To see the other types of publications on this topic, follow the link: Nonsmooth critical point theory.

Books on the topic 'Nonsmooth critical point theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Nonsmooth critical point theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Socrates, Papageorgiou Nikolaos, ed. Nonsmooth critical point theory and nonlinear boundary value problems. Boca Raton, Fla: CRC Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Topological aspects of nonsmooth optimization: Ludwig Kuntz. Hamburg: Lit, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schechter, Martin. Critical Point Theory. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45603-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

service), SpringerLink (Online, ed. Sign-Changing Critical Point Theory. Boston, MA: Springer-Verlag US, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mazzucchelli, Marco. Critical Point Theory for Lagrangian Systems. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0163-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mawhin, Jean, and Michel Willem. Critical Point Theory and Hamiltonian Systems. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4757-2061-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schechter, Martin. Linking Methods in Critical Point Theory. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-1596-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Palais, Richard S., and Chuu-liang Terng. Critical Point Theory and Submanifold Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0087442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schechter, Martin. Minimax Systems and Critical Point Theory. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4902-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Palais, Richard S. Critical point theory and submanifold geometry. Berlin: Springer-Verlag, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

service), SpringerLink (Online, ed. Critical Point Theory for Lagrangian Systems. Basel: Springer Basel AG, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

Minimax systems and critical point theory. Boston: Birkhäuser, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Linking methods in critical point theory. Boston: Birkhauser, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

Michel, Willem, ed. Critical point theory and Hamiltonian systems. New York: Springer-Verlag, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ghoussoub, Nassif. Duality and pertubation methods in critical point theory. Cambridge: Cambridge University Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ghoussoub, N. Duality and perturbation methods in critical point theory. Cambridge [England]: Cambridge University Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kavian, Otared. Introduction à la théorie des points critiques et applications aux problèmes elliptiques. Paris: Springer-Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Domb, Cyril. The critical point: A historical introduction to the modern theory of critical phenomena. London: Taylor & Francis, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
19

The critical point: A historical introduction to the modern theory of critical phenomena. London: Taylor & Francis, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Conference Board of the Mathematical Sciences., ed. Minimax methods in critical point theory with applications to differential equations. Providence, R.I: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ambrosetti, A. Periodic solutions of singular Lagrangian systems. Boston: Birkhäuser, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bartsch, Thomas. Topological methods for variational problems with symmetries. Berlin: Springer-Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

1947-, Agarwal Ravi, and O'Regan Donal, eds. Morse theoretic aspects of p-Laplacian type operators. Providence, R.I: American Mathematical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

Komkov, Vadim. The critical points theory and the variational principles in continuous mechanics of solids. Wrocław: Wydawnictwo Politechniki Wrocławskiej, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
25

Eaton, Brian Eric. On the calculation of critical points by the method of Heidemann and Khalil. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
26

Eaton, Brian Eric. On the calculation of critical points by the method of Heidemann and Khalil. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
27

Eaton, Brian Eric. On the calculation of critical points by the method of Heidemann and Khalil. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
28

Masiello, A. Variational methods in Lorentzian geometry. Harlow, Essex, England: Longman Scientific & Technical, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
29

Critical points at infinity in some variational problems. Harlow, Essex, England: Longman Scientific & Technical, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
30

Points fixes, points critiques et problèmes aux limites. Montréal, Québec, Canada: Presses de l'Université de Montréal, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
31

Rassias, Themistocles M. Foundations of global nonlinear analysis. Leipzig: B.G. Teubner, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ambrosetti, A. Critical points and nonlinear variational problems. Paris, France: Société mathématique de France, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bahri, A. Pseudo-orbits of contact forms. Harlow: Longman Scientific & Technical, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Pawłucki, Wiesław. Points de Nash des ensembles sous-analytiques. Providence, R.I., USA: American Mathematical Society, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
35

Riahi, Hasna. Study of the critical points at infinity arising from the failure of the Palais-Smale condition for n-body type problems. Providence, R.I: American Mathematical Society, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bahri, Abbas. Pseudo-orbits of contact forms. Harlow, Essex, England: Longman Scientific & Technical, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
37

A, Tersian Stepan, ed. An introduction to minimax theorems and their applications to differential equations. Dordrecht: Kluwer Academic Publishers, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
38

Elves Alves de B. e. Silva. Linking theorems and applications to semilinear elliptic problems at resonance. Recife, Brasil: Universidade Federal de Pernambuco, Centro de Ciências Exatas e da Natureza, Departamento de Matemática, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

Masiello, Antonio. Variational methods in Lorentzian geometry. Harlow: Longman Scientific & Technical, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
40

service), SpringerLink (Online, ed. An Invitation to Morse Theory. New York, NY: Springer Science+Business Media, LLC, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
41

H, Brezis, ed. Morse Theory, Minimax Theory and Their Applications to Nonlinear Differential Equations: Held at Morningside Center of Mathematics, Chinese Academy of Sciences, Beijing, April 1st to September 30th, 1999. Somerville, Mass: International Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
42

H, Brézis, ed. Morse theory, minimax theory and their applications to nonlinear differential equations: [lectures] held at Morningside Center of Mathematics, Chinese Academy of Sciences, Beijing, April 1st to September 30th, 1999. Somerville, Mass: International Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
43

Papageorgiou, Nikolaos Socrates, and Leszek Gasinski. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
44

Gasinski, Leszek, and Nikolaos S. Papageorgiou. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Taylor & Francis Group, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
45

Gasinski, Leszek, and Nikolaos Papageorgiou. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Chapman and Hall/CRC, 2004. http://dx.doi.org/10.1201/9781420035032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Gasinski, Leszek, and Nikolaos S. Papageorgiou. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems (Series in Mathematical Analysis and Applications, V. 8.). Chapman & Hall/CRC, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gasinski, Leszek, and Nikolas S. Papageorgiuo. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Series in Mathematical Analysis and Applications, Volume 9. Taylor & Francis Group, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
48

Doran, B., Youssef Jabri, T. Y. Lam, M. Ismail, and G. C. Rota. Mountain Pass Theorem: Variants, Generalizations and Some Applications. Cambridge University Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

The Mountain Pass Theorem: Variants, Generalizations and Some Applications (Encyclopedia of Mathematics and its Applications). Cambridge University Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
50

Jabri, Youssef. Mountain Pass Theorem: Variants, Generalizations and Some Applications. Cambridge University Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography