To see the other types of publications on this topic, follow the link: Normal models.

Journal articles on the topic 'Normal models'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Normal models.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Martinec, Zedeněk, Karel Pěč, and M. Burša. "Normal density earth models." Studia Geophysica et Geodaetica 30, no. 2 (1986): 124–47. http://dx.doi.org/10.1007/bf01644373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bernstein, Daniel Irving, and Seth Sullivant. "Normal Binary Hierarchical Models." Experimental Mathematics 26, no. 2 (2016): 153–64. http://dx.doi.org/10.1080/10586458.2016.1142911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sullivant, Seth. "Normal binary graph models." Annals of the Institute of Statistical Mathematics 62, no. 4 (2010): 717–26. http://dx.doi.org/10.1007/s10463-010-0296-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arellano-Valle, R. B., H. Bolfarine, and V. H. Lachos. "Skew-normal Linear Mixed Models." Journal of Data Science 3, no. 4 (2021): 415–38. http://dx.doi.org/10.6339/jds.2005.03(4).238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Urbinati, Stefano. "Divisorial Models of Normal Varieties." Proceedings of the Edinburgh Mathematical Society 60, no. 4 (2017): 1053–64. http://dx.doi.org/10.1017/s0013091516000614.

Full text
Abstract:
AbstractWe prove that the canonical ring of a canonical variety in the sense of de Fernex and Hacon is finitely generated. We prove that canonical varieties are Kawamata log terminal (klt) if and only if is finitely generated. We introduce a notion of nefness for non-ℚ-Gorenstein varieties and study some of its properties. We then focus on these properties for non-ℚ-Gorenstein toric varieties.
APA, Harvard, Vancouver, ISO, and other styles
6

Arellano-Valle, R. B., S. Ozan, H. Bolfarine, and V. H. Lachos. "Skew normal measurement error models." Journal of Multivariate Analysis 96, no. 2 (2005): 265–81. http://dx.doi.org/10.1016/j.jmva.2004.11.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Krasiński, Andrzej. "Shear‐free normal cosmological models." Journal of Mathematical Physics 30, no. 2 (1989): 433–41. http://dx.doi.org/10.1063/1.528462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kato, Kazuya, Chikara Nakayama, and Sampei Usui. "Néron models for admissible normal functions." Proceedings of the Japan Academy, Series A, Mathematical Sciences 90, no. 1 (2014): 6–10. http://dx.doi.org/10.3792/pjaa.90.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Martínez-Flórez, Guillermo, Diego I. Gallardo, Osvaldo Venegas, Heleno Bolfarine, and Héctor W. Gómez. "Flexible Power-Normal Models with Applications." Mathematics 9, no. 24 (2021): 3183. http://dx.doi.org/10.3390/math9243183.

Full text
Abstract:
The main object of this paper is to propose a new asymmetric model more flexible than the generalized Gaussian model. The probability density function of the new model can assume bimodal or unimodal shapes, and one of the parameters controls the skewness of the model. Three simulation studies are reported and two real data applications illustrate the flexibility of the model compared with traditional proposals in the literature.
APA, Harvard, Vancouver, ISO, and other styles
10

Miyaoka, Etsuo. "Estimation in Logistic Normal Linear Models." Japanese Journal of Biometrics 12 (1991): 99–104. http://dx.doi.org/10.5691/jjb.12.99.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Everson, P. J., and C. N. Morris. "Inference for multivariate normal hierarchical models." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 62, no. 2 (2000): 399–412. http://dx.doi.org/10.1111/1467-9868.00239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

CAPITANIO, A., A. AZZALINI, and E. STANGHELLINI. "Graphical models for skew-normal variates." Scandinavian Journal of Statistics 30, no. 1 (2003): 129–44. http://dx.doi.org/10.1111/1467-9469.00322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Basford, Kaye Enid. "Cluster analysis via normal mixture models." Bulletin of the Australian Mathematical Society 32, no. 3 (1985): 473–75. http://dx.doi.org/10.1017/s0004972700002586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Seo, Byungtae, and Daeyoung Kim. "Root selection in normal mixture models." Computational Statistics & Data Analysis 56, no. 8 (2012): 2454–70. http://dx.doi.org/10.1016/j.csda.2012.01.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bhargava, M., and M. Danard. "Normal mode initialization for simple models." Meteorology and Atmospheric Physics 60, no. 4 (1996): 225–36. http://dx.doi.org/10.1007/bf01042186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Basford, K. E., and G. J. McLachlan. "Likelihood Estimation with Normal Mixture Models." Applied Statistics 34, no. 3 (1985): 282. http://dx.doi.org/10.2307/2347474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Contreras Bravo, Leonardo Emiro, Jose Ignacio Rodriguez Molano, and Edwin Rivas Trujillo. "Exploring models of normal human locomotion." Contemporary Engineering Sciences 10, no. 30 (2017): 1457–71. http://dx.doi.org/10.12988/ces.2017.711176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Crowley, Evelyn M. "Product Partition Models for Normal Means." Journal of the American Statistical Association 92, no. 437 (1997): 192–98. http://dx.doi.org/10.1080/01621459.1997.10473616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Morris, Carl N., and Martin Lysy. "Shrinkage Estimation in Multilevel Normal Models." Statistical Science 27, no. 1 (2012): 115–34. http://dx.doi.org/10.1214/11-sts363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Toescu, Emil C. "Normal brain ageing: models and mechanisms." Philosophical Transactions of the Royal Society B: Biological Sciences 360, no. 1464 (2005): 2347–54. http://dx.doi.org/10.1098/rstb.2005.1771.

Full text
Abstract:
Normal ageing is associated with a degree of decline in a number of cognitive functions. Apart from the issues raised by the current attempts to expand the lifespan, understanding the mechanisms and the detailed metabolic interactions involved in the process of normal neuronal ageing continues to be a challenge. One model, supported by a significant amount of experimental evidence, views the cellular ageing as a metabolic state characterized by an altered function of the metabolic triad: mitochondria–reactive oxygen species (ROS)–intracellular Ca 2+ . The perturbation in the relationship betwe
APA, Harvard, Vancouver, ISO, and other styles
21

González, Jorge, Francis Tuerlinckx, Paul De Boeck, and Ronald Cools. "Numerical integration in logistic-normal models." Computational Statistics & Data Analysis 51, no. 3 (2006): 1535–48. http://dx.doi.org/10.1016/j.csda.2006.05.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kahrari, F., C. S. Ferreira, and R. B. Arellano-Valle. "Skew-Normal-Cauchy Linear Mixed Models." Sankhya B 81, no. 2 (2018): 185–202. http://dx.doi.org/10.1007/s13571-018-0173-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hoffmann, K. H., Lishang Jiang, Wanghui Yu, and Ning Zhu. "Models of superconducting-normal-superconducting junctions." Mathematical Methods in the Applied Sciences 21, no. 1 (1998): 59–91. http://dx.doi.org/10.1002/(sici)1099-1476(19980110)21:1<59::aid-mma933>3.0.co;2-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Terza, Joseph V. "Econometric models with normal polychotomous selectivity." Economics Letters 19, no. 2 (1985): 165–70. http://dx.doi.org/10.1016/0165-1765(85)90014-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

van der Gaag, L. C., and J. J. Ch Meyer. "Informational independence: Models and normal forms." International Journal of Intelligent Systems 13, no. 1 (1998): 83–109. http://dx.doi.org/10.1002/(sici)1098-111x(199801)13:1<83::aid-int7>3.0.co;2-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Chikalo, Oleg, and Ilya Obukhov. "Models of Communication Channels Normal Behavior." Infocommunications and Radio Technologies 6, no. 1 (2023): 15–34. http://dx.doi.org/10.29039/2587-9936.2023.06.1.02.

Full text
Abstract:
Models describing the normal operation of communication channels are considered. By using of such models is possible to identify abnormal behavior of telecommunications equipment and take the efforts that necessary to maintain its performance. To this goal “big data” generated by telemetry of telecommunications devices are analyzed.
APA, Harvard, Vancouver, ISO, and other styles
27

Cataño Velez, Elkin. "Robustez estadística." Lecturas de Economía, no. 24 (January 26, 2011): 85–99. http://dx.doi.org/10.17533/udea.le.n24a7769.

Full text
Abstract:
• Resumen: El uso de modelos paramétricos estocásticos exactos tales como el normal, log-normal, exponencial, poisson, gama, etc. está hoy profundamente arraigado en la práctica estadística. La razón es que ellos permiten la representación aproximada de un conjunto de datos que puede ser fácilmente descrita e interpretada. Sin embargo, es bien conocido que el mundo real no se comporta tan bien como lo describen estos modelos. Recientemente surge una técnica estadística la cual emplea también los modelos paramétricos pero la inferencia es realizada para un entorno del modelo asumido. Es decir,
APA, Harvard, Vancouver, ISO, and other styles
28

Miao, Wang, Peng Ding, and Zhi Geng. "Identifiability of Normal and Normal Mixture Models with Nonignorable Missing Data." Journal of the American Statistical Association 111, no. 516 (2016): 1673–83. http://dx.doi.org/10.1080/01621459.2015.1105808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

LONC, ZBIGNIEW, and MIROSŁAW TRUSZCZYŃSKI. "Computing minimal models, stable models and answer sets." Theory and Practice of Logic Programming 6, no. 4 (2006): 395–449. http://dx.doi.org/10.1017/s1471068405002607.

Full text
Abstract:
We propose and study algorithms to compute minimal models, stable models and answer sets of $t$-CNF theories, and normal and disjunctive $t$-programs. We are especially interested in algorithms with non-trivial worst-case performance bounds. The bulk of the paper is concerned with the classes of 2- and 3-CNF theories, and normal and disjunctive 2- and 3-programs, for which we obtain significantly stronger results than those implied by our general considerations. We show that one can find all minimal models of 2-CNF theories and all answer sets of disjunctive 2-programs in time $O(m1\mbox{.}442
APA, Harvard, Vancouver, ISO, and other styles
30

Westermann, Gert, and Denis Mareschal. "Models of atypical development must also be models of normal development." Behavioral and Brain Sciences 25, no. 6 (2002): 771–72. http://dx.doi.org/10.1017/s0140525x02430130.

Full text
Abstract:
Connectionist models aiming to reveal the mechanisms of atypical development must in their undamaged form constitute plausible models of normal development and follow a developmental trajectory that matches empirical data. Constructivist models that adapt their structure to the learning task satisfy this demand. They are therefore more informative in the study of atypical development than the static models employed by Thomas &amp; Karmiloff-Smith (T&amp;K-S).
APA, Harvard, Vancouver, ISO, and other styles
31

Hirsch, Katharina, Andreas Wienke, and Oliver Kuss. "Log-normal frailty models fitted as Poisson generalized linear mixed models." Computer Methods and Programs in Biomedicine 137 (December 2016): 167–75. http://dx.doi.org/10.1016/j.cmpb.2016.09.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

de Jesus, Vera, Sandra Saraiva Ferreira, and Joao Tiago Mexia. "Joint estimation for normal orthogonal mixed models." Discussiones Mathematicae Probability and Statistics 27, no. 1-2 (2007): 5. http://dx.doi.org/10.7151/dmps.1085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

van der Kogel, A. "SP-0237 Necessity of normal tissue models." Radiotherapy and Oncology 161 (August 2021): S161. http://dx.doi.org/10.1016/s0167-8140(21)08531-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Temperton, Clive. "Implicit Normal Mode Initialization for Spectral Models." Monthly Weather Review 117, no. 2 (1989): 436–51. http://dx.doi.org/10.1175/1520-0493(1989)117<0436:inmifs>2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Everson, Philip J. "Exact bayesian inference for normal hierarchical models." Journal of Statistical Computation and Simulation 68, no. 3 (2001): 223–41. http://dx.doi.org/10.1080/00949650108812068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Gómez, Héctor W., Hugo S. Salinas, and Heleno Bolfarine. "Generalized skew-normal models: properties and inference." Statistics 40, no. 6 (2006): 495–505. http://dx.doi.org/10.1080/02331880600723168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Majda, A. J., C. Franzke, and D. Crommelin. "Normal forms for reduced stochastic climate models." Proceedings of the National Academy of Sciences 106, no. 10 (2009): 3649–53. http://dx.doi.org/10.1073/pnas.0900173106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Betounes, David E. "Mean-curvature normal and dual-string models." Physical Review D 33, no. 12 (1986): 3634–39. http://dx.doi.org/10.1103/physrevd.33.3634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Patton, Thomas L. "Sandbox models of downward-steepening normal faults." AAPG Bulletin 89, no. 6 (2005): 781–97. http://dx.doi.org/10.1306/0105052001108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Pellonpää, Juha-Pekka, and Mikko Tukiainen. "Minimal normal measurement models of quantum instruments." Reports on Mathematical Physics 79, no. 3 (2017): 261–78. http://dx.doi.org/10.1016/s0034-4877(17)30040-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Stark, Dudley. "OIL PRODUCTION MODELS WITH NORMAL RATE CURVES." Probability in the Engineering and Informational Sciences 25, no. 2 (2011): 205–17. http://dx.doi.org/10.1017/s0269964810000355.

Full text
Abstract:
The normal curve has been used to fit the rate of both world and US oil production. In this article we give the first theoretical basis for these curve fittings. It is well known that oil field sizes can be modeled by independent samples from a lognormal distribution. We show that when field sizes are lognormally distributed, the starting time of the production of a field is approximately a linear function of the logarithm of its size, and production of a field occurs within a small enough time interval, then the resulting total rate of production is close to being a normal curve.
APA, Harvard, Vancouver, ISO, and other styles
42

Krishnan, Anita, Jodi I. Pike, Robert McCarter, et al. "Predictive Models for Normal Fetal Cardiac Structures." Journal of the American Society of Echocardiography 29, no. 12 (2016): 1197–206. http://dx.doi.org/10.1016/j.echo.2016.08.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

McLachlan, G. J., D. Peel, and W. J. Whiten. "Maximum likelihood clustering via normal mixture models." Signal Processing: Image Communication 8, no. 2 (1996): 105–11. http://dx.doi.org/10.1016/0923-5965(95)00039-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Aghili Ashtiani, Arya, and Mohammad Bagher Menhaj. "Introducing $$g$$ g -normal fuzzy relational models." Soft Computing 19, no. 8 (2014): 2163–71. http://dx.doi.org/10.1007/s00500-014-1398-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Gupta, Arjun K., and John T. Chen. "A class of multivariate skew-normal models." Annals of the Institute of Statistical Mathematics 56, no. 2 (2004): 305–15. http://dx.doi.org/10.1007/bf02530547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Došen, Kosta. "Models for stronger normal intuitionistic modal logics." Studia Logica 44, no. 1 (1985): 39–70. http://dx.doi.org/10.1007/bf00370809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kelderman, H. "Measurement exchangeability and normal one-factor models." Biometrika 91, no. 3 (2004): 738–42. http://dx.doi.org/10.1093/biomet/91.3.738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wang, H., and M. West. "Bayesian analysis of matrix normal graphical models." Biometrika 96, no. 4 (2009): 821–34. http://dx.doi.org/10.1093/biomet/asp049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Eslinger, Paul W., and Wayne A. Woodward. "Minimum hellinger distance estimation for normal models." Journal of Statistical Computation and Simulation 39, no. 1-2 (1991): 95–114. http://dx.doi.org/10.1080/00949659108811342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Fiedler, R. A. S., and A. W. Hood. "Numerical models of quiescent normal polarity prominences." Solar Physics 141, no. 1 (1992): 75–90. http://dx.doi.org/10.1007/bf00155905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!