Contents
Academic literature on the topic 'Normalité asymptotique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Normalité asymptotique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Normalité asymptotique"
Berlinet, Alain, Ali Gannoun, and Eric Matzner-Løber. "Normalité asymptotique d'estimateurs convergents du mode conditionnel." Canadian Journal of Statistics 26, no. 2 (June 1998): 365–80. http://dx.doi.org/10.2307/3315517.
Full textKara-Terki, Nesrine, and Tahar Mourid. "Normalité asymptotique locale de processus autorégressifs hilbertiens." Comptes Rendus Mathematique 354, no. 6 (June 2016): 634–38. http://dx.doi.org/10.1016/j.crma.2016.03.006.
Full textBoussama, Farid. "Normalité asymptotique de l'estimateur du pseudo-maximum de vraisemblance d'un modèle GARCH." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 331, no. 1 (July 2000): 81–84. http://dx.doi.org/10.1016/s0764-4442(00)01593-7.
Full textMas, André. "Normalité asymptotique de l'estimateur empirique de l'opérateur d'autocorrélation d'un processus ARH(1)." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 329, no. 10 (November 1999): 899–902. http://dx.doi.org/10.1016/s0764-4442(00)87496-0.
Full textDufour, Jean-Marie, Abdeljelil Farhat, and Lynda Khalaf. "Tests multiples simulés et tests de normalité basés sur plusieurs moments dans les modèles de régression*." Articles 80, no. 2-3 (October 24, 2005): 501–22. http://dx.doi.org/10.7202/011397ar.
Full textDebbarh, Mohammed. "Normalité asymptotique de l'estimateur par ondelettes des composantes d'un modèle additif de régression." Comptes Rendus Mathematique 343, no. 9 (November 2006): 601–6. http://dx.doi.org/10.1016/j.crma.2006.10.003.
Full textDupuy, Jean-François, Ion Grama, and Mounir Mesbah. "Normalité asymptotique des estimateurs semiparamétriques dans le modèle de Cox avec covariable manquante nonignorable." Comptes Rendus Mathematique 336, no. 1 (January 2003): 81–84. http://dx.doi.org/10.1016/s1631-073x(03)00003-7.
Full textRodriguez-Poo, Juan, Stefan Sperlich, and Philippe Vieu. "Normalité asymptotique d'estimateurs de maximum de vraisemblance pour modèles non-paramétriques de régression multidimensionnelle." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 333, no. 1 (July 2001): 61–64. http://dx.doi.org/10.1016/s0764-4442(01)02010-9.
Full textBordenave, Charles. "Exposé Bourbaki 1153 : Normalité asymptotique des vecteurs propres d'un graphe régulier aléatoire d'après Ágnes Backhausz et Balázs Szegedy." Astérisque 422 (2020): 109–47. http://dx.doi.org/10.24033/ast.1132.
Full textRachedi, Fatiha. "Vitesse de convergence en norme p-intégrale et normalité asymptotique de l'estimateur crible de l'opérateur d'un ARB(1)." Comptes Rendus Mathematique 341, no. 6 (September 2005): 369–74. http://dx.doi.org/10.1016/j.crma.2005.05.009.
Full textDissertations / Theses on the topic "Normalité asymptotique"
Kahn, Jonas. "Normalité asymptotique locale quantique et autres questions de statistiques quantiques." Paris 11, 2009. http://www.theses.fr/2009PA112352.
Full textThe thesis deals with miscellaneous quantum statistics problems, where the starting point is the object itself, instead of measurement data. We use model selection methods on quantum homodyne tomography. We apply our results to photocounter calibration. We study optimal discrimination of quantum states and Pauli channels, in a minimax setting. We devise an estimation scheme for unitary transformations, which has 1/n convergence speed. We give a sufficient condition for a measurement to be clean, as defined by Buscemi et al. , and characterise clean measurements on qubits. We prove there are not five complementary subalgebras isomorphic to M2(C) in M4(C). The main theme is strong quantum local asymptotic normality. We prove that i. I. D. Experiments are asymptotically equivalent to quantum Gaussian shift experiments. Ln other words, many copies of a finite-dimensional system correspond to a single copy of a Gaussian state on a CCR-algebra of the right dimension, with mean as unknown parameter. This means that there are channels that transform one state into the other, and back, without knowing the precise state. Hence, all problems solved for quantum Gaussian shift experiments are asymptotically solved for i. I. D. Experiments, ln particular, we give an explicit optimal estimation method for any well-behaved loss function, both in the minimax and Bayesian uniform frameworks
Lombard, Christophe. "Estimateurs de la densité basés sur des partitions : Convergence et normalité asymptotique." Montpellier 2, 1998. http://www.theses.fr/1998MON20154.
Full textLevallois, Serge. "Convergence et normalité asymptotique d'estimateurs de la densité : Cas i.i.d. et ergodique." Montpellier 2, 1998. http://www.theses.fr/1998MON20236.
Full textTran, Ngoc Khue. "Propriété LAN pour des processus de diffusion avec sauts avec observations discrètes via le calcul de Malliavin." Thesis, Paris 13, 2014. http://www.theses.fr/2014PA132008/document.
Full textIn this thesis we apply the Malliavin calculus in order to obtain the local asymptotic normality (LAN) property from discrete observations for certain uniformly elliptic diffusion processes with jumps. In Chapter 2 we review the proof of the local asymptotic mixed normality (LAMN) property for diffusion processes with jumps from continuous observations, and as a consequence, we derive the LAN property when supposing the ergodicity of the process. In Chapter 3 we establish the LAN property for a simple Lévy process whose drift and diffusion parameters as well as its intensity are unknown. In Chapter 4, using techniques of the Malliavin calculus and the estimates of the transition density, we prove that the LAN property is satisfied for a jump-diffusion process whose drift coefficient depends on an unknown parameter. Finally, in the same direction we obtain in Chapter 5 the LAN property for a jump-diffusion process where two unknown parameters determine the drift and diffusion coefficients of the jump-diffusion process
Soltane, Marius. "Statistique asymptotique de certaines séries chronologiques à mémoire." Thesis, Le Mans, 2020. http://cyberdoc-int.univ-lemans.fr/Theses/2020/2020LEMA1027.pdf.
Full textThis thesis is devoted to asymptotic inferenre of differents chronological models driven by a noise with memory. In these models, the least squares estimator is not consistent and we consider other estimators. We begin by studying the almost-sureasymptotic properties of the maximum likelihood estimator of the autoregressive coefficient in an autoregressive process drivenby a stationary Gaussian noise. We then present a statistical procedure in order to detect a change of regime within this model,taking inspiration from the classic case driven by a strong white noise. Then we consider an autoregressive model where the coefficients are random and have a short memory. Here again, the least squares estimator is not consistent and we correct the previous statistic in order to correctly estimate the parameters of the model. Finally we study a new joint estimator of the Hurst exponent and the variance in a fractional Gaussian noise observed at high frequency whose qualities are comparable to the maximum likelihood estimator
Benhmida, Saïd. "Robustesse et comportement asymptotique d'un TRA-estimateur des coefficients d'un processus ARMA (p,q)." Nancy 1, 1995. http://www.theses.fr/1995NAN10035.
Full textRoman, Claire. "Etude des valeurs extrêmes en présence d'une covariable de grande dimension." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAD026.
Full textThe aim of the thesis is to study some estimators of extreme conditional quantiles by using the inversion method of associated survival function local estimators. These estimators depend on weights function whose role is to select the more relevant covariates in a sample. In a first chapter, we establish the asymptotic normality of these estimators. It requires a new condition on the distribution of interest which is called Tail First Order condition. This condition is satisfied by distributions verifying the Gnedenko-Fisher-Tippet theorem but also by super heavy-tailed distributions. Other classical conditions are necessary, in particular about the nature of the quantile which has to be intermediate. In a second chapter, we define by extrapolation a new extreme quantile estimator and we prove the consistency. The curse of dimensionality problem is also discussed. In both chapters, some particular cases are studied as the well known Nadaraya-Watson estimator or nearest neighbors estimator. The perfomances of the different estimators are tested with simulation study. An application to real data set has been done too
Godet, Fanny. "Prévision linéaire des processus à longue mémoire." Phd thesis, Université de Nantes, 2008. http://tel.archives-ouvertes.fr/tel-00349384.
Full textLévy-Leduc, Céline. "Estimation semi-paramétrique de la période de fonctions périodiques inconnues dans divers modèles statistiques : théorie et applications." Paris 11, 2004. http://www.theses.fr/2004PA112146.
Full textThis thesis is devoted to semiparametric period estimation of unknown periodic functions in various statistical models as well as the construction of nonparametric tests to detect a periodic signal in the midst of noise. In chapter 1, we propose asymptotically optimal estimators of the period of an unknown periodic function and of the periods of two periodic functions from their sum corrupted by Gaussian white noise. In chapter 2, we propose a practical implementation of the period estimation method based on the ideas developed in the first chapter that we test on simulated laser vlbrometry signals. This algorithm is used in chapter 3 on real musical data. In chapter 4, we propose an estimator of the period when the observations are those of a particular almost periodic function corrupted by Gaussian white noise as well as a practical implementation of the method. This algorithm has also been tested on laser vibrometry data. In chapter 5, we propose a test in order to detect periodic functions in the midst of noise when the period of the function and the variance of noise are unknown. It is proved to be adaptive in the minimax sense and has been tested on laser vibrometry data
Caron, Emmanuel. "Comportement des estimateurs des moindres carrés du modèle linéaire dans un contexte dépendant : Étude asymptotique, implémentation, exemples." Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0036.
Full textIn this thesis, we consider the usual linear regression model in the case where the error process is assumed strictly stationary.We use a result from Hannan (1973) who proved a Central Limit Theorem for the usual least squares estimator under general conditions on the design and on the error process. Whatever the design and the error process satisfying Hannan’s conditions, we define an estimator of the asymptotic covariance matrix of the least squares estimator and we prove its consistency under very mild conditions. Then we show how to modify the usual tests on the parameter of the linear model in this dependent context. We propose various methods to estimate the covariance matrix in order to correct the type I error rate of the tests. The R package slm that we have developed contains all of these statistical methods. The procedures are evaluated through different sets of simulations and two particular examples of datasets are studied. Finally, in the last chapter, we propose a non-parametric method by penalization to estimate the regression function in the case where the errors are Gaussian and correlated
Books on the topic "Normalité asymptotique"
Genot-Catalot, Valentine. Eléments de statistique asymptotique. Paris: Springer-Verlag, 1993.
Find full textGenon-Catalot, Valentine, and Dominique Picard. Eléments de statistique asymptotique (Mathématiques et Applications). Springer, 1993.
Find full text