Books on the topic 'Nonsmooth critical point theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Nonsmooth critical point theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Socrates, Papageorgiou Nikolaos, ed. Nonsmooth critical point theory and nonlinear boundary value problems. Boca Raton, Fla: CRC Press, 2005.
Find full textSchechter, Martin. Critical Point Theory. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45603-0.
Full textservice), SpringerLink (Online, ed. Sign-Changing Critical Point Theory. Boston, MA: Springer-Verlag US, 2008.
Find full textMazzucchelli, Marco. Critical Point Theory for Lagrangian Systems. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0163-8.
Full textMawhin, Jean, and Michel Willem. Critical Point Theory and Hamiltonian Systems. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4757-2061-7.
Full textSchechter, Martin. Linking Methods in Critical Point Theory. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-1596-7.
Full textPalais, Richard S., and Chuu-liang Terng. Critical Point Theory and Submanifold Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0087442.
Full textSchechter, Martin. Minimax Systems and Critical Point Theory. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4902-9.
Full textPalais, Richard S. Critical point theory and submanifold geometry. Berlin: Springer-Verlag, 1988.
Find full textservice), SpringerLink (Online, ed. Critical Point Theory for Lagrangian Systems. Basel: Springer Basel AG, 2012.
Find full textMichel, Willem, ed. Critical point theory and Hamiltonian systems. New York: Springer-Verlag, 1989.
Find full textGhoussoub, Nassif. Duality and pertubation methods in critical point theory. Cambridge: Cambridge University Press, 1993.
Find full textGhoussoub, N. Duality and perturbation methods in critical point theory. Cambridge [England]: Cambridge University Press, 1993.
Find full textKavian, Otared. Introduction à la théorie des points critiques et applications aux problèmes elliptiques. Paris: Springer-Verlag, 1993.
Find full textDomb, Cyril. The critical point: A historical introduction to the modern theory of critical phenomena. London: Taylor & Francis, 1996.
Find full textThe critical point: A historical introduction to the modern theory of critical phenomena. London: Taylor & Francis, 1996.
Find full textConference Board of the Mathematical Sciences., ed. Minimax methods in critical point theory with applications to differential equations. Providence, R.I: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1986.
Find full textAmbrosetti, A. Periodic solutions of singular Lagrangian systems. Boston: Birkhäuser, 1993.
Find full textBartsch, Thomas. Topological methods for variational problems with symmetries. Berlin: Springer-Verlag, 1993.
Find full text1947-, Agarwal Ravi, and O'Regan Donal, eds. Morse theoretic aspects of p-Laplacian type operators. Providence, R.I: American Mathematical Society, 2010.
Find full textKomkov, Vadim. The critical points theory and the variational principles in continuous mechanics of solids. Wrocław: Wydawnictwo Politechniki Wrocławskiej, 1985.
Find full textEaton, Brian Eric. On the calculation of critical points by the method of Heidemann and Khalil. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Find full textEaton, Brian Eric. On the calculation of critical points by the method of Heidemann and Khalil. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Find full textEaton, Brian Eric. On the calculation of critical points by the method of Heidemann and Khalil. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Find full textMasiello, A. Variational methods in Lorentzian geometry. Harlow, Essex, England: Longman Scientific & Technical, 1994.
Find full textCritical points at infinity in some variational problems. Harlow, Essex, England: Longman Scientific & Technical, 1989.
Find full textPoints fixes, points critiques et problèmes aux limites. Montréal, Québec, Canada: Presses de l'Université de Montréal, 1985.
Find full textRassias, Themistocles M. Foundations of global nonlinear analysis. Leipzig: B.G. Teubner, 1986.
Find full textAmbrosetti, A. Critical points and nonlinear variational problems. Paris, France: Société mathématique de France, 1992.
Find full textBahri, A. Pseudo-orbits of contact forms. Harlow: Longman Scientific & Technical, 1988.
Find full textPawłucki, Wiesław. Points de Nash des ensembles sous-analytiques. Providence, R.I., USA: American Mathematical Society, 1990.
Find full textRiahi, Hasna. Study of the critical points at infinity arising from the failure of the Palais-Smale condition for n-body type problems. Providence, R.I: American Mathematical Society, 1999.
Find full textBahri, Abbas. Pseudo-orbits of contact forms. Harlow, Essex, England: Longman Scientific & Technical, 1988.
Find full textA, Tersian Stepan, ed. An introduction to minimax theorems and their applications to differential equations. Dordrecht: Kluwer Academic Publishers, 2001.
Find full textElves Alves de B. e. Silva. Linking theorems and applications to semilinear elliptic problems at resonance. Recife, Brasil: Universidade Federal de Pernambuco, Centro de Ciências Exatas e da Natureza, Departamento de Matemática, 1989.
Find full textMasiello, Antonio. Variational methods in Lorentzian geometry. Harlow: Longman Scientific & Technical, 1994.
Find full textservice), SpringerLink (Online, ed. An Invitation to Morse Theory. New York, NY: Springer Science+Business Media, LLC, 2011.
Find full textH, Brezis, ed. Morse Theory, Minimax Theory and Their Applications to Nonlinear Differential Equations: Held at Morningside Center of Mathematics, Chinese Academy of Sciences, Beijing, April 1st to September 30th, 1999. Somerville, Mass: International Press, 2003.
Find full textH, Brézis, ed. Morse theory, minimax theory and their applications to nonlinear differential equations: [lectures] held at Morningside Center of Mathematics, Chinese Academy of Sciences, Beijing, April 1st to September 30th, 1999. Somerville, Mass: International Press, 2003.
Find full textPapageorgiou, Nikolaos Socrates, and Leszek Gasinski. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Taylor & Francis Group, 2019.
Find full textGasinski, Leszek, and Nikolaos S. Papageorgiou. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Taylor & Francis Group, 2004.
Find full textGasinski, Leszek, and Nikolaos Papageorgiou. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Chapman and Hall/CRC, 2004. http://dx.doi.org/10.1201/9781420035032.
Full textGasinski, Leszek, and Nikolaos S. Papageorgiou. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems (Series in Mathematical Analysis and Applications, V. 8.). Chapman & Hall/CRC, 2004.
Find full textGasinski, Leszek, and Nikolas S. Papageorgiuo. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Series in Mathematical Analysis and Applications, Volume 9. Taylor & Francis Group, 2005.
Find full textDoran, B., Youssef Jabri, T. Y. Lam, M. Ismail, and G. C. Rota. Mountain Pass Theorem: Variants, Generalizations and Some Applications. Cambridge University Press, 2004.
Find full textThe Mountain Pass Theorem: Variants, Generalizations and Some Applications (Encyclopedia of Mathematics and its Applications). Cambridge University Press, 2003.
Find full textJabri, Youssef. Mountain Pass Theorem: Variants, Generalizations and Some Applications. Cambridge University Press, 2003.
Find full text