Academic literature on the topic 'Nonselfadjoint operators'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nonselfadjoint operators.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nonselfadjoint operators"

1

Kukushkin, Maksim V. "On One Method of Studying Spectral Properties of Non-selfadjoint Operators." Abstract and Applied Analysis 2020 (September 1, 2020): 1–13. http://dx.doi.org/10.1155/2020/1461647.

Full text
Abstract:
In this paper, we explore a certain class of Non-selfadjoint operators acting on a complex separable Hilbert space. We consider a perturbation of a nonselfadjoint operator by an operator that is also nonselfadjoint. Our consideration is based on known spectral properties of the real component of a nonselfadjoint compact operator. Using a technique of the sesquilinear forms theory, we establish the compactness property of the resolvent and obtain the asymptotic equivalence between the real component of the resolvent and the resolvent of the real component for some class of nonselfadjoint operat
APA, Harvard, Vancouver, ISO, and other styles
2

Livšic, M. S. "On commuting nonselfadjoint operators." Integral Equations and Operator Theory 9, no. 1 (1986): 121–33. http://dx.doi.org/10.1007/bf01257065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gil, M. I. "Positive Invertibility of Nonselfadjoint Operators." Positivity 8, no. 3 (2004): 243–56. http://dx.doi.org/10.1007/s11117-004-5372-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Abbaoui, Lyazid, and Latifa Debbi. "An application of the nonselfadjoint operators theory in the study of stochastic processes." Journal of Applied Mathematics and Stochastic Analysis 2004, no. 2 (2004): 149–57. http://dx.doi.org/10.1155/s1048953304305034.

Full text
Abstract:
The theory of operator colligations in Hilbert spaces gives rise to certain models for nonselfadjoint operators, called triangular models. These models generalize the spectral decomposition of selfadjoint operators. In this paper, we use the triangular model to obtain the correlation function (CF) of a nonstationary linearly representable stochastic process for which the corresponding operator is simple, dissipative, nonselfadjoint of rank 1, and has real spectrum. As a generalization, we represent the infinitesimal correlation function (ICF) of a nonhomogeneous linearly representable stochast
APA, Harvard, Vancouver, ISO, and other styles
5

Borisova, Galina S., and Kiril P. Kirchev. "Solitonic combinations and commuting nonselfadjoint operators." Journal of Mathematical Analysis and Applications 424, no. 1 (2015): 21–48. http://dx.doi.org/10.1016/j.jmaa.2014.10.083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gil’, Michael. "Spectral approximations of unbounded nonselfadjoint operators." Analysis and Mathematical Physics 3, no. 1 (2012): 37–44. http://dx.doi.org/10.1007/s13324-012-0037-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Guebbai, Hamza, Sami Segni, Mourad Ghiat, and Meryem Zaddouri. "Pseudo-spectral study for a class of convection-diffusion operators." Reviews in Mathematical Physics 31, no. 01 (2019): 1950001. http://dx.doi.org/10.1142/s0129055x19500016.

Full text
Abstract:
Using adequate strategies, we localize the spectrum of a class of differential operators. We consider the conditioning of the pseudo-spectrum for a family of nonselfadjoint convection-diffusion operators defined on an unbounded open set of [Formula: see text].
APA, Harvard, Vancouver, ISO, and other styles
8

Johnson, Mathew A., and Kevin Zumbrun. "Convergence of Hill's Method for Nonselfadjoint Operators." SIAM Journal on Numerical Analysis 50, no. 1 (2012): 64–78. http://dx.doi.org/10.1137/100809349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kozhukhar’, P. A. "Point spectrum of singular nonselfadjoint differential operators." Functional Analysis and Its Applications 25, no. 3 (1991): 227–28. http://dx.doi.org/10.1007/bf01085495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yurko, Vjacheslav Anatoljevich. "Spectral analysis for differential operators with singularities." Abstract and Applied Analysis 2004, no. 2 (2004): 165–82. http://dx.doi.org/10.1155/s1085337504310055.

Full text
Abstract:
Nonselfadjoint boundary value problems for second-order differential equations on a finite interval with nonintegrable singularities inside the interval are considered under additional sewing conditions for solutions at the singular point. We study properties of the spectrum, prove the completeness of eigen- and associated functions, and investigate the inverse problem of recovering the boundary value problem from its spectral characteristics.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Nonselfadjoint operators"

1

Buran, Şadiye Ongun Mevlüde Yakıt. "Sınır şartlarında spektral parametre bulunduran süreksiz katsayılı kendine eş olmayan singüler sturm-liouville problemi /." Isparta : SDÜ Fen Bilimleri Enstitüsü, 2007. http://tez.sdu.edu.tr/Tezler/TF01113.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Nonselfadjoint operators"

1

S, Livšic Moshe, ed. Theory of commuting nonselfadjoint operators. Kluwer Academic Publishers, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Feintuch, A., and I. Gohberg, eds. Nonselfadjoint Operators and Related Topics. Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8522-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Livšic, M. S., N. Kravitsky, A. S. Markus, and V. Vinnikov. Theory of Commuting Nonselfadjoint Operators. Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8561-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Livšic, Moshe S., and Leonid L. Waksman. Commuting Nonselfadjoint Operators in Hilbert Space. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0078925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Workshop on Operator Theory and Its Applications (1992 Beersheba, Israel). Nonselfadjoint operators and related topics: Workshop on Operator Theory and Its Applications, Beersheva, February 24-28, 1992. Birkhäuser Verlag, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kuzhel, A. Characteristic functions and models of nonself-adjoint operators. Kluwer Academic, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

ic, Moshe S. Livs. Commuting nonselfadjoint operators in Hilbert space: Two independent studies. Springer-Verlag, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Spectral theory of non-self-adjoint two-point differential operators. American Mathematical Society, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zucchi, Adele. Operators of class C₀ with spectra in multiply connected regions. American Mathematical Society, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Metrics on the phase space and non-selfadjoint pseudo-differential operators. Birkhäuser, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Nonselfadjoint operators"

1

Gil', Michael I. "Functions of Nonselfadjoint Operators." In Norm Estimations for Operator-Valued Functions and Applications. CRC Press, 2021. http://dx.doi.org/10.1201/9781003208839-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Christner, Gene, Kin Y. Li, and James Rovnyak. "Julia Operators and Coefficient Problems." In Nonselfadjoint Operators and Related Topics. Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8522-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vinnikov, Victor. "Commuting Nonselfadjoint Operators and Algebraic Curves." In Operator Theory and Complex Analysis. Birkhäuser Basel, 1992. http://dx.doi.org/10.1007/978-3-0348-8606-2_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gil’, Michael I. "8 Bounded Perturbations of Nonselfadjoint Operators." In Lecture Notes in Mathematics. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45225-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Widom, Harold. "Eigenvalue Distribution for Nonselfadjoint Toeplitz Matrices." In Toeplitz Operators and Related Topics. Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8543-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Livšic, M. S., and A. S. Markus. "Joint Spectrum and Discriminant Varieties of Commuting Nonselfadjoint Operators." In Nonselfadjoint Operators and Related Topics. Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8522-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fuhrmann, P. A. "The Bounded Real Characteristic Function and Nehari Extensions." In Nonselfadjoint Operators and Related Topics. Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8522-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hanin, Leonid. "On Isometric Isomorphism between the Second Dual to the “Small” Lipschitz Space and the “Big” Lipschitz Space." In Nonselfadjoint Operators and Related Topics. Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8522-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Helton, J. William, and John J. Wavrik. "Rules for Computer Simplification of the Formulas in Operator Model Theory and Linear Systems." In Nonselfadjoint Operators and Related Topics. Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8522-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khatskevich, Victor. "Some Global Properties of Fractional-Linear Transformations." In Nonselfadjoint Operators and Related Topics. Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8522-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nonselfadjoint operators"

1

SJÖSTRAND, JOHANNES. "SOME RESULTS ON NONSELFADJOINT OPERATORS: A SURVEY." In Proceedings of the 6th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837332_0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kirillov, Oleg N., and Alexander P. Seyranian. "Bifurcation of Eigenvalues of Nonselfadjoint Differential Operators in Nonconservative Stability Problems." In ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/omae2002-28076.

Full text
Abstract:
In the present paper eigenvalue problems for non-selfadjoint linear differential operators smoothly dependent on a vector of real parameters are considered. Bifurcation of eigenvalues along smooth curves in the parameter space is studied. The case of multipleeigen value with Keldysh chain of arbitrary length is considered. Explicit expressions describing bifurcation of eigen-values are found. The obtained formulae use eigenfunctions and associated functions of the adjoint eigenvalue problems as well as the derivatives of the differential operator taken at the initial point of the parameter spa
APA, Harvard, Vancouver, ISO, and other styles
3

ERGÜN, EBRU, and GUSEIN S. GUSEINOV. "DISCRETENESS OF THE SPECTRUM OF A NONSELFADJOINT SECOND-ORDER DIFFERENCE OPERATOR." In Proceedings of the 6th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837332_0047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

MAMEDOV, KHANLAR R., and HAMZA MENKEN. "ASYMPTOTIC FORMULAS FOR EIGENVALUES AND EIGENFUNCTIONS OF A NONSELFADJOINT STURM-LIOUVILLE OPERATOR." In Proceedings of the 6th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837332_0075.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nonselfadjoint operators"

1

Borisova, Galina. Commuting Nonselfadjoint Operators, Open Systems, and Wave Equations. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, 2021. http://dx.doi.org/10.7546/crabs.2021.02.01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!