Academic literature on the topic 'Nonorientable Surfaces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nonorientable Surfaces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nonorientable Surfaces"

1

Bujalance, J. A., and B. Estrada. "q-hyperelliptic compact nonorientable Klein surfaces without boundary." International Journal of Mathematics and Mathematical Sciences 31, no. 4 (2002): 215–27. http://dx.doi.org/10.1155/s0161171202109173.

Full text
Abstract:
LetXbe a nonorientable Klein surface (KS in short), that is a compact nonorientable surface with a dianalytic structure defined on it. A Klein surfaceXis said to beq-hyperellipticif and only if there exists an involutionΦonX(a dianalytic homeomorphism of order two) such that the quotientX/〈Φ〉has algebraic genusq.q-hyperelliptic nonorientable KSs without boundary (nonorientable Riemann surfaces) were characterized by means of non-Euclidean crystallographic groups. In this paper, using that characterization, we determine bounds for the order of the automorphism group of a nonorientableq-hyperell
APA, Harvard, Vancouver, ISO, and other styles
2

NAKAZAWA, NAOHITO. "ON FIELD THEORIES OF LOOPS." Modern Physics Letters A 10, no. 29 (1995): 2175–84. http://dx.doi.org/10.1142/s0217732395002337.

Full text
Abstract:
We apply stochastic quantization method to real symmetric matrix models for the second quantization of nonorientable loops in both discretized and continuum levels. The stochastic process defined by the Langevin equation in loop space describes the time evolution of the nonorientable loops defined on nonorientable 2-D surfaces. The corresponding Fokker-Planck Hamiltonian deduces a nonorientable string field theory at the continuum limit.
APA, Harvard, Vancouver, ISO, and other styles
3

Kimura, Mitsuaki, and Erika Kuno. "Quasimorphisms on nonorientable surface diffeomorphism groups." Advances in Geometry 25, no. 2 (2025): 193–205. https://doi.org/10.1515/advgeom-2025-0011.

Full text
Abstract:
Abstract Bowden, Hensel and Webb constructed infinitely many quasimorphisms on the diffeomorphism groups of orientable surfaces. In this paper, we extend their result to nonorientable surfaces. Namely, we prove that the space of nontrivial quasimorphisms Q H ˜ Diff 0 N g $\widetilde{Q H}\left(\operatorname{Diff}_0\left(N_g\right)\right)$ on the identity component of the diffeomorphism group Diff0(Ng ) on a closed nonorientable surface Ng of genus g ≥ 3 is infinite-dimensional. As a corollary, we obtain the unboundedness of the commutator length and the fragmentation length on Diff0(Ng ).
APA, Harvard, Vancouver, ISO, and other styles
4

Danthony, Claude, and Arnaldo Nogueira. "Measured foliations on nonorientable surfaces." Annales scientifiques de l'École normale supérieure 23, no. 3 (1990): 469–94. http://dx.doi.org/10.24033/asens.1608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stukow, Michał. "Dehn twists on nonorientable surfaces." Fundamenta Mathematicae 189, no. 2 (2006): 117–47. http://dx.doi.org/10.4064/fm189-2-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hartsfield, Nora, and Gerhard Ringel. "Minimal quadrangulations of nonorientable surfaces." Journal of Combinatorial Theory, Series A 50, no. 2 (1989): 186–95. http://dx.doi.org/10.1016/0097-3165(89)90014-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

YURTTAŞ, Saadet Öykü, and Mehmetcik PAMUK. "Integral laminations on nonorientable surfaces." TURKISH JOURNAL OF MATHEMATICS 42 (2018): 69–82. http://dx.doi.org/10.3906/mat-1608-76.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Levine, Adam, Daniel Ruberman, and Sašo Strle. "Nonorientable surfaces in homology cobordisms." Geometry & Topology 19, no. 1 (2015): 439–94. http://dx.doi.org/10.2140/gt.2015.19.439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Barza, Ilie, and Dorin Ghisa. "Vector fields on nonorientable surfaces." International Journal of Mathematics and Mathematical Sciences 2003, no. 3 (2003): 133–52. http://dx.doi.org/10.1155/s0161171203204038.

Full text
Abstract:
A one-to-one correspondence is established between the germs of functions and tangent vectors on a NOSXand the bi-germs of functions, respectively, elementary fields of tangent vectors (EFTV) on the orientable double cover ofX. Some representation theorems for the algebra of germs of functions, the tangent space at an arbitrary point ofX, and the space of vector fields onXare proved by using a symmetrisation process. An example related to the normal derivative on the border of the Möbius strip supports the nontriviality of the concepts introduced in this paper.
APA, Harvard, Vancouver, ISO, and other styles
10

Friesen, Tyler, and Vassily Olegovich Manturov. "Checkerboard embeddings of *-graphs into nonorientable surfaces." Journal of Knot Theory and Its Ramifications 23, no. 07 (2014): 1460004. http://dx.doi.org/10.1142/s0218216514600049.

Full text
Abstract:
This paper considers *-graphs in which all vertices have degree 4 or 6, and studies the question of calculating the genus of nonorientable surfaces into which such graphs may be embedded. In a previous paper [Embeddings of *-graphs into 2-surfaces, preprint (2012), arXiv:1212.5646] by the authors, the problem of calculating whether a given *-graph in which all vertices have degree 4 or 6 admits a ℤ2-homologically trivial embedding into a given orientable surface was shown to be equivalent to a problem on matrices. Here we extend those results to nonorientable surfaces. The embeddability condit
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Nonorientable Surfaces"

1

Atalan, Ozan Ferihe. "Automorphisms Of Complexes Of Curves On Odd Genus Nonorientable Surfaces." Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606352/index.pdf.

Full text
Abstract:
Let N be a connected nonorientable surface of genus g with n punctures. Suppose that g is odd and g + n &gt<br>6. We prove that the automorphism group of the complex of curves of N is isomorphic to the mapping class group M of N.
APA, Harvard, Vancouver, ISO, and other styles
2

Saint-Criq, Anthony. "Involutions et courbes flexibles réelles sur des surfaces complexes." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES087.

Full text
Abstract:
La première partie du seizième problème de Hilbert traite de la topologie des courbes algébriques réelles régulières dans le plan projectif. Il est bien connu que bon nombre des propriétés topologiques satisfaites par de telles courbes sont également vraies pour la classe plus large des courbes flexibles, introduites par O. Viro en 1984. Le but de cette thèse est d'approfondir les origines topologiques des restrictions sur les courbes réelles, en lien avec le seizième problème de Hilbert. Nous ajoutons une condition naturelle à la définition de courbe flexible, à savoir qu'elles doivent inters
APA, Harvard, Vancouver, ISO, and other styles
3

"Automorphisms of complexes of curves on odd genus nonorientable surfaces." Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606352/index.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Baird, Thomas John. "The moduli space of flat G-bundles over a nonorientable surface." 2008. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=742554&T=F.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Nonorientable Surfaces"

1

Ho, Nan-Kuo. Yang-Mills connections on orientable and nonorientable surfaces. American Mathematical Society, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1974-, Liu Chiu-Chu Melissa, ed. Yang-Mills connections on orientable and nonorientable surfaces. American Mathematical Society, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

I, Visentin Terry, ed. An atlas of the smaller maps in orientable and nonorientable surfaces. Chapman & Hall/CRC, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jackson, David, and Terry I. Visentin. Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces. Taylor & Francis Group, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jackson, David, and Terry I. Visentin. Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces. Taylor & Francis Group, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jackson, David, and Terry I. Visentin. Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces, an. Discrete Mathematics and Its Applications. Taylor & Francis Group, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jackson, David, and Terry I. Visentin. An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces (Crc Press Series on Discrete Mathematics and Its Applications). Chapman & Hall/CRC, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ho, Nan-Kuo. The moduli space of gauge equivalence classes of flat connections over a compact nonorientable surface. 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nonorientable Surfaces"

1

Paris, Luis. "Presentations for the Mapping Class Groups of Nonorientable Surfaces." In Trends in Mathematics. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05488-9_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aoyama, Hideaki, Anatoli Konechny, V. Lemes, et al. "Nonorientable Riemann Surface." In Concise Encyclopedia of Supersymmetry. Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jackson, D. "Algebraic and analytic approaches for the genus series for 2-cell embeddings on orientable and nonorientable surfaces." In Formal Power Series and Algebraic Combinatorics (Séries Formelles et Combinatoire Algébrique), 1994. American Mathematical Society, 1995. http://dx.doi.org/10.1090/dimacs/024/06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Maps in Nonorientable Surfaces." In Discrete Mathematics and Its Applications. Chapman and Hall/CRC, 2000. http://dx.doi.org/10.1201/9781420035742-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Orientable and nonorientable minimal surfaces." In World Congress of Nonlinear Analysts '92. De Gruyter, 1996. http://dx.doi.org/10.1515/9783110883237.819.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nonorientable Surfaces"

1

BARZA, ILIE, and DORIN GHISA. "NONORIENTABLE COMPACTIFICATIONS OF RIEMANN SURFACES." In Proceedings of the 3rd ISAAC Congress. World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812794253_0052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

HAMADA, Kohei, and Shin KATO. "NONORIENTABLE MINIMAL SURFACES WITH VARIOUS TYPES OF ENDS." In 7th International Colloquium on Differential Geometry and its Related Fields. WORLD SCIENTIFIC, 2025. https://doi.org/10.1142/9789811296710_0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!