQNMF) algorithm that combines the benefits of S2N2L and the robust NMF by the half- quadratic minimization (HQNMF) algorithm.Our algorithm improves upon the S2N2L algorithm by replacing the Frobenius norm with a robust M-Estimator loss function. A multiplicative update solution for our SSHQNMF algorithmis driven using the half- 4 quadratic (HQ) theory. Extensive experiments on ORL, Yale-A and a subset of the PIE data sets for nine M-estimator loss functions for both SSHQNMF and HQNMF algorithms are investigated, and compared with several state-of-the-art supervised and unsupervised algorithms, along with the original S2N2L algorithm in the context of classification, clustering, and robustness against partial occlusion. The proposed algorithm outperformed the other algorithms. Furthermore, SSHQNMF with Maximum Correntropy (MC) loss function obtained the best results for most test cases.
APA, Harvard, Vancouver, ISO, and other styles
37

"Nonnegative matrix factorization algorithms and applications." Université catholique de Louvain, 2008. http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-06052008-235205/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Pani, Jagdeep. "Provable Methods for Non-negative Matrix Factorization." Thesis, 2016. http://hdl.handle.net/2005/2739.

Full text
Abstract:
Nonnegative matrix factorization (NMF) is an important data-analysis problem which concerns factoring a given d n matrix A with nonnegative entries into matrices B and C where B and C are d k and k n with nonnegative entries. It has numerous applications including Object recognition, Topic Modelling, Hyper-spectral imaging, Music transcription etc. In general, NMF is intractable and several heuristics exists to solve the problem of NMF. Recently there has been interest in investigating conditions under which NMF can be tractably recovered. We note that existing attempts make unrealistic assumptions and often the associated algorithms tend to be not scalable. In this thesis, we make three major contributions: First, we formulate a model of NMF with assumptions which are natural and is a substantial weakening of separability. Unlike requiring a bound on the error in each column of (A BC) as was done in much of previous work, our assumptions are about aggregate errors, namely spectral norm of (A BC) i.e. jjA BCjj2 should be low. This is a much weaker error assumption and the associated B; C would be much more resilient than existing models. Second, we describe a robust polynomial time SVD-based algorithm, UTSVD, with realistic provable error guarantees and can handle higher levels of noise than previous algorithms. Indeed, experimentally we show that existing NMF models, which are based on separability assumptions, degrade much faster than UTSVD, in the presence of noise. Furthermore, when the data has dominant features, UTSVD significantly outperforms existing models. On real life datasets we again see a similar outperformance of UTSVD on clustering tasks. Finally, under a weaker model, we prove a robust version of uniqueness of NMF, where again, the word \robust" refers to realistic error bounds.
APA, Harvard, Vancouver, ISO, and other styles
39

Yang, Po-Kai, and 楊博凱. "Bayesian nonnegative matrix factorization for monaural audio source separation." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/27082041407722060635.

Full text
Abstract:
碩士
國立交通大學
電信工程研究所
102
This paper proposes a new Bayesian nonnegative matrix factorization (NMF) approach for speech and music separation as well as for singing voice separation from background music accompaniment. Using this approach, the reconstruction error based on NMF is represented by a Poisson distribution and the NMF parameters, consisting of basis and weight matrices, are characterized by the exponential priors. A variational Bayesian (VB) expectation-maximization (EM) algorithm is developed to implement an efficient closed-form solution to variational parameters and model parameters for monaural audio source separation. Importantly, the exponential prior parameter is used to control the sparseness in basis representation. The variational lower bound in VB-EM procedure is derived as an objective to conduct adaptive basis selection for different mixed signals with variations from different speakers, singers, instruments and background accompaniments. Model regularization is tackled through the uncertainty modeling via variational inference based on the maximization of marginal likelihood. The experiments on supervised single-channel speech/music separation show that the adaptive basis representation in Bayesian NMF performs better than the NMF with the fixed number of bases in terms of signal-to-distortion ratio. In addition, we implement the proposed Bayesian NMF for unsupervised monaural singing voice separation where an additional grouping of the factorized basis vectors is performed. The two groups of basis vectors are obtained to reconstruct the source signals of singing voice and background accompaniment. The experimental results on MIR-1K database demonstrate that the Bayesian NMF performs better than other unsupervised separation algorithms in terms of the global normalized source to distortion ratio.
APA, Harvard, Vancouver, ISO, and other styles
40

TUNG, PHAM BACH, and 範白松. "New Approaches on Nonnegative Matrix Factorization and Their Applications." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/2v896n.

Full text
Abstract:
碩士
國立中央大學
資訊工程學系
104
Abstract In this dissertation, we proposed new approaches for extension nonnegative matrix factorization (NMF) that are specifically suited for analyzing image and musical signals. First, we give an overview of NMF on definitions, algorithms and discuss about sparseness, graph and spatial constraint that added factorization of signals. We developed a novel segmentation method for color image segmentation based on superpixels as new feature representation method before formulating the segmentation problem as a multiple Manhattan nonnegative matrix factorization. Second, we developed a sparse regularized nonnegative matrix factorization scheme with spatial dispersion penalty (SpaSNMF). This is a new dictionary learning method that utilized beta divergence to measure error construction and preserves distant repulsion properties to obtain the compact bases simultaneously. To improve the separation performance, group sparse penalties are simultaneously constructed. A multiple-update-rule optimization scheme was used to solve the objective function of the proposed SpaSNMF. Experiments on single-channel source separation reveal that the proposed method provides more robust basis factors and achieves better results than standard NMF and its extensions. Besides, the effectiveness of spectrogram dispersion penalty on dictionary learning was considered on this thesis. Analyzing experimental results show the good ability of spectrogram dispersion penalty NMF on dictionary learning in comparisons with NNDSVD, PCA, NMF, GNMF,SNMF,GSNMF. Finally, we study another approach of NMF for image clustering which extend the original NMF by employing pixel dispersion penalty, sparseness constraints with l2 norm and graph regularize to construct new objective function.
APA, Harvard, Vancouver, ISO, and other styles
41

Heinrich, Kevin Erich. "Automated gene classification using nonnegative matrix factorization on biomedical literature." 2007. http://etd.utk.edu/2007/HeinrichKevin.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Chen, Kuei-Hua, and 陳奎華. "Constrained Nonnegative Matrix Factorization for Facial Age Estimation and Beyond." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/44893471752988218222.

Full text
Abstract:
碩士
國立清華大學
資訊工程學系
99
Nonnegative matrix factorization (NMF) tends to characterize local feature variation and has been shown to be better interpretable on facial images. In this thesis, to solve the facial age estimation problem, we propose to extract age-related features by using a supervised NMF. In addition, since different people usually have very different aging tendency, it is by no means an easy task to find a set of good age-related features feasible for all individuals. To overcome this difficulty, we further include a person-independent constraint and propose a new approach called person-independent supervised NMF (PISNMF) to characterize the aging properties. In addition, we also extend our proposed PISNMF to handle the age-invariant face recognition problem. We conduct PISNMF on FG-NET database and successfully extract the aging-related features. Our experiments show that the derived facial bases indeed characterize age-related local variations and the results of both age estimation and age-invariant face recognition outperform most existing methods.
APA, Harvard, Vancouver, ISO, and other styles
43

Tu, Yi-Han, and 杜亦涵. "Dual Subspace Nonnegative Matrix Factorization for Person-Invariant Facial Expression Recognition." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/26332141396578678611.

Full text
Abstract:
碩士
國立清華大學
資訊工程學系
100
Person-dependent appearance changes tend to increase difficulties in automatic facial expression recognition. Although one can use neutral face images to reduce the personal variations, acquisition of neutral face images may not always be possible in real cases. In order to remove the person-dependent influence from expressive images, we propose a novel nonnegative matrix factorization, called dual subspace nonnegative matrix factorization (DSNMF), to decompose facial images into two parts: identity and expression parts. The identity part should characterize person-dependent variations, while the expression part should characterize person-invariant expression features. Our experimental results show that the proposed method significantly outperforms existing approaches on the CK+, JAFFE and TFEID expression databases. Furthermore, we also conducted DSNMF for face recognition across expression under single sample per person (SSPP) condition and the recognition rate is greatly improved by DSNMF.
APA, Harvard, Vancouver, ISO, and other styles
44

Huang, Yi-Chun, and 黃奕鈞. "Discriminative and Dynamic Nonnegative Matrix Factorization on Monaural Audio Source Separation." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/39200836572363384261.

Full text
Abstract:
碩士
國立交通大學
工學院聲音與音樂創意科技碩士學位學程
105
The nonnegative matrix factorization (NMF), which learns dictionaries from source spectra and uses the learned dictionaries to decompose the mixture in the test phase, is a widely used tool for audio source separation. However, the standard NMF does not consider temporal properties of the signals when learning dictionaries. The standard NMF is also a generative model, which do not guarantee that a good representation model is also a good separation model. Besides, the learned dictionaries should be partitioned into subgroups to account for sources with different spectro-temporal properties, such as speech signals from different speakers or music signals from different instruments. Therefore, we propose a method by combine extensions of NMF to address these problems for speech denoising and singing voice separation. For temporal modeling, our method adopts a post-filtering technique, which derives a source specific vector autoregressive (VAR) model to smooth the NMF coefficients in the test phase. For partitioning, we make use of the mixture of local dictionaries (MLD) technique to divide dictionaries into subgroups by considering intra- and inter- group distances. We also introduce a modified discriminative learning procedure to deal with the representation-separation problem. To sum up, our NMF-extended method put additional considerations on the temporal properties of each subgroup and discrimination between sources.
APA, Harvard, Vancouver, ISO, and other styles
45

Tsai, Yu-Chun, and 蔡鈺群. "Variational Bayesian Inference Nonnegative Matrix Factorization with Application to Auditory Streaming." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/64067406417230739039.

Full text
Abstract:
碩士
國立交通大學
工學院聲音與音樂創意科技碩士學位學程
102
In the application of audio streaming or so called audio source separation, the goal is to decompose a music recording into sound streams from individual instruments. One of the most effective classes of methods to separate sound streams stems from the nonnegative matrix factorization (NMF). This thesis presents a variational Bayesian (VB) treatment of NMF, based on the Itakura-Saito (IS) divergence and the concepts of hyper-parameters, and derives the marginal likelihood (low bound) to approximate the posterior density of the NMF factors. An efficient iterative algorithm, which outperforms the previously derived statistics NMF methods, such as Expectation-Maximization IS-NMF, is proposed. The proposed algorithm works in the equivalent rectangular bandwidth (ERB) domain, where the main resonance of the music signal is emphasized. In addition, the hyper-parameters are optimized in the case of inverse-Gamma prior. Simulations show the matrix factorization indeed improves separation results over the EM-IS-NMF using perceptual evaluation methods for audio source separation (PEASS) scoring tool. A comparative study between the VB-IS-NMF and the EM-IS-NMF algorithms when applying to ERB spectrogram of a short vocal and bass sequence recorded in real conditions is demonstrated. Simulations show the proposed VB-IS-NMF can be successfully used for streaming music clips from the signal separation evaluation campaign (SiSEC 2013). Finally, the proposed algorithm outperforms other methods which do not require explicit training data as well for the separation of audio signals provided by SiSEC.
APA, Harvard, Vancouver, ISO, and other styles
46

Lam, Mai, and 林梅. "Joint Support Vector Machine with Constrained Nonnegative Matrix Factorization and Its Applications." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/288chh.

Full text
Abstract:
碩士
國立中央大學
資訊工程學系
105
The purpose of this study is to investigate the effects of merging maximum margin classification constraints on the constrained non-negative matrix factorization objective function. Non-negative matrix factorization (NMF) is a dimension-reduction technique based on a low-rank approximation of the feature space. Unfortunately, most existing NMF based methods are not ready for encoding higher-order data information and ignore the local geometric structure contained in the data set. Furthermore, the previous classification approaches which the classification and matrix factorization steps are separated independently. The first one performs data transformation and the second one classifies the transformed data using classification methods as support vector machine (SVM). In this research, therefore, we joint SVM and constrained NMF into one by uniting maximum margin classification constraints into the constrained NMF optimization. The proposed algorithm is derived from NMF algorithm by exploiting both spatial and graph-preserving properties. A multiplicative updating algorithm is also proposed to solve the corresponding optimization problem. Experimental results on benchmark image data sets demonstrate the effectiveness of the proposed method. The results show that our proposed algorithm provides better facial representations and achieves higher recognition rates than standard non-negative matrix factorization and its variants.
APA, Harvard, Vancouver, ISO, and other styles
47

Li, Hsuan-Hsun, and 李炫勳. "Clustering with Labeled and Unlabeled Data Based on Constrained -Nonnegative Matrix Factorization." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/30554527577087405135.

Full text
Abstract:
碩士
國立交通大學
資訊科學與工程研究所
100
Semi-supervised clustering methods ,which aim to cluster the data set under the guidance of some supervisory information, have become a topic of significant research. The supervisory information is usually used as the constraints to bias clustering toward a good region of search space. In this paper, we propose a semi-supervised algorithm, Constrained-Nonnegative Matrix Factorization, with a small amount of labeled data as constraints to cluster data. The proposed algorithm is a matrix factorization algorithm. Intuitively a good initial point can speed up clustering convergence and may lead to a better local optimized solution. As the result, we devise an algorithm called Constrained-Fuzzy Cmeans algorithm to obtain initial point. The evaluation function is a key element to evaluate the solution calculated by Constrained-Nonnegative Matrix Factorization, so we have some discussions about the evaluation of Constrained-Nonnegative Matrix Factorization. Finally we conduct experiments on several data sets including CiteUlike, Classic3, 20Newgroups and Reuters, and compare with other semi-supervised learning algorithms. The experimental result indicate that the method we proposed can effectively improve clustering performance.
APA, Harvard, Vancouver, ISO, and other styles
48

Chang, Yu-chiang, and 張裕江. "Convex Nonnegative Matrix Factorization and Compressive Sensing Architecture for Convolutive Blind Source Separation." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/tkg5t6.

Full text
Abstract:
碩士
國立中央大學
資訊工程學系
102
This thesis proposed a novel compressive sensing blind source separation (BSS) technique, there are two phase in this technique. In the first phase we focus on source separation, convex nonnegative matrix factorization (convex NMF) incorporates complex representation is proposed to estimate the mixing matrix, and frequency based compressive sensing (CS) framework is proposed to separate the source. In this phase, extract level-ratio and phase difference as the feature for each time-frequency point first. Next, eliminate the outlier of the band based feature by implementing outlier elimination, and cluster the remains by implementing convex NMF algorithm to get the bases of the features. Then, transform the bases into the mixing matrix by complex representation. The mixing matrix is going to be used for source separation with the proposed compressive sensing framework. In this framework, we use the measurement matrix which extended by the mixing matrix, and pre-trained global dictionary to solve the sparse coefficient with orthogonal match pursuit (OMP) frame by frame. Finally, multiply the global dictionary by the sparse coefficient to finish the source separation. In the second phase, the knowledge based source separation enforcement is implemented by the preliminary separated source with hidden markov model (HMM). Transform the basic factor of the source into MFCC coefficient to train each factor model. After substituting the preliminary separated source into HMM, there are different likelihood produced from each factor in a frame. The maximum log likelihood of the corresponding factor is choosed as the factor knowledge for the frame. We extend the global dictionary by the factor to increase the adaptivity of the dictionary. Finally, we go back to the compressive sensing step in the first phase to finish source separation. Experimental results shows that SIR in proposed method is improved compare to the traditional method.
APA, Harvard, Vancouver, ISO, and other styles
49

Hasting, Erwin, and 鄭立豐. "Blind Source Separation of Heart and Lung Sounds Based on Nonnegative Matrix Factorization." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/03913927162126761911.

Full text
Abstract:
碩士
國立臺灣科技大學
電子工程系
101
Lung sound (LS) brings valuable information for lung status and respiratory analysis. However, the interference of heart sound (HS) usually occurs and raises confusion on pathological state during the LS recording. To solve this question, separation of HS and LS from mixed heart-lung sounds (HLS) has become one of major issues in the biomedical research. A novel approach based on nonnegative matrix factorization (NMF) as one of blind source separation (BSS) techniques is proposed. In this paper, the chosen mixed HLS signal is brought to the time-frequency domain and forms a multivariate data stationary time series. This multivariate data are then processed as another data representation by constant $Q$ transform, which is well known as log-frequency short-time Fourier transform (STFT). The result of log-frequency STFT is then used as the input pattern of NMF. The average performance based on heart noise or interference reduction percentage (HNRP) for quantitative evaluation of the proposed NMF-based approach is above 80% for the normal LS signal and 90% for the abnormal LS which also better than the directly applied NMF. Another advantage provided by NMF is it only requires single channel as input signal instead of multichannel which is usually required by other BSS methods.
APA, Harvard, Vancouver, ISO, and other styles
50

Lin, Pao-han, and 林保翰. "A Study of Noise Suppression Approaches based on Nonnegative Matrix Factorization for Speech Enhancement." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/21870470709657212943.

Full text
Abstract:
碩士
國立暨南國際大學
電機工程學系
102
In this thesis, we exploit the technique of nonnegative matrix factorization (NMF) in speech enhancement, considering the sub-band and temporal patch characteristics of noisy spectrogram. We investigate the segmental NMF scheme in speech enhancement and compare it with the conventional frame-wise counterpart. Two forms of segmental NMF methods are investigated, which respectively decompose the spectrogram into temporal and spectral segmental parts, and then compensates each segment to reduce the noise effect. We evaluate these NMF-based methods in a subset of the Aurora-2 connected digit database. Experimental results show that these NMF-based methods can improve the quality of noise-corrupted speech signals, and they are well additive to two well-known methods, spectral subtraction (SS) and minimum mean-squared error (MMSE). We also show that the speech signals enhanced by NMF-based methods can result in better recognition accuracy relative to the original signals without enhancement.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography