To see the other types of publications on this topic, follow the link: Normalité asymptotique.

Dissertations / Theses on the topic 'Normalité asymptotique'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 43 dissertations / theses for your research on the topic 'Normalité asymptotique.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Kahn, Jonas. "Normalité asymptotique locale quantique et autres questions de statistiques quantiques." Paris 11, 2009. http://www.theses.fr/2009PA112352.

Full text
Abstract:
Cette thèse aborde plusieurs problèmes de statistiques quantiques, où il faut partir de l'objet et non des données après mesure. Nous utilisons des méthodes de sélection de modèles en tomographie quantique homodyne, et appliquons nos résultats à la calibration d'un compteur de photons. Nous étudions la discrimination optimale minimax d'états quantiques ou de canaux de Pauli. Nous mettons au point une méthode d'estimation d'opération unitaire de vitesse de convergence 1/n. Nous donnons un critère suffisant pour qu'une mesure soit propre, au sens de Buscemi et al. , et nous en servons pour caractériser les mesures propres sur les qubits. Nous démontrons qu'il ne peut pas y avoir cinq sous-algèbres complémentaires isomorphes à M2(C) dans M4(C). Le thème principal reste la normalité asymptotique locale quantique forte. Nous prouvons que les expériences i. I. D. Sont asymptotiquement équivalentes à des expériences de décalage gaussien quantiques. En d'autres termes, de nombreuses copies d'un système de dimension finie correspondent d'un point de vue statistique à une copie d'un état gaussien d'une algèbre CCR de bonne dimension, dont le paramètre inconnu est la moyenne, au sens où il existe des canaux transformant l'un en l'autre, sans connaître l'état précis. Nous montrons comment un couplage atome-champ usuel permet de réaliser le canal pour des qubits. Ainsi, tous les problèmes résolus pour les expériences de décalage gaussien quantiques le sont asymptotiquement pour les expériences i. I. D. En particulier, nous donnons explicitement une méthode d'estimation optimale pour toute «bonne» fonction de perte, dans les cadres minimax ou bayésien uniforme
The thesis deals with miscellaneous quantum statistics problems, where the starting point is the object itself, instead of measurement data. We use model selection methods on quantum homodyne tomography. We apply our results to photocounter calibration. We study optimal discrimination of quantum states and Pauli channels, in a minimax setting. We devise an estimation scheme for unitary transformations, which has 1/n convergence speed. We give a sufficient condition for a measurement to be clean, as defined by Buscemi et al. , and characterise clean measurements on qubits. We prove there are not five complementary subalgebras isomorphic to M2(C) in M4(C). The main theme is strong quantum local asymptotic normality. We prove that i. I. D. Experiments are asymptotically equivalent to quantum Gaussian shift experiments. Ln other words, many copies of a finite-dimensional system correspond to a single copy of a Gaussian state on a CCR-algebra of the right dimension, with mean as unknown parameter. This means that there are channels that transform one state into the other, and back, without knowing the precise state. Hence, all problems solved for quantum Gaussian shift experiments are asymptotically solved for i. I. D. Experiments, ln particular, we give an explicit optimal estimation method for any well-behaved loss function, both in the minimax and Bayesian uniform frameworks
APA, Harvard, Vancouver, ISO, and other styles
2

Lombard, Christophe. "Estimateurs de la densité basés sur des partitions : Convergence et normalité asymptotique." Montpellier 2, 1998. http://www.theses.fr/1998MON20154.

Full text
Abstract:
Ce travail est consacre a differents aspects du comportement asymptotique d'estimateurs de la densite de probabilite bases sur des partitions. Dans le chapitre 1 nous passons en revue, dans les cas univarie et multivarie, une liste d'estimateurs issus de l'histogramme. Le chapitre 2 etudie l'erreur moyenne quadratique integree des estimateurs precedents. Nous en deduisons le parametre de lissage optimal et l'erreur asymptotiquement optimale. Une hierarchie peut etre ainsi etablie. Dans ce chapitre, l'erreur absolue moyenne integree est aussi abordee et traitee pour certains estimateurs. Dans le but de developper des tests, le dernier chapitre porte sur la normalite asymptotique des erreurs globales. La poissonisation semble etre une technique fructueuse pour aborder cette question. Ainsi, la methode de poissonisation est etudiee, formalisee et appliquee a l'un de nos estimateurs. Enfin, la normalite asymptotique de l'erreur l#1 entre l'histogramme et la densite a estimer est generalisee a l'erreur l#p.
APA, Harvard, Vancouver, ISO, and other styles
3

Levallois, Serge. "Convergence et normalité asymptotique d'estimateurs de la densité : Cas i.i.d. et ergodique." Montpellier 2, 1998. http://www.theses.fr/1998MON20236.

Full text
Abstract:
Dans ce memoire, nous nous interessons a deux types d'estimateurs de la densite de probabilite, estimateurs a pas aleatoires et estimateurs a noyaux. Dans la premiere partie, nous etablissons un theoreme de convergence de l'estimateur des plus proches voisins. Ce theoreme englobe et generalise ceux existant, sans imposer aucune condition particuliere a la densite. Nous etablissons aussi la normalite asymptotique locale. Dans la seconde partie, nous etudions la classe d'estimateurs introduites en 1986 par abdous et berlinet. Cette classe contient la plupart des variantes des estimateurs a noyau de la densite. Dans le chapitre 3, nous etablissons la convergence en norme l#1 pour des variables i. I. D. , puis nous demontrons dans le chapitre 4, la normalite asymptotique locale. Les deux derniers chapitres traitent de convergence uniforme et en norme l#1 pour les processus ergodiques.
APA, Harvard, Vancouver, ISO, and other styles
4

Tran, Ngoc Khue. "Propriété LAN pour des processus de diffusion avec sauts avec observations discrètes via le calcul de Malliavin." Thesis, Paris 13, 2014. http://www.theses.fr/2014PA132008/document.

Full text
Abstract:
Dans cette thèse nous appliquons le calcul de Malliavin afin d’obtenir la propriété de normalité asymptotique locale (LAN) à partir d’observations discrètes de certains processus de diffusion uniformément elliptique avec sauts. Dans le Chapitre 2 nous révisons la preuve de la propriété de normalité mixte asymptotique locale (LAMN) pour des processus de diffusion avec sauts à partir d’observations continues, et comme conséquence nous obtenons la propriété LAN en supposant l’ergodicité du processus. Dans le Chapitre 3 nous établissons la propriété LAN pour un processus de Lévy simple dont les paramètres de dérive et de diffusion ainsi que l’intensité sont inconnus. Dans le Chapitre 4, à l’aide du calcul de Malliavin et des estimées de densité de transition, nous démontrons que la propriété LAN est vérifiée pour un processus de diffusion à sauts dont le coefficient de dérive dépends d’un paramètre inconnu. Finalement, dans la même direction nous obtenons dans le Chapitre 5 la propriété LAN pour un processus de diffusion à sauts où les deux paramètres inconnus interviennent dans les coefficients de dérive et de diffusion
In this thesis we apply the Malliavin calculus in order to obtain the local asymptotic normality (LAN) property from discrete observations for certain uniformly elliptic diffusion processes with jumps. In Chapter 2 we review the proof of the local asymptotic mixed normality (LAMN) property for diffusion processes with jumps from continuous observations, and as a consequence, we derive the LAN property when supposing the ergodicity of the process. In Chapter 3 we establish the LAN property for a simple Lévy process whose drift and diffusion parameters as well as its intensity are unknown. In Chapter 4, using techniques of the Malliavin calculus and the estimates of the transition density, we prove that the LAN property is satisfied for a jump-diffusion process whose drift coefficient depends on an unknown parameter. Finally, in the same direction we obtain in Chapter 5 the LAN property for a jump-diffusion process where two unknown parameters determine the drift and diffusion coefficients of the jump-diffusion process
APA, Harvard, Vancouver, ISO, and other styles
5

Soltane, Marius. "Statistique asymptotique de certaines séries chronologiques à mémoire." Thesis, Le Mans, 2020. http://cyberdoc-int.univ-lemans.fr/Theses/2020/2020LEMA1027.pdf.

Full text
Abstract:
Cette thèse est dévolue à la statistique inférentielle asymptotique de différents modèles chronologiques dirigés par un bruit comportant de la mémoire. Dans ces modèles, l'estimateur des moindres carrés n'est pas consistant et nous considérons d'autres estimateurs. Nous commençons par étudier les propriétés asymptotiques presquesûres de l'estimateur du maximum de vraisemblance du coefficient d'autorégression dans un processus autorégressif dirigé par un bruit gaussien stationnaire. Nous présentons ensuite une procédure statistique afin de détecter un changement de régime au sein de ce modèle en s'inspirant du cas classique dirigé par un bruit blanc fort. Nous abordons ensuite un modèle autorégressif où les coefficients sont aléatoires et possèdent une courte mémoire. Là encore l'estimateur des moindres carrés n'est pas consistant et nouscorrigeons l'estimation afin d'estimer correctement les paramètres du modèle. Pour finir nous étudions un nouvel estimateur joint de l'exposant de Hurst et de la variance dans un bruit gaussien fractionnaire observé à haute fréquence dont les qualités sont comparables au maximum de vraisemblance
This thesis is devoted to asymptotic inferenre of differents chronological models driven by a noise with memory. In these models, the least squares estimator is not consistent and we consider other estimators. We begin by studying the almost-sureasymptotic properties of the maximum likelihood estimator of the autoregressive coefficient in an autoregressive process drivenby a stationary Gaussian noise. We then present a statistical procedure in order to detect a change of regime within this model,taking inspiration from the classic case driven by a strong white noise. Then we consider an autoregressive model where the coefficients are random and have a short memory. Here again, the least squares estimator is not consistent and we correct the previous statistic in order to correctly estimate the parameters of the model. Finally we study a new joint estimator of the Hurst exponent and the variance in a fractional Gaussian noise observed at high frequency whose qualities are comparable to the maximum likelihood estimator
APA, Harvard, Vancouver, ISO, and other styles
6

Benhmida, Saïd. "Robustesse et comportement asymptotique d'un TRA-estimateur des coefficients d'un processus ARMA (p,q)." Nancy 1, 1995. http://www.theses.fr/1995NAN10035.

Full text
Abstract:
Le but essentiel de ce travail est de définir et étudier un estimateur robuste des coefficients d'un modèle moyenne mobile, d'ordre q entier supérieur ou égal a un. Nous commençons par établir la définition d'un estimateur (basé sur les autocovariances des résidus tronqué) pour les coefficients d'un modèle moyenne mobile d'ordre q et ses liens avec d'autres estimateurs. Après avoir introduit la notion de robustesse dans le cadre des séries chronologiques, nous étudions la robustesse de cet estimateur, ou nous montrons que sa fonction d'influence est bornée. Nous nous intéressons aussi au comportement asymptotique de cet estimateur, ou nous montrons sa convergence presque sure et sa normalité asymptotique. Puis nous montrons que les résultats obtenus pour un modèle moyenne mobile se généralisent à un modèle autorégressif moyenne mobile d'ordre p et q. à la fin nous nous donnons une application numérique, qui a pour but d'illustrer les résultats théoriques obtenus pour un modèle moyenne mobile d'ordre deux et de généraliser les algorithmes d'estimation à des modèles moyenne mobile d'ordre q supérieur ou égal à deux
APA, Harvard, Vancouver, ISO, and other styles
7

Roman, Claire. "Etude des valeurs extrêmes en présence d'une covariable de grande dimension." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAD026.

Full text
Abstract:
Dans cette thèse, on cherche à estimer des quantiles extrêmes conditionnels par la méthode d'inversion d'estimateurs locaux de la fonction de survie associée. Ces estimateurs dépendent de fonctions poids qui permettent à partir d'un échantillon de sélectionner les covariables les plus pertinentes. Dans un premier chapitre, on s'intéresse à la normalité asymptotique de ces estimateurs. Celle-ci nécessite l'introduction d'une nouvelle condition sur la distribution d'intérêt appelée Tail First Order condition. Il est montré que cette condition est vérifiée non seulement par les distributions satisfaisant le théorème de Gnedenko-Fisher-Tippet mais également par les distributions super heavy-tailed. D'autres conditions, plus classiques, sont imposées notamment sur la nature du quantile qui doit être intermédiaire. Dans un deuxième chapitre, on définit un nouvel estimateur de quantiles extrêmes par extrapolation et on montre sa consistance. Le problème de la dimension de la covariable est également traité. Dans les deux chapitres, des cas particuliers sont étudiés dont le célèbre estimateur de Nadaraya-Watson ou encore l'estimateur des plus proches voisins. Les performances des différents estimateurs sont testés avec des études de simulation à distance finie. Une application à un jeu de données réelles a également été faite
The aim of the thesis is to study some estimators of extreme conditional quantiles by using the inversion method of associated survival function local estimators. These estimators depend on weights function whose role is to select the more relevant covariates in a sample. In a first chapter, we establish the asymptotic normality of these estimators. It requires a new condition on the distribution of interest which is called Tail First Order condition. This condition is satisfied by distributions verifying the Gnedenko-Fisher-Tippet theorem but also by super heavy-tailed distributions. Other classical conditions are necessary, in particular about the nature of the quantile which has to be intermediate. In a second chapter, we define by extrapolation a new extreme quantile estimator and we prove the consistency. The curse of dimensionality problem is also discussed. In both chapters, some particular cases are studied as the well known Nadaraya-Watson estimator or nearest neighbors estimator. The perfomances of the different estimators are tested with simulation study. An application to real data set has been done too
APA, Harvard, Vancouver, ISO, and other styles
8

Godet, Fanny. "Prévision linéaire des processus à longue mémoire." Phd thesis, Université de Nantes, 2008. http://tel.archives-ouvertes.fr/tel-00349384.

Full text
Abstract:
Nous étudions des méthodes de prévision pour les processus à longue mémoire. Ils sont supposés stationnaires du second ordre, linéaires, causals et inversibles. Nous supposons tout d'abord que l'on connaît la loi du processus mais que l'on ne dispose que d'un nombre fini d'observations pour le prédire. Nous proposons alors deux prédicteurs linéaires : celui de Wiener-Kolmogorov tronqué et celui construit par projection sur le passé fini observé. Nous étudions leur comportement lorsque le nombre d'observations disponibles tend vers l'infini. Dans un deuxième temps nous ne supposons plus la loi du processus connue, il nous faut alors estimer les fonctions de prévision obtenues dans la première partie. Pour le prédicteur de Wiener-Kolmogorov tronqué, nous utilisons une approche paramétrique en estimant les coefficients du prédicteur grâce à l'estimateur de Whittle calculé sur une série indépendante de la série à prédire. Pour le prédicteur obtenu par projection, on estime les coefficients du prédicteur en remplaçant dans les équations de Yule-Walker les covariances par les covariances empiriques calculé sur une série indépendante ou sur la série à prédire. Pour les deux prédicteurs, on estime les erreurs quadratiques due à l'estimation des coefficients et on prouve leurs normalités asymptotiques.
APA, Harvard, Vancouver, ISO, and other styles
9

Lévy-Leduc, Céline. "Estimation semi-paramétrique de la période de fonctions périodiques inconnues dans divers modèles statistiques : théorie et applications." Paris 11, 2004. http://www.theses.fr/2004PA112146.

Full text
Abstract:
Cette thèse porte sur l'estimation semi-paramétrique de la période de fonctions périodiques inconnues dans divers cadres statistiques ainsi qu'à la mise en place de tests non-paramétriques permettant de détecter la présence de signal périodique dans du bruit. Dans le chapitre 1, nous proposons des estimateurs asymptotiquement optimaux de la période d'une fonction périodique et des périodes de deux fonctions périodiques à partir de leur somme bruitée. Dans le chapitre 2, nous proposons un algorithme pratique d'estimation de période fondée sur les idées du chapitre 1 que nous testons sur des données simulées de vibrométrie laser. Cet algorithme est testé dans le chapitre 3 sur des données réelles musicales. Dans le chapitre 4, nous proposons un estimateur de période lorsque les observations correspondent à une fonction presque périodique particulière bruitée ainsi qu'une mise en oeuvre pratique de la méthode que l'on a testée sur des signaux de vibrométrie laser. Dans le chapitre 5, on propose un test de détection de fonctions périodiques dans du bruit lorsque la période de la fonction et la variance du bruit sont inconnues qui est adaptatif au sens du minimax et on l'a teste sur des données de vibrométrie laser
This thesis is devoted to semiparametric period estimation of unknown periodic functions in various statistical models as well as the construction of nonparametric tests to detect a periodic signal in the midst of noise. In chapter 1, we propose asymptotically optimal estimators of the period of an unknown periodic function and of the periods of two periodic functions from their sum corrupted by Gaussian white noise. In chapter 2, we propose a practical implementation of the period estimation method based on the ideas developed in the first chapter that we test on simulated laser vlbrometry signals. This algorithm is used in chapter 3 on real musical data. In chapter 4, we propose an estimator of the period when the observations are those of a particular almost periodic function corrupted by Gaussian white noise as well as a practical implementation of the method. This algorithm has also been tested on laser vibrometry data. In chapter 5, we propose a test in order to detect periodic functions in the midst of noise when the period of the function and the variance of noise are unknown. It is proved to be adaptive in the minimax sense and has been tested on laser vibrometry data
APA, Harvard, Vancouver, ISO, and other styles
10

Caron, Emmanuel. "Comportement des estimateurs des moindres carrés du modèle linéaire dans un contexte dépendant : Étude asymptotique, implémentation, exemples." Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0036.

Full text
Abstract:
Dans cette thèse, nous nous intéressons au modèle de régression linéaire usuel dans le cas où les erreurs sont supposées strictement stationnaires. Nous utilisons un résultat de Hannan (1973) qui a prouvé un Théorème Limite Central pour l’estimateur des moindres carrés sous des conditions très générales sur le design et le processus des erreurs. Pour un design et un processus d’erreurs vérifiant les conditions d’Hannan, nous définissons un estimateur de la matrice de covariance asymptotique de l’estimateur des moindres carrés et nous prouvons sa consistance sous des conditions très générales. Ensuite nous montrons comment modifier les tests usuels sur le paramètre du modèle linéaire dans ce contexte dépendant. Nous proposons différentes approches pour estimer la matrice de covariance afin de corriger l’erreur de première espèce des tests. Le paquet R slm que nous avons développé contient l’ensemble de ces méthodes statistiques. Les procédures sont évaluées à travers différents ensembles de simulations et deux exemples particuliers de jeux de données sont étudiés. Enfin, dans le dernier chapitre, nous proposons une méthode non-paramétrique par pénalisation pour estimer la fonction de régression dans le cas où les erreurs sont gaussiennes et corrélées
In this thesis, we consider the usual linear regression model in the case where the error process is assumed strictly stationary.We use a result from Hannan (1973) who proved a Central Limit Theorem for the usual least squares estimator under general conditions on the design and on the error process. Whatever the design and the error process satisfying Hannan’s conditions, we define an estimator of the asymptotic covariance matrix of the least squares estimator and we prove its consistency under very mild conditions. Then we show how to modify the usual tests on the parameter of the linear model in this dependent context. We propose various methods to estimate the covariance matrix in order to correct the type I error rate of the tests. The R package slm that we have developed contains all of these statistical methods. The procedures are evaluated through different sets of simulations and two particular examples of datasets are studied. Finally, in the last chapter, we propose a non-parametric method by penalization to estimate the regression function in the case where the errors are Gaussian and correlated
APA, Harvard, Vancouver, ISO, and other styles
11

Khardani, Salah. "Prévision non paramétrique dans les modèles de censure via l'estimation du mode conditionnel." Littoral, 2010. http://www.theses.fr/2010DUNK0277.

Full text
Abstract:
Dans ce travail, nous étudions quelques aspects de l’estimation fonctionnelle pour des données incomplètes (censurées). Plus précisément, nous nous intéressons à la fonction mode et à la fonction mode conditionnel pour lesquelles nous construisons des estimateurs et étudions le comportement asymptotique. Les estimateurs proposés se positionnent comme alternatives à la prévision par la fonction de régression. Dans un premier travail, nous considérons une suite de v. A. {T_i , i [supérieur ou =]1} indépendante et identiquement distribuée (iid), de densité f , censurée à droite par une suite aléatoire {Ci , i [supérieur ou = à]1} supposée iid et indépendante de {T_i , i [supérieur ou = à]1}. Nous nous intéressons à un problème de régression de T par une covariable multi-dimensionnelle X. Nous établissons la convergence et la normalité asymptotique des estimateurs à noyau de la fonction mode conditionnel et de la densité conditionnelle. Nous obtenons des intervalles de confiance en utilisant la méthode du "plug-in" pour les paramètres inconnus. Une étude sur des données simulées de taille finie illustre la qualité de nos estimateurs. Dans un second travail, nous traitons le cas du mode simple défini par θ = arg max_{t. IR} f (t). Dans ce cas, la suite {T_i , i [supérieur ou = à]1} est supposée stationnaire et fortement mélangeante, alors que les {C_i , i [supérieur ou = à]1} sont iid. Nous construisons un estimateur du mode (basé sur un estimateur à noyau de la densité) dont nous établissons la convergence presque sûre. Le dernier travail de cette thèse généralise les résultats de convergence du mode conditionnel au cas où les {T_i , i [supérieur ou = à]1} sont fortement mélangeant
In this work, we address the problem of estimating the mode and conditional mode functions, for independent and dependent data, under random censorship. Firstly, we consider an independent and identically distributed (iid) sequence random variables (rvs) {T_i , i [equal to or higher than]1}, with density f. This sequence is right-censored by another iid sequence of rvs {Ci , i[equal to or higher than]1} which is supposed to be independent of {T_i , i [equal to or higher than]1}. We are interested in the regression problem of T given a covariable X. We state convergence and asymptomatic normality of Kernel-based estimators of conditional density and mode. Using the “plug-in” method for the unknown parameters, confidence intervals are gicen. Also simulations are drawn. In a second step we deal with the simple mode, given by par θ = arg max_{t. IR} f (t). Here, the sequence {T_i , i [equal to or higher than]1} is supposed to be stationary and strongly mixing whereas the {Ci , i[equal to or higher than]1} are iid. We build a mode estimator (based on a density kernel estimator) for which we state the almost sure consistency. Finally, we extend the conditional mode consistency results to the case where the {T_i , i [equal to or higher than]1} are strongly mixing
APA, Harvard, Vancouver, ISO, and other styles
12

Degras, David. "Contribution à l'étude de la régression non paramétrique et à l'estimation de la moyenne d'un processus à temps continu." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00201438.

Full text
Abstract:
Cette thèse porte sur l'étude de la régression non paramétrique en présence de mesures répétées. D'abord, nous étendons aux estimateurs splines de lissage les vitesses de convergence présentées dans la littérature pour d'autres estimateurs usuels sous différentes hypothèses classiques de dépendance des données. Ensuite, dans le cadre de l'estimation de la moyenne d'un processus aléatoire à temps continu, nous généralisons les résultats existants sur la convergence en moyenne quadratique et nous établissons de nouveaux résultats de normalité asymptotique pour les distributions finies-dimensionnelles. Enfin, dans le cadre d'un échantillon fini et corrélé, nous comparons les performances d'estimateurs construits par moindres carrés ordinaires ou généralisés, nous proposons une méthode efficace de sélection du paramètre de lissage tenant compte de la structure de covariance des données, et à travers des simulations, nous mettons en évidence l'apport du lissage local par rapport au lissage global.
APA, Harvard, Vancouver, ISO, and other styles
13

Lacombe, Jean-Pierre. "Analyse statistique de processus de poisson non homogènes. Traitement statistique d'un multidétecteur de particules." Phd thesis, Grenoble 1, 1985. http://tel.archives-ouvertes.fr/tel-00318875.

Full text
Abstract:
La première partie de cette thèse est consacrée à l'étude statistique des processus de Poisson non homogènes et spatiaux. On définit un test de type Neyman-Pearson concernant la mesure intensité de ces processus. On énonce des conditions pour lesquelles la consistance du test est assurée, et d'autres entrainant la normalité asymptotique de la statistique de test. Dans la seconde partie de ce travail, on étudie certaines techniques de traitement statistique de champs poissoniens et leurs applications à l'étude d'un multidétecteur de particules. On propose en particulier des tests de qualité de l'appareillage ainsi que les méthodes d'extraction du signal
APA, Harvard, Vancouver, ISO, and other styles
14

Poulin, Nicolas. "Estimation de la fonction des quantiles pour des données tronquées." Littoral, 2006. http://www.theses.fr/2006DUNK0159.

Full text
Abstract:
Dans le modèle de troncature à gauche, deux variables aléatoires Y et T, de fonctions de répartition respectives F et G ne sont observables que si Y ≥ T. Considérons un échantillon observé (Yi, Ti) ; 1 ≤ i ≤ n de ce couple de variables aléatoires. La fonction des quantiles de F est estimée par la fonction des quantiles de l’estimateur de Lynden-Bell (1971). Après avoir présenté les principaux résultats de la littérature dans le cadre de données indépendantes, nous considérons le cas des données α-mélangeantes. Nous établissons la convergence forte ainsi qu’une représentation forte du quantile sous la forme d’une moyenne de variables aléatoires avec un reste négligeable, ainsi que la normalité asymptotique. Pour le second travail de cette thèse, nous considérons un problème de régression de Y par une variable aléatoire explicative multi-dimensionnelle X. Nous établissons la convergence et la normalité asymptotique de la fonction de répartition conditionnelle ainsi que celles du quantile conditionnel de Y sachant X lorsque Y est tronquée. Des simulations nous ont permis de vérifier la qualité de l’estimation sur des échantillons de taille finie
In the left-truncation model, the pair of random variables Y and T with respective distribution function F and G are observed only if Y ≥ T. Let (Yi,Ti) ; 1 ≤ i ≤ n be an observed sample of this pair of random variables. The quantile function of F is estimated by the quantile function of the Lynden-Bell (1971) estimator. After giving some results of the literature in the case of independant data, we consider the α-mixing framework. We obtain strong consistency with rates, give a strong representation for the estimator of the quantile as a mean of random variables with a neglible rest and asymptotic normality. As regards the second topic of this thesis, we consider a multidimensionnal explanatory random variable X of Y which plays the role of a response. We establish strong consitency and asymptotic normality of the conditional distribution function and those of the conditional quantile function of Y given X when Y is subject to truncation. Simulations are drawn to illustrate the results for finite samples
APA, Harvard, Vancouver, ISO, and other styles
15

Ferrani, Yacine. "Sur l'estimation non paramétrique de la densité et du mode dans les modèles de données incomplètes et associées." Electronic Thesis or Diss., Littoral, 2014. http://www.theses.fr/2014DUNK0370.

Full text
Abstract:
Cette thèse porte sur l'étude des propriétés asymptotiques d'un estimateur non paramétrique de la densité de type Parzen-Rosenblatt, sous un modèle de données censurées à droite, vérifiant une structure de dépendance de type associé. Dans ce cadre, nous rappelons d'abord les résultats existants, avec détails, dans les cas i.i.d. et fortement mélangeant (α-mélange). Sous des conditions de régularité classiques, il est établi que la vitesse de coonvergence uniforme presque sûre de l'estimateur étudié, est optimale. Dans la partie dédiée aux résultats de cette thèse, deux résultats principaux et originaux sont présentés : le premier résultat concerne la convergence uniforme presque sûre de l'estimateur étudié sous l'hypothèse d'association. L'outil principal ayant permis l'obtention de la vitesse optimale est l'adaptation du Théorème de Doukhan et Neumann (2007), dans l'étude du terme des fluctuations (partie aléatoire) de l'écart entre l'estimateur considéré et le paramètre étudié (densité). Comme application, la convergence presque sûre de l'estimateur non paramétrique du mode est établie. Les résultats obtenus ont fait l'objet d'un article accepté pour publication dans Communications in Statistics-Theory and Methods ; Le deuxième résultat établit la normalité asymptotique de l'estimateur étudié sous le même modèle et constitute ainsi une extension au cas censuré, du résultat obtenu par Roussas (2000). Ce résultat est soumis pour publication
This thesis deals with the study of asymptotic properties of e kernel (Parzen-Rosenblatt) density estimate under associated and censored model. In this setting, we first recall with details the existing results, studied in both i.i.d. and strong mixing condition (α-mixing) cases. Under mild standard conditions, it is established that the strong uniform almost sure convergence rate, is optimal. In the part dedicated to the results of this thesis, two main and original stated results are presented : the first result concerns the strong uniform consistency rate of the studied estimator under association hypothesis. The main tool having permitted to achieve the optimal speed, is the adaptation of the Theorem due to Doukhan and Neumann (2007), in studying the term of fluctuations (random part) of the gap between the considered estimator and the studied parameter (density). As an application, the almost sure convergence of the kernel mode estimator is established. The stated results have been accepted for publication in Communications in Statistics-Theory & Methods ; The second result establishes the asymptotic normality of the estimator studied under the same model and then, constitute an extension to the censored case, the result stated by Roussas (2000). This result is submitted for publication
APA, Harvard, Vancouver, ISO, and other styles
16

Ferrani, Yacine. "Sur l'estimation non paramétrique de la densité et du mode dans les modèles de données incomplètes et associées." Thesis, Littoral, 2014. http://www.theses.fr/2014DUNK0370/document.

Full text
Abstract:
Cette thèse porte sur l'étude des propriétés asymptotiques d'un estimateur non paramétrique de la densité de type Parzen-Rosenblatt, sous un modèle de données censurées à droite, vérifiant une structure de dépendance de type associé. Dans ce cadre, nous rappelons d'abord les résultats existants, avec détails, dans les cas i.i.d. et fortement mélangeant (α-mélange). Sous des conditions de régularité classiques, il est établi que la vitesse de coonvergence uniforme presque sûre de l'estimateur étudié, est optimale. Dans la partie dédiée aux résultats de cette thèse, deux résultats principaux et originaux sont présentés : le premier résultat concerne la convergence uniforme presque sûre de l'estimateur étudié sous l'hypothèse d'association. L'outil principal ayant permis l'obtention de la vitesse optimale est l'adaptation du Théorème de Doukhan et Neumann (2007), dans l'étude du terme des fluctuations (partie aléatoire) de l'écart entre l'estimateur considéré et le paramètre étudié (densité). Comme application, la convergence presque sûre de l'estimateur non paramétrique du mode est établie. Les résultats obtenus ont fait l'objet d'un article accepté pour publication dans Communications in Statistics-Theory and Methods ; Le deuxième résultat établit la normalité asymptotique de l'estimateur étudié sous le même modèle et constitute ainsi une extension au cas censuré, du résultat obtenu par Roussas (2000). Ce résultat est soumis pour publication
This thesis deals with the study of asymptotic properties of e kernel (Parzen-Rosenblatt) density estimate under associated and censored model. In this setting, we first recall with details the existing results, studied in both i.i.d. and strong mixing condition (α-mixing) cases. Under mild standard conditions, it is established that the strong uniform almost sure convergence rate, is optimal. In the part dedicated to the results of this thesis, two main and original stated results are presented : the first result concerns the strong uniform consistency rate of the studied estimator under association hypothesis. The main tool having permitted to achieve the optimal speed, is the adaptation of the Theorem due to Doukhan and Neumann (2007), in studying the term of fluctuations (random part) of the gap between the considered estimator and the studied parameter (density). As an application, the almost sure convergence of the kernel mode estimator is established. The stated results have been accepted for publication in Communications in Statistics-Theory & Methods ; The second result establishes the asymptotic normality of the estimator studied under the same model and then, constitute an extension to the censored case, the result stated by Roussas (2000). This result is submitted for publication
APA, Harvard, Vancouver, ISO, and other styles
17

Hamdoune, Saïd. "Étude des problèmes d'estimation de certains modèles ARMA évolutifs." Nancy 1, 1995. http://www.theses.fr/1995NAN10052.

Full text
Abstract:
Le travail porte sur l'étude des processus solutions d'un modèle autorégressif moyenne-mobile (ARMA) à coefficients dépendant du temps appelés encore ARMA évolutifs. On commence d'abord par préciser les conditions d'inversibilité et de causalité basées sur les fonctions de Green et par donner une caractérisation de ces modèles par des déterminants de Hankel, généralisant ainsi les résultats sur les modèles ARMA à coefficients constants. Ensuite, on s'intéresse au problème d'estimation des coefficients d'une classe particulière de modèles ARMA évolutifs où les coefficients sont des fonctions connues du temps, qui dépendent d’un paramètre inconnu appartenant à Rd. Ainsi, on construit un M-estimateur des coefficients d'un AR de notre classe, où on établit, sous certaines conditions de régularité du modèle, sa convergence presque sure et sa normalité asymptotique, propriétés mises en évidence par la simulation d'exemples. La dernière partie concerne les modèles MA de notre classe, où là encore on montre l'existence du M-estimateur et on établit ces propriétés asymptotiques étayées par des simulations. Ensuite, on termine par mettre en évidence le lien entre les estimateurs du maximum de vraisemblance, conditionnelle et exacte
APA, Harvard, Vancouver, ISO, and other styles
18

Ezzahar, Abdessamad. "Estimation et détection d'un signal contaminé par un bruit autorégressif." Phd thesis, Grenoble 1, 1991. http://tel.archives-ouvertes.fr/tel-00339831.

Full text
Abstract:
Nous considérons un modèle signal plus bruit particulier ou le signal est une combinaison linéaire de suites déterministes données et est contamine par un bruit additif autoregressif d'ordre 1 stationnaire. Nous étudions d'abord des problèmes d'estimation partielle. On analyse les propriétés asymptotiques d'estimateurs de maximum de vraisemblance ou de moindres carres pour les paramétrés du bruit lorsque le signal est complètement connu ou pour les paramètres du signal lorsque l'un des paramètres du bruit est connu. Puis nous examinons le probleme de l'estimation simultanée des paramètres du signal et du bruit. On montre l'existence et l'unicité de l'estimateur de maximum de vraisemblance dont on étudie le comportement asymptotique. De même on considère une methode d'estimation fondée sur une première étape de moindres carres pour l'estimation des paramétrés du signal, et une procédure de maximum de vraisemblance approche. On construit ensuite des tests pour la détection du signal a partir des méthodes d'estimation envisagées précédemment. Les risques associes a ces tests sont analyses de manière précise. Enfin une étude expérimentale par simulation des performances des diverses méthodes est menée
APA, Harvard, Vancouver, ISO, and other styles
19

Salami, Ali. "Inférence statistique pour un modèle de dégradation en présence de variables explicatives." Phd thesis, Université de Pau et des Pays de l'Adour, 2011. http://tel.archives-ouvertes.fr/tel-00608581.

Full text
Abstract:
Dans cette thèse, on modélise le fonctionnement d'un système soumis à une dégradation continue. Ce système est considéré en panne dès que le niveau de dégradation dépasse un certain seuil critique fixé a priori. Dans ce travail, on s'intéresse tout d'abord aux temps d'atteinte de seuils critiques (déterministe ou aléatoire) pour un processus gamma non homogène. Une nouvelle approche est proposée ensuite pour décrire la dégradation d'un système. Cette approche consiste à considérer que la dégradation résulte de la somme d'un processus gamma et d'un mouvement brownien indépendant. Comme la dégradation du système est également influencée par l'environnement, il est intéressant d'envisager un modèle intégrant des covariables. En se basant sur le premier modèle, on suppose que les variables explicatives agissent seulement sur le processus gamma du modèle et qu'elles sont intégrées de manière à affecter l'échelle du temps. Ces modèles (avec ou sans covariables) sont décrits par des paramètres que l'on cherche à estimer. On étudie aussi leurs comportements asymptotiques (convergence et normalité asymptotique). Finalement des tests numériques aussi qu'une application à des données réelles de grande taille sont présentés pour illustrer nos méthodes.
APA, Harvard, Vancouver, ISO, and other styles
20

Benelmadani, Djihad. "Contribution à la régression non paramétrique avec un processus erreur d'autocovariance générale et application en pharmacocinétique." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM034/document.

Full text
Abstract:
Dans cette thèse, nous considérons le modèle de régression avec plusieurs unités expérimentales, où les erreurs forment un processus d'autocovariance dans un cadre générale, c'est-à-dire, un processus du second ordre (stationnaire ou non stationnaire) avec une autocovariance non différentiable le long de la diagonale. Nous sommes intéressés, entre autres, à l'estimation non paramétrique de la fonction de régression de ce modèle.Premièrement, nous considérons l'estimateur classique proposé par Gasser et Müller. Nous étudions ses performances asymptotiques quand le nombre d'unités expérimentales et le nombre d'observations tendent vers l'infini. Pour un échantillonnage régulier, nous améliorons les vitesses de convergence d'ordre supérieur de son biais et de sa variance. Nous montrons aussi sa normalité asymptotique dans le cas des erreurs corrélées.Deuxièmement, nous proposons un nouvel estimateur à noyau pour la fonction de régression, basé sur une propriété de projection. Cet estimateur est construit à travers la fonction d'autocovariance des erreurs et une fonction particulière appartenant à l'Espace de Hilbert à Noyau Autoreproduisant (RKHS) associé à la fonction d'autocovariance. Nous étudions les performances asymptotiques de l'estimateur en utilisant les propriétés de RKHS. Ces propriétés nous permettent d'obtenir la vitesse optimale de convergence de la variance de cet estimateur. Nous prouvons sa normalité asymptotique, et montrons que sa variance est asymptotiquement plus petite que celle de l'estimateur de Gasser et Müller. Nous conduisons une étude de simulation pour confirmer nos résultats théoriques.Troisièmement, nous proposons un nouvel estimateur à noyau pour la fonction de régression. Cet estimateur est construit en utilisant la règle numérique des trapèzes, pour approximer l'estimateur basé sur des données continues. Nous étudions aussi sa performance asymptotique et nous montrons sa normalité asymptotique. En outre, cet estimateur permet d'obtenir le plan d'échantillonnage optimal pour l'estimation de la fonction de régression. Une étude de simulation est conduite afin de tester le comportement de cet estimateur dans un plan d'échantillonnage de taille finie, en terme d'erreur en moyenne quadratique intégrée (IMSE). De plus, nous montrons la réduction dans l'IMSE en utilisant le plan d'échantillonnage optimal au lieu de l'échantillonnage uniforme.Finalement, nous considérons une application de la régression non paramétrique dans le domaine pharmacocinétique. Nous proposons l'utilisation de l'estimateur non paramétrique à noyau pour l'estimation de la fonction de concentration. Nous vérifions son bon comportement par des simulations et une analyse de données réelles. Nous investiguons aussi le problème de l'estimation de l'Aire Sous la Courbe de concentration (AUC), pour lequel nous proposons un nouvel estimateur à noyau, obtenu par l'intégration de l'estimateur à noyau de la fonction de régression. Nous montrons, par une étude de simulation, que le nouvel estimateur est meilleur que l'estimateur classique en terme d'erreur en moyenne quadratique. Le problème crucial de l'obtention d'un plan d'échantillonnage optimale pour l'estimation de l'AUC est discuté en utilisant l'algorithme de recuit simulé généralisé
In this thesis, we consider the fixed design regression model with repeated measurements, where the errors form a process with general autocovariance function, i.e. a second order process (stationary or nonstationary), with a non-differentiable covariance function along the diagonal. We are interested, among other problems, in the nonparametric estimation of the regression function of this model.We first consider the well-known kernel regression estimator proposed by Gasser and Müller. We study its asymptotic performance when the number of experimental units and the number of observations tend to infinity. For a regular sequence of designs, we improve the higher rates of convergence of the variance and the bias. We also prove the asymptotic normality of this estimator in the case of correlated errors.Second, we propose a new kernel estimator of the regression function based on a projection property. This estimator is constructed through the autocovariance function of the errors, and a specific function belonging to the Reproducing Kernel Hilbert Space (RKHS) associated to the autocovariance function. We study its asymptotic performance using the RKHS properties. These properties allow to obtain the optimal convergence rate of the variance. We also prove its asymptotic normality. We show that this new estimator has a smaller asymptotic variance then the one of Gasser and Müller. A simulation study is conducted to confirm this theoretical result.Third, we propose a new kernel estimator for the regression function. This estimator is constructed through the trapezoidal numerical approximation of the kernel regression estimator based on continuous observations. We study its asymptotic performance, and we prove its asymptotic normality. Moreover, this estimator allow to obtain the asymptotic optimal sampling design for the estimation of the regression function. We run a simulation study to test the performance of the proposed estimator in a finite sample set, where we see its good performance, in terms of Integrated Mean Squared Error (IMSE). In addition, we show the reduction of the IMSE using the optimal sampling design instead of the uniform design in a finite sample set.Finally, we consider an application of the regression function estimation in pharmacokinetics problems. We propose to use the nonparametric kernel methods, for the concentration-time curve estimation, instead of the classical parametric ones. We prove its good performance via simulation study and real data analysis. We also investigate the problem of estimating the Area Under the concentration Curve (AUC), where we introduce a new kernel estimator, obtained by the integration of the regression function estimator. We prove, using a simulation study, that the proposed estimators outperform the classical one in terms of Mean Squared Error. The crucial problem of finding the optimal sampling design for the AUC estimation is investigated using the Generalized Simulating Annealing algorithm
APA, Harvard, Vancouver, ISO, and other styles
21

Delsol, Laurent. "Régression sur variable fonctionnelle : estimation, tests de structure et applications." Phd thesis, Université Paul Sabatier - Toulouse III, 2008. http://tel.archives-ouvertes.fr/tel-00449806.

Full text
Abstract:
Au cours des dernières années, la branche de la statistique consacrée à l'étude de variables fonctionnelles a connu un réel essor tant en terme de développements théoriques que de diversification des domaines d'application. Nous nous intéressons plus particulièrement dans ce mémoire à des modèles de régression dans lesquels la variable réponse est réelle tandis que la variable explicative est fonctionnelle, c'est à dire à valeurs dans un espace de dimension infinie. Les résultats que nous énonçons sont liés aux propriétés asymptotiques de l'estimateur à noyau généralisé au cas d'une variable explicative fonctionnelle. Nous supposons pour commencer que l'échantillon que nous étudions est constitué de variables α-mélangeantes et que le modèle de régression est de nature nonparamétrique. Nous établissons la normalité asymptotique de notre estimateur et donnons l'expression explicite des termes asymptotiquement dominants du biais et de la variance. Une conséquence directe de ce résultat est la construction d'intervalles de confiance asymptotiques ponctuels dont nous étudions les propriétés aux travers de simulations et que nous appliquons sur des données liées à l'étude du courant marin El Niño. On établit également à partir du résultat de normalité asymptotique et d'un résultat d'uniforme intégrabilité l'expression explicite des termes asymptotiquement dominants des moments centrés et des erreurs Lp de notre estimateur. Nous considérons ensuite le problème des tests de structure en régression sur variable fonctionnelle et supposons maintenant que l'échantillon est composé de variables indépendantes. Nous construisons une statistique de test basée sur la comparaison de l'estimateur à noyau et d'un estimateur plus particulier dépendant de l'hypothèse nulle à tester. Nous obtenons la normalité asymptotique de notre statistique de test sous l'hypothèse nulle ainsi que sa divergence sous l'alternative. Les conditions générales sous lesquelles notre résultat est établi permettent l'utilisation de notre statistique pour construire des tests de structure innovants permettant de tester si l'opérateur de régression est de forme linéaire, à indice simple, . . . Différentes procédures de rééchantillonnage sont proposées et comparées au travers de diverses simulations. Nos méthodes sont enfin appliquées dans le cadre de tests de non effet à deux jeux de données spectrométriques.
APA, Harvard, Vancouver, ISO, and other styles
22

Diop, Aba. "Inférence statistique dans le modèle de régression logistique avec fraction immune." Phd thesis, Université de La Rochelle, 2012. http://tel.archives-ouvertes.fr/tel-00829844.

Full text
Abstract:
Les modèles linéaires généralisés sont une généralisation des modèles de régression linéaire, et sont très utilisés dans le domaine du vivant. Le modèle de régression logistique, l'un des modèles de cette classe, très souvent utilisé dans les études biomédicales demeure le modèle de régression le plus approprié quand il s'agit de modéliser une variable discrète de nature binaire. Dans cette thèse, nous nous intéressons au problème de l'inférence statistique dans le modèle de régression logistique, en présence d'individus immunes dans la population d'étude.Dans un premier temps, nous considérons le problème de l'estimation dans le modèle de régression logistique en présence d'individus immunes, qui entre dans le cadre des modèles de régression à excès de zéros (ou zéro-inflatés). Un individu est dit immune s'il n'est pas exposé à l'événement d'intérêt. Le statut d'immunité est inconnu sauf si l'événement d'intérêt a été observé. Nous développons une méthode d'estimation par maximum de vraisemblance en proposant une modélisation conjointe de l'immunité et des risques d'infection. Nous établissons d'abord l'identifiabilité du modèle proposé. Puis, nous montrons l'existence de l'estimateur du maximum de vraisemblance des paramètres de ce modèle. Nous montrons ensuite,la consistance de cet estimateur, et nous établissons sa normalité asymptotique. Enfin, nous étudions, au moyen de simulations, leur comportement sur des échantillons de taille finie.Dans un deuxième temps, nous nous intéressons à la construction de bandes de confiance simultanées pour la probabilité d'infection, dans le modèle de régression logistique avec fraction immune. Nous proposons trois méthodes de constructions de bandes de confiance pour la fonction de régression. La première méthode (méthodede Scheffé) utilise la propriété de normalité asymptotique de l'estimateur du maximum de vraisemblance, et une approximation par une loi du khi deux pour approcher le quantile nécessaire à la construction des bandes. La deuxième méthode utilise également la propriété de normalité asymptotique de l'estimateur du maximum de vraisemblance et est basée sur une égalité classique de (Landau & Sheep 1970). La troisième méthode (méthode bootstrap) repose sur des simulations, pour estimer le quantile approprié de la loi du supremum d'un processus gaussien. Enfin, nous évaluons, au moyen de simulations, leurs propriétés sur des échantillons de taille finie.Enfin, nous appliquons les résultats de modélisation à des données réelles surla dengue. Il s'agit d'une maladie vectorielle tropicale à transmission strictement inter-humaine. Les résultats montrent que les probabilités d'infection estimées à partir de notre approche de modélisation sont plus élevées que celles obtenues à partir d'un modèle de régression logistique standard qui ne tient pas compte d'une possible immunité. En particulier, les estimations fournies par notre approche suggèrent que le sous-poids constitue un facteur de risque majeur de l'infection par la dengue, indépendamment de l'âge.
APA, Harvard, Vancouver, ISO, and other styles
23

Yahia, Djabrane. "Conditional quantile for truncated dependent data." Littoral, 2010. http://www.theses.fr/2010DUNK0297.

Full text
Abstract:
Dans cette thèse nous étudions certaines propriétés asymptotiques de l'estimateur à noyau du quantile conditionnel lorsque la variable d'intérêt est soumise à une troncature gauche. La convergence uniforme presque sûre avec vitesse (sur un compact) de l'estimateur est obtenue. De plus, nous établissons que, sous certaines conditions de régularité, l'estimateur à noyau du quantile conditionnel convenablement normalisé converge en loi vers une variable aléatoire gaussienne centrée et de variance asymptotique donnée explicitement. Les motivations principales sont sa robustesse, la construction d'intervalle de confiance et la prévision des données de séries temporelles. Nos résultats sont obtenus dans un cadre général (mélangeance forte), qui inclut les modèles populaires comme les séries financières et économiques comme cas particuliers
In this thesis we study some asymptotic properties of the kernel conditional quantile estimator when the interest variable is subject to random left truncation. The uniform strong convergence rate of the estimator is obtained. In addition, it is shown that, under regularity conditions and suitably normalized, the kernel estimate of the conditional quantile is asymptotically normally distributed. Our interest in conditional quantile estimation is motivated by it’s robusteness, the constructing of the confidence bands and the forecasting from thime series data. Our results are obtained in a more general setting (strong mixing) which includes time series modelling as a special case
APA, Harvard, Vancouver, ISO, and other styles
24

Dupuy, Jean-François. "Modélisation conjointe de données longitudinales et de durées de vie." Phd thesis, Université René Descartes - Paris V, 2002. http://tel.archives-ouvertes.fr/tel-00002667.

Full text
Abstract:
Le modèle de régression semiparamétrique de Cox est l'un des plus utilisés pour l'analyse statistique des durées de vie issues du domaine médical ou de la fiabilité. Ses paramètres sont un paramètre de régression et une fonction de risque de base positive et inconnue. L'inférence statistique pour ce modèle, basée sur la vraisemblance partielle de Cox, est souvent compliquée par la présence de données manquantes des covariables. Dans cette thèse, nous proposons une méthode d'estimation des paramètres du modèle de Cox adaptée à cette situation, et nous étudions les propriétés asymptotiques des estimateurs obtenus. La méthode proposée consiste à modéliser conjointement les durées censurées et le processus de covariable afin d'en déduire, par intégration sur les valeurs manquantes de cette covariable, une vraisemblance conjointe permettant d'estimer les paramètres du modèle de Cox au vu des données incomplètes. Dans un premier temps, nous proposons et formalisons un modèle conjoint pour les durées de vie et la covariable longitudinale. Ce modèle est construit à partir du modèle de Cox et d'un modèle de covariable choisi comme étant une fonction en escalier. Nous établissons ensuite l'identifiabilité de ce modèle sous des conditions de régularité peu contraignantes. Puis, nous adaptons au modèle conjoint la méthode du maximum de vraisemblance semiparamétrique. Nous montrons l'existence d'estimateurs semiparamétriques de ses paramètres, et en particulier de ses paramètres d'intérêt, qui sont les paramètres du modèle de Cox. L'expression compliquée de la vraisemblance conjointe ne permet pas d'obtenir analytiquement ces estimateurs. Nous mettons alors en oeuvre l'estimation à l'aide d'un algorithme EM. Nous montrons ensuite la consistance et la normalité asymptotique de nos estimateurs. Puis, nous proposons un estimateur consistant de leur variance asymptotique. Dans une dernière partie, nous appliquons la méthode proposée sur un jeu de données réelles, et nous comparons nos résultats avec deux autres méthodes d'estimation du modèle de Cox avec covariable manquante proposées dans la littérature.
APA, Harvard, Vancouver, ISO, and other styles
25

Boistard, Hélène. "Eficacia asintotica tests relacionados con el estadística de Wasserstein." Toulouse 3, 2007. http://www.theses.fr/2007TOU30155.

Full text
Abstract:
Le test d'ajustement basé sur la distance de Wasserstein est un test bien adapté aux familles de localisation et changement d'échelle. La distribution asymptotique sous hypothèse nulle est connue depuis les travaux de del Barrio et al. (1999, 2000). Le thème de cette thèse est l'étude de la puissance asymptotique de ce test et de tests apparentés, grâce à divers critères d'efficacité. Après une introduction qui fait l'objet du premier chapitre et présente le problème et les outils utilisés, le second chapitre est consacré à l'établissement de résultats asymptotiques pour les intégrales multiples par rapport au processus empirique. Ces statistiques sont reliées aux U-statistiques, mais permettent une grande simplification des hypothèses pour établir la distribution asymptotique sous hypothèse nulle, sous alternative contigüe et pour le bootstrap. Dans le troisième chapitre, nous prouvons l'équivalence du test de Wasserstein avec un test basé sur une intégrale double par rapport au processus empirique. Cela nous permet d'appliquer à ce test les résultats du chapitre antérieur, et d'obtenir des renseignements sur son efficacité asymptotique dans le cadre des expériences gaussiennes de déplacement (Gaussian shifts). Le quatrième chapitre est dédié à l'efficacité au sens de Bahadur. Ce critère d'efficacité est basé sur la théorie des grandes déviations. Nous établissons un principe de grandes déviations fonctionnel pour les L-statistiques, sous des hypothèses sur les extrêmes de la distribution sous-jacente. Nous obtenons également un résultat pour les L-statistiques normalisées, famille à laquelle appartient la statistique de test de Wasserstein
The goodness of fit test based on the Wasserstein distance is a test which is well adapted to location-scale families. The asymptotic distribution under the null hypothesis has been known since the works by del Barrio et al. (1999, 2000). The subject of this thesis is the study of the asymptotic power of this test and of some related tests, owing to several efficiency criteria. In the first chapter, a short introduction presents the problem and the tools to be used. The second chapter is devoted to the the proof of some asymptotic results for multiple integrals with respect to the empirical process. These statistics are strongly related to U-statistics, but they permit an important simplification of the classical hypotheses to establish the asymptotic distribution under the null hypothesis, under contiguous alternative and for the bootstrap. In the third chapter, we prove that the Wasserstein test statistic is equivalent to a test based on the double integral with respect to the empirical process. This allows us to apply to this test the results of the previous chapter, and to obtain some information about its asymptotic efficiency in the framework of Gaussian shift experiments. .
APA, Harvard, Vancouver, ISO, and other styles
26

Diallo, Alpha Oumar. "Inférence statistique dans des modèles de comptage à inflation de zéro. Applications en économie de la santé." Thesis, Rennes, INSA, 2017. http://www.theses.fr/2017ISAR0027/document.

Full text
Abstract:
Les modèles de régressions à inflation de zéros constituent un outil très puissant pour l’analyse de données de comptage avec excès de zéros, émanant de divers domaines tels que l’épidémiologie, l’économie de la santé ou encore l’écologie. Cependant, l’étude théorique dans ces modèles attire encore peu d’attention. Ce manuscrit s’intéresse au problème de l’inférence dans des modèles de comptage à inflation de zéro.Dans un premier temps, nous revenons sur la question de l’estimateur du maximum de vraisemblance dans le modèle binomial à inflation de zéro. D’abord nous montrons l’existence de l’estimateur du maximum de vraisemblance des paramètres dans ce modèle. Ensuite, nous démontrons la consistance de cet estimateur, et nous établissons sa normalité asymptotique. Puis, une étude de simulation exhaustive sur des tailles finies d’échantillons est menée pour évaluer la cohérence de nos résultats. Et pour finir, une application sur des données réelles d’économie de la santé a été conduite.Dans un deuxième temps, nous proposons un nouveau modèle statistique d’analyse de la consommation de soins médicaux. Ce modèle permet, entre autres, d’identifier les causes du non-recours aux soins médicaux. Nous avons étudié rigoureusement les propriétés mathématiques du modèle. Ensuite nous avons mené une étude numérique approfondie à l’aide de simulations informatiques et enfin, nous l’avons appliqué à l’analyse d’une base de données recensant la consommation de soins de plusieurs milliers de patients aux USA.Un dernier aspect de ces travaux de thèse a été de s’intéresser au problème de l’inférence dans le modèle binomial à inflation de zéro dans un contexte de données manquantes sur les covariables. Dans ce cas nous proposons la méthode de pondération par l’inverse des probabilités de sélection pour estimer les paramètres du modèle. Ensuite, nous établissons la consistance et la normalité asymptotique de l’estimateur proposé. Enfin, une étude de simulation sur plusieurs échantillons de tailles finies est conduite pour évaluer le comportement de l’estimateur
The zero-inflated regression models are a very powerful tool for the analysis of counting data with excess zeros from various areas such as epidemiology, health economics or ecology. However, the theoretical study in these models attracts little attention. This manuscript is interested in the problem of inference in zero-inflated count models.At first, we return to the question of the maximum likelihood estimator in the zero-inflated binomial model. First we show the existence of the maximum likelihood estimator of the parameters in this model. Then, we demonstrate the consistency of this estimator, and let us establish its asymptotic normality. Then, a comprehensive simulation study finite sample sizes are conducted to evaluate the consistency of our results. Finally, an application on real health economics data has been conduct.In a second time, we propose a new statistical analysis model of the consumption of medical care. This model allows, among other things, to identify the causes of the non-use of medical care. We have studied rigorously the mathematical properties of the model. Then, we carried out an exhaustive numerical study using computer simulations and finally applied to the analysis of a database on health care several thousand patients in the USA.A final aspect of this work was to focus on the problem of inference in the zero inflation binomial model in the context of missing covariate data. In this case we propose the weighting method by the inverse of the selection probabilities to estimate the parameters of the model. Then, we establish the consistency and asymptotic normality of the estimator offers. Finally, a simulation study on several samples of finite sizes is conducted to evaluate the behavior of the estimator
APA, Harvard, Vancouver, ISO, and other styles
27

Stupfler, Gilles. "Un modèle de Markov caché en assurance et Estimation de frontière et de point terminal." Phd thesis, Université de Strasbourg, 2011. http://tel.archives-ouvertes.fr/tel-00638368.

Full text
Abstract:
Cette thèse est divisée en deux parties indépendantes. Dans une première partie, on introduit et on étudie un nouveau processus de pertes en assurance : c'est un triplet (J, N, S) où (J, N) est un processus de Poisson à modulation markovienne et S est un processus dont toutes les composantes sont des fonctions en escalier, croissantes en temps. Le processus S est supposé à accroissements indépendants conditionnellement au processus (J, N). En faisant une hypothèse paramétrique sur la loi de ses sauts, on démontre que l'estimateur du maximum de vraisemblance des paramètres du modèle est consistant. On donne un algorithme EM permettant de calculer en pratique cet estimateur : le procédé ainsi développé est utilisé sur des données réelles en assurance et ses performances sont évaluées sur simulations. Dans une seconde partie, on s'intéresse au problème de l'estimation du point terminal, supposé fini, d'une fonction de répartition F : étant donné un échantillon de variables aléatoires indépendantes identiquement distribuées de fonction de répartition F, on construit un estimateur du point terminal à droite de F en utilisant une méthode des moments d'ordre élevé. L'étude est scindée en deux cas : dans un premier temps, on suppose que les variables sont positives, puis on généralise la méthode au cas où elles sont de signe quelconque en proposant un autre estimateur. On étudie les propriétés asymptotiques de nos estimateurs, et leurs performances sont examinées sur simulations. On s'inspire ensuite des techniques développées pour construire un estimateur de la frontière du support d'un couple aléatoire. On étudie ses propriétés asymptotiques, et on le compare à des estimateurs classiques dans ce cadre.
APA, Harvard, Vancouver, ISO, and other styles
28

Belouni, Mohamad. "Plans d'expérience optimaux en régression appliquée à la pharmacocinétique." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM056/document.

Full text
Abstract:
Le problème d'intérêt est d'estimer la fonction de concentration et l'aire sous la courbe (AUC) à travers l'estimation des paramètres d'un modèle de régression linéaire avec un processus d'erreur autocorrélé. On construit un estimateur linéaire sans biais simple de la courbe de concentration et de l'AUC. On montre que cet estimateur construit à partir d'un plan d'échantillonnage régulier approprié est asymptotiquement optimal dans le sens où il a exactement la même performance asymptotique que le meilleur estimateur linéaire sans biais (BLUE). De plus, on montre que le plan d'échantillonnage optimal est robuste par rapport à la misspecification de la fonction d'autocovariance suivant le critère du minimax. Lorsque des observations répétées sont disponibles, cet estimateur est consistant et a une distribution asymptotique normale. Les résultats obtenus sont généralisés au processus d'erreur de Hölder d'indice compris entre 0 et 2. Enfin, pour des tailles d'échantillonnage petites, un algorithme de recuit simulé est appliqué à un modèle pharmacocinétique avec des erreurs corrélées
The problem of interest is to estimate the concentration curve and the area under the curve (AUC) by estimating the parameters of a linear regression model with autocorrelated error process. We construct a simple linear unbiased estimator of the concentration curve and the AUC. We show that this estimator constructed from a sampling design generated by an appropriate density is asymptotically optimal in the sense that it has exactly the same asymptotic performance as the best linear unbiased estimator (BLUE). Moreover, we prove that the optimal design is robust with respect to a misspecification of the autocovariance function according to a minimax criterion. When repeated observations are available, this estimator is consistent and has an asymptotic normal distribution. All those results are extended to the error process of Hölder with index including between 0 and 2. Finally, for small sample sizes, a simulated annealing algorithm is applied to a pharmacokinetic model with correlated errors
APA, Harvard, Vancouver, ISO, and other styles
29

Bouhadjera, Feriel. "Estimation non paramétrique de la fonction de régression pour des données censurées : méthodes locale linéaire et erreur relative." Thesis, Littoral, 2020. http://www.theses.fr/2020DUNK0561.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à développer des méthodes robustes et efficaces dans l’estimation non paramétrique de la fonction de régression. Le modèle considéré ici est le modèle censuré aléatoirement à droite qui est le plus utilisé dans différents domaines pratiques. Dans un premier temps, nous proposons un nouvel estimateur de la fonction de régression en utilisant la méthode linéaire locale. Nous étudions sa convergence uniforme presque sûre avec vitesse. Enfin, nous comparons ses performances avec celles de l’estimateur de la régression à noyau classique à l’aide de simulations. Dans un second temps, nous considérons l’estimateur de la fonction de régression par erreur relative (RER en anglais), basé sur la minimisation de l’erreur quadratique relative moyenne. Ainsi, nous établissons la convergence uniforme presque sûre (sur un compact) avec vitesse de l’estimateur défini pour des observations indépendantes et identiquement distribuées. En outre, nous prouvons sa normalité asymptotique en explicitant le terme de variance. Enfin, nous conduisons une étude de simulations pour confirmer nos résultats théoriques et nous appliquons notre estimateur sur des données réelles. Par la suite, nous étudions la convergence uniforme presque sûre (sur un compact) avec vitesse de l’estimateur RER pour des observations soumises à une structure de dépendance du type α-mélange. Une étude de simulation montre le bon comportement de l’estimateur étudié. Des prévisions sur données générées sont réalisées pour illustrer la robustesse de notre estimateur. Enfin, nous établissons la normalité asymptotique de l’estimateur RER pour des observations α-mélangeantes où nous construisons des intervalles de confiance afin de réaliser une étude de simulations qui valide nos résultats. Pour conclure, le fil conducteur de cette modeste contribution, hormis l’analyse des données censurées est la proposition de deux méthodes de prévision alternative à la régression classique. La première approche corrige les effets de bord crée par les estimateurs à noyaux classiques et réduit le biais. Tandis que la seconde est plus robuste et moins affectée par la présence de valeurs aberrantes dans l’échantillon
In this thesis, we are interested in developing robust and efficient methods in the nonparametric estimation of the regression function. The model considered here is the right-hand randomly censored model which is the most used in different practical fields. First, we propose a new estimator of the regression function by the local linear method. We study its almost uniform convergence with rate. We improve the order of the bias term. Finally, we compare its performance with that of the classical kernel regression estimator using simulations. In the second step, we consider the regression function estimator, based on theminimization of the mean relative square error (called : relative regression estimator). We establish the uniform almost sure consistency with rate of the estimator defined for independent and identically distributed observations. We prove its asymptotic normality and give the explicit expression of the variance term. We conduct a simulation study to confirm our theoretical results. Finally, we have applied our estimator on real data. Then, we study the almost sure uniform convergence (on a compact set) with rate of the relative regression estimator for observations that are subject to a dependency structure of α-mixing type. A simulation study shows the good behaviour of the studied estimator. Predictions on generated data are carried out to illustrate the robustness of our estimator. Finally, we establish the asymptotic normality of the relative regression function estimator for α-mixing data. We construct the confidence intervals and perform a simulation study to validate our theoretical results. In addition to the analysis of the censored data, the common thread of this modest contribution is the proposal of two alternative prediction methods to classical regression. The first approach corrects the border effects created by classical kernel estimators and reduces the bias term. While the second is more robust and less affected by the presence of outliers in the sample
APA, Harvard, Vancouver, ISO, and other styles
30

Lounis, Tewfik. "Inférences dans les modèles ARCH : tests localement asymptotiquement optimaux." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0222/document.

Full text
Abstract:
L'objectif de cette thèse est la construction des tests localement et asymptotiquement optimaux. Le problème traité concerne un modèle qui contient une large classe de modèles de séries chronologiques. La propriété de la normalité asymptotique locale (LAN) est l'outil fondamental utilisé dans nos travaux de recherches. Une application de nos travaux en finance est proposée
The purpose of this phD thesis is the construction of alocally asymptotically optimal tests. In this testing problem, the considered model contains a large class of time series models. LAN property was the fundamental tools in our research works. Our results are applied in financial area
APA, Harvard, Vancouver, ISO, and other styles
31

Mailhot, Mélina. "Puissances asymptotiques et à tailles finies de tests de normalité sous des alternatives locales." Thèse, Université du Québec à Trois-Rivières, 2009. http://depot-e.uqtr.ca/1888/1/030131504.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Horrigue, Walid. "Prévision non paramétrique dans les modèles de censure via l'estimation du quantile conditionnel en dimension infinie." Thesis, Littoral, 2012. http://www.theses.fr/2012DUNK0511.

Full text
Abstract:
Dans cette thèse, nous étudions les propriétés asymptotiques de paramètres fonctionnels conditionnels en statistique non paramétrique, quand la variable explicative prend ses valeurs dans un espace de dimension infinie. Dans ce cadre non paramétrique, on considère les estimateurs des paramètres fonctionnels usuels, tels la loi conditionnelle, la densité de probabilité conditionnelle, ainsi que le quantile conditionnel. Le premier travail consiste à proposer un estimateur du quantile conditionnel et de prouver sa convergence uniforme sur un sous-ensemble compact. Afin de suivre la convention dans les études biomédicales, nous considérons une suite de v.a {Ti, i ≥ 1} identiquement distribuées, de densité f, censurée à droite par une suite aléatoire {Ci, i ≥ 1} supposée aussi indépendante, identiquement distribuée et indépendante de {Ti, i ≥ 1}. Notre étude porte sur des données fortement mélangeantes et X la covariable prend des valeurs dans un espace à dimension infinie.Le second travail consiste à établir la normalité asymptotique de l’estimateur à noyau du quantile conditionnel convenablement normalisé, pour des données fortement mélangeantes, et repose sur la probabilité de petites boules. Plusieurs applications à des cas particuliers ont été traitées. Enfin, nos résultats sont appliqués à des données simulées et montrent la qualité de notre estimateur
In this thesis, we study some asymptotic properties of conditional functional parameters in nonparametric statistics setting, when the explanatory variable takes its values in infinite dimension space. In this nonparametric setting, we consider the estimators of the usual functional parameters, as the conditional law, the conditional probability density, the conditional quantile. We are essentially interested in the problem of forecasting in the nonparametric conditional models, when the data are functional random variables. Firstly, we propose an estimator of the conditional quantile and we establish its uniform strong convergence with rates over a compact subset. To follow the convention in biomedical studies, we consider an identically distributed sequence {Ti, i ≥ 1}, here density f, right censored by a random {Ci, i ≥ 1} also assumed independent identically distributed and independent of {Ti, i ≥ 1}. Our study focuses on dependent data and the covariate X takes values in an infinite space dimension. In a second step we establish the asymptotic normality of the kernel estimator of the conditional quantile, under α-mixing assumption and on the concentration properties on small balls of the probability measure of the functional regressors. Many applications in some particular cases have been also given
APA, Harvard, Vancouver, ISO, and other styles
33

Kabui, Ali. "Value at risk et expected shortfall pour des données faiblement dépendantes : estimations non-paramétriques et théorèmes de convergences." Phd thesis, Université du Maine, 2012. http://tel.archives-ouvertes.fr/tel-00743159.

Full text
Abstract:
Quantifier et mesurer le risque dans un environnement partiellement ou totalement incertain est probablement l'un des enjeux majeurs de la recherche appliquée en mathématiques financières. Cela concerne l'économie, la finance, mais d'autres domaines comme la santé via les assurances par exemple. L'une des difficultés fondamentales de ce processus de gestion des risques est de modéliser les actifs sous-jacents, puis d'approcher le risque à partir des observations ou des simulations. Comme dans ce domaine, l'aléa ou l'incertitude joue un rôle fondamental dans l'évolution des actifs, le recours aux processus stochastiques et aux méthodes statistiques devient crucial. Dans la pratique l'approche paramétrique est largement utilisée. Elle consiste à choisir le modèle dans une famille paramétrique, de quantifier le risque en fonction des paramètres, et d'estimer le risque en remplaçant les paramètres par leurs estimations. Cette approche présente un risque majeur, celui de mal spécifier le modèle, et donc de sous-estimer ou sur-estimer le risque. Partant de ce constat et dans une perspective de minimiser le risque de modèle, nous avons choisi d'aborder la question de la quantification du risque avec une approche non-paramétrique qui s'applique à des modèles aussi généraux que possible. Nous nous sommes concentrés sur deux mesures de risque largement utilisées dans la pratique et qui sont parfois imposées par les réglementations nationales ou internationales. Il s'agit de la Value at Risk (VaR) qui quantifie le niveau de perte maximum avec un niveau de confiance élevé (95% ou 99%). La seconde mesure est l'Expected Shortfall (ES) qui nous renseigne sur la perte moyenne au delà de la VaR.
APA, Harvard, Vancouver, ISO, and other styles
34

Servien, Rémi. "Estimation de régularité locale." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2010. http://tel.archives-ouvertes.fr/tel-00730491.

Full text
Abstract:
L'objectif de cette thèse est d'étudier le comportement local d'une mesure de probabilité, notamment au travers d'un indice de régularité locale. Dans la première partie, nous établissons la normalité asymptotique de l'estimateur des kn plus proches voisins de la densité et de l'histogramme. Dans la deuxième, nous définissons un estimateur du mode sous des hypothèses affaiblies. Nous montrons que l'indice de régularité intervient dans ces deux problèmes. Enfin, nous construisons dans une troisième partie différents estimateurs pour l'indice de régularité à partir d'estimateurs de la fonction de répartition, dont nous réalisons une revue bibliographique.
APA, Harvard, Vancouver, ISO, and other styles
35

Matias, Catherine. "Estimation dans des modèles à variables cachées." Phd thesis, Université Paris Sud - Paris XI, 2001. http://tel.archives-ouvertes.fr/tel-00008383.

Full text
Abstract:
Cette thèse porte sur des problèmes d'estimation dans des modèles à variables cachées. Le Chapitre 1 est consacré à l'étude d'un modèle de Markov caché où la chaîne de Markov, non-nécessairement stationnaire, est supposée à valeurs dans un espace d'états compact et les observations dans un espace métrique séparable complet. La loi de la chaîne cachée ainsi que la loi conditionnelle dépendent d'un paramètre. Nous prouvons que l'estimateur du maximum de vraisemblance du paramètre est consistant, asymptotiquement normal et efficace. Le Chapitre 2 porte sur l'étude du modèle de convolution. Les observations sont issues d'un signal composé de variables aléatoires i.i.d. de densité inconnue g et d'un bruit blanc Gaussien centré de variance inconnue \sigma. Nous montrons que la non-connaissance de \sigma dégrade nettement la vitesse d'estimation de g : dans la plupart des cas ``réguliers'' cette vitesse est toujours plus lente que (log n)^(-1/2). Nous proposons alors un estimateur de \sigma qui est presque minimax lorsque g possède un support inclus dans un compact fixé. Nous construisons également un estimateur consistant universel de \sigma (i.e. sans contrainte sur g autre que celle d'identifiabilité du modèle). Dans le Chapitre 3, nous considérons ce même modèle de convolution mais lorsque le bruit possède une variance connue (fixée égale à 1) et nous nous intéressons aux propriétés d'estimation de fonctionnelles linéaires intégrales de de la forme \int f(x)\Phi_1(y-x) g(x)dx où \Phi_1 désigne la densité du bruit et f est une fonction connue. Nous étendons les résultats de Taupin dans le cas où la fonction f est soit une fonction polynomiale, soit un polynôme trigonométrique, en établissant des minorations du risque quadratique ponctuel et du risque par rapport à la norme infinie, ainsi que des majorations et minorations du risque par rapport à la norme p (1 \geq p <\infty). Nous montrons que l'estimateur proposé par Taupin atteint les vitesses optimales dans le cas où f est un polynôme et est presque minimax dans le cas où f est un polynôme trigonométrique, avec une perte pour le risque quadratique et pour le risque en norme infinie.
APA, Harvard, Vancouver, ISO, and other styles
36

Ahmad, Ali. "Contribution à l'économétrie des séries temporelles à valeurs entières." Thesis, Lille 3, 2016. http://www.theses.fr/2016LIL30059/document.

Full text
Abstract:
Dans cette thèse, nous étudions des modèles de moyennes conditionnelles de séries temporelles à valeurs entières. Tout d’abord, nous proposons l’estimateur de quasi maximum de vraisemblance de Poisson (EQMVP) pour les paramètres de la moyenne conditionnelle. Nous montrons que, sous des conditions générales de régularité, cet estimateur est consistant et asymptotiquement normal pour une grande classe de modèles. Étant donné que les paramètres de la moyenne conditionnelle de certains modèles sont positivement contraints, comme par exemple dans les modèles INAR (INteger-valued AutoRegressive) et les modèles INGARCH (INteger-valued Generalized AutoRegressive Conditional Heteroscedastic), nous étudions la distribution asymptotique de l’EQMVP lorsque le paramètre est sur le bord de l’espace des paramètres. En tenant compte de cette dernière situation, nous déduisons deux versions modifiées du test de Wald pour la significativité des paramètres et pour la moyenne conditionnelle constante. Par la suite, nous accordons une attention particulière au problème de validation des modèles des séries temporelles à valeurs entières en proposant un test portmanteau pour l’adéquation de l’ajustement. Nous dérivons la distribution jointe de l’EQMVP et des autocovariances résiduelles empiriques. Puis, nous déduisons la distribution asymptotique des autocovariances résiduelles estimées, et aussi la statistique du test. Enfin, nous proposons l’EQMVP pour estimer équation-par-équation (EpE) les paramètres de la moyenne conditionnelle des séries temporelles multivariées à valeurs entières. Nous présentons les hypothèses de régularité sous lesquelles l’EQMVP-EpE est consistant et asymptotiquement normal, et appliquons les résultats obtenus à plusieurs modèles des séries temporelles multivariées à valeurs entières
The framework of this PhD dissertation is the conditional mean count time seriesmodels. We propose the Poisson quasi-maximum likelihood estimator (PQMLE) for the conditional mean parameters. We show that, under quite general regularityconditions, this estimator is consistent and asymptotically normal for a wide classeof count time series models. Since the conditional mean parameters of some modelsare positively constrained, as, for example, in the integer-valued autoregressive (INAR) and in the integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH), we study the asymptotic distribution of this estimator when the parameter lies at the boundary of the parameter space. We deduce a Waldtype test for the significance of the parameters and another Wald-type test for the constance of the conditional mean. Subsequently, we propose a robust and general goodness-of-fit test for the count time series models. We derive the joint distribution of the PQMLE and of the empirical residual autocovariances. Then, we deduce the asymptotic distribution of the estimated residual autocovariances and also of a portmanteau test. Finally, we propose the PQMLE for estimating, equation-by-equation (EbE), the conditional mean parameters of a multivariate time series of counts. By using slightly different assumptions from those given for PQMLE, we show the consistency and the asymptotic normality of this estimator for a considerable variety of multivariate count time series models
APA, Harvard, Vancouver, ISO, and other styles
37

Elamine, Abdallah Bacar. "Régression non-paramétrique pour variables fonctionnelles." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20017.

Full text
Abstract:
Cette thèse se décompose en quatre parties auxquelles s'ajoute une présentation. Dans un premier temps, on expose les outils mathématiques essentiels à la compréhension des prochains chapitres. Dans un deuxième temps, on s'intéresse à la régression non paramétrique locale pour des données fonctionnelles appartenant à un espace de Hilbert. On propose, tout d'abord, un estimateur de l'opérateur de régression. La construction de cet estimateur est liée à la résolution d'un problème inverse linéaire. On établit des bornes de l'erreur quadratique moyenne (EQM) de l'estimateur de l'opérateur de régression en utilisant une décomposition classique. Cette EQM dépend de la fonction de petite boule de probabilité du régresseur au sujet de laquelle des hypothèses de type Gamma-variation sont posées. Dans le chapitre suivant, on reprend le travail élaboré dans le précédent chapitre en se plaçant dans le cadre de données fonctionnelles appartenant à un espace semi-normé. On établit des bornes de l'EQM de l'estimateur de l'opérateur de régression. Cette EQM peut être vue comme une fonction de la fonction de petite boule de probabilité. Dans le dernier chapitre, on s'intéresse à l'estimation de la fonction auxiliaire associée à la fonction de petite boule de probabilité. D'abord, on propose un estimateur de cette fonction auxiliare. Ensuite, on établit la convergence en moyenne quadratique et la normalité asymptotique de cet estimateur. Enfin, par des simulations, on étudie le comportement de de cet estimateur au voisinage de zéro
This thesis is divided in four sections with an additionnal presentation. In the first section, We expose the essential mathematics skills for the comprehension of the next sections. In the second section, we adress the problem of local non parametric with functional inputs. First, we propose an estimator of the unknown regression function. The construction of this estimator is related to the resolution of a linear inverse problem. Using a classical method of decomposition, we establish a bound for the mean square error (MSE). This bound depends on the small ball probability of the regressor which is assumed to belong to the class of Gamma varying functions. In the third section, we take again the work done in the preceding section by being situated in the frame of data belonging to a semi-normed space with infinite dimension. We establish bound for the MSE of the regression operator. This MSE can be seen as a function of the small ball probability function. In the last section, we interest to the estimation of the auxiliary function. Then, we establish the convergence in mean square and the asymptotic normality of the estimator. At last, by simulations, we study the bahavour of this estimator in a neighborhood of zero
APA, Harvard, Vancouver, ISO, and other styles
38

Bassene, Aladji. "Contribution à la modélisation spatiale des événements extrêmes." Thesis, Lille 3, 2016. http://www.theses.fr/2016LIL30039/document.

Full text
Abstract:
Dans cette de thèse, nous nous intéressons à la modélisation non paramétrique de données extrêmes spatiales. Nos résultats sont basés sur un cadre principal de la théorie des valeurs extrêmes, permettant ainsi d’englober les lois de type Pareto. Ce cadre permet aujourd’hui d’étendre l’étude des événements extrêmes au cas spatial à condition que les propriétés asymptotiques des estimateurs étudiés vérifient les conditions classiques de la Théorie des Valeurs Extrêmes (TVE) en plus des conditions locales sur la structure des données proprement dites. Dans la littérature, il existe un vaste panorama de modèles d’estimation d’événements extrêmes adaptés aux structures des données pour lesquelles on s’intéresse. Néanmoins, dans le cas de données extrêmes spatiales, hormis les modèles max stables,il n’en existe que peu ou presque pas de modèles qui s’intéressent à l’estimation fonctionnelle de l’indice de queue ou de quantiles extrêmes. Par conséquent, nous étendons les travaux existants sur l’estimation de l’indice de queue et des quantiles dans le cadre de données indépendantes ou temporellement dépendantes. La spécificité des méthodes étudiées réside sur le fait que les résultats asymptotiques des estimateurs prennent en compte la structure de dépendance spatiale des données considérées, ce qui est loin d’être trivial. Cette thèse s’inscrit donc dans le contexte de la statistique spatiale des valeurs extrêmes. Elle y apporte trois contributions principales. • Dans la première contribution de cette thèse permettant d’appréhender l’étude de variables réelles spatiales au cadre des valeurs extrêmes, nous proposons une estimation de l’indice de queue d’une distribution à queue lourde. Notre approche repose sur l’estimateur de Hill (1975). Les propriétés asymptotiques de l’estimateur introduit sont établies lorsque le processus spatial est adéquatement approximé par un processus M−dépendant, linéaire causal ou lorsqu'il satisfait une condition de mélange fort (a-mélange). • Dans la pratique, il est souvent utile de lier la variable d’intérêt Y avec une co-variable X. Dans cette situation, l’indice de queue dépend de la valeur observée x de la co-variable X et sera appelé indice de queue conditionnelle. Dans la plupart des applications, l’indice de queue des valeurs extrêmes n’est pas l’intérêt principal et est utilisé pour estimer par exemple des quantiles extrêmes. La contribution de ce chapitre consiste à adapter l’estimateur de l’indice de queue introduit dans la première partie au cadre conditionnel et d’utiliser ce dernier afin de proposer un estimateur des quantiles conditionnels extrêmes. Nous examinons les modèles dits "à plan fixe" ou "fixed design" qui correspondent à la situation où la variable explicative est déterministe et nous utlisons l’approche de la fenêtre mobile ou "window moving approach" pour capter la co-variable. Nous étudions le comportement asymptotique des estimateurs proposés et donnons des résultats numériques basés sur des données simulées avec le logiciel "R". • Dans la troisième partie de cette thèse, nous étendons les travaux de la deuxième partie au cadre des modèles dits "à plan aléatoire" ou "random design" pour lesquels les données sont des observations spatiales d’un couple (Y,X) de variables aléatoires réelles. Pour ce dernier modèle, nous proposons un estimateur de l’indice de queue lourde en utilisant la méthode des noyaux pour capter la co-variable. Nous utilisons un estimateur de l’indice de queue conditionnelle appartenant à la famille de l’estimateur introduit par Goegebeur et al. (2014b)
In this thesis, we investigate nonparametric modeling of spatial extremes. Our resultsare based on the main result of the theory of extreme values, thereby encompass Paretolaws. This framework allows today to extend the study of extreme events in the spatialcase provided if the asymptotic properties of the proposed estimators satisfy the standardconditions of the Extreme Value Theory (EVT) in addition to the local conditions on thedata structure themselves. In the literature, there exists a vast panorama of extreme events models, which are adapted to the structures of the data of interest. However, in the case ofextreme spatial data, except max-stables models, little or almost no models are interestedin non-parametric estimation of the tail index and/or extreme quantiles. Therefore, weextend existing works on estimating the tail index and quantile under independent ortime-dependent data. The specificity of the methods studied resides in the fact that theasymptotic results of the proposed estimators take into account the spatial dependence structure of the relevant data, which is far from trivial. This thesis is then written in thecontext of spatial statistics of extremes. She makes three main contributions.• In the first contribution of this thesis, we propose a new approach of the estimatorof the tail index of a heavy-tailed distribution within the framework of spatial data. This approach relies on the estimator of Hill (1975). The asymptotic properties of the estimator introduced are established when the spatial process is adequately approximated by aspatial M−dependent process, spatial linear causal process or when the process satisfies a strong mixing condition.• In practice, it is often useful to link the variable of interest Y with covariate X. Inthis situation, the tail index depends on the observed value x of the covariate X and theunknown fonction (.) will be called conditional tail index. In most applications, the tailindexof an extreme value is not the main attraction, but it is used to estimate for instance extreme quantiles. The contribution of this chapter is to adapt the estimator of the tail index introduced in the first part in the conditional framework and use it to propose an estimator of conditional extreme quantiles. We examine the models called "fixed design"which corresponds to the situation where the explanatory variable is deterministic. To tackle the covariate, since it is deterministic, we use the window moving approach. Westudy the asymptotic behavior of the estimators proposed and some numerical resultsusing simulated data with the software "R".• In the third part of this thesis, we extend the work of the second part of the framemodels called "random design" for which the data are spatial observations of a pair (Y,X) of real random variables . In this last model, we propose an estimator of heavy tail-indexusing the kernel method to tackle the covariate. We use an estimator of the conditional tail index belonging to the family of the estimators introduced by Goegebeur et al. (2014b)
APA, Harvard, Vancouver, ISO, and other styles
39

Detais, Amélie. "Maximum de vraisemblance et moindre carrés pénalisés dans des modèles de durée de vie censurées." Toulouse 3, 2008. http://thesesups.ups-tlse.fr/820/.

Full text
Abstract:
L'analyse de durées de vie censurées est utilisée dans des domaines d'application variés et différentes possibilités ont été proposées pour la modélisation de telles données. Nous nous intéressons dans cette thèse à deux types de modélisation différents, le modèle de Cox stratifié avec indicateurs de strates aléatoirement manquants et le modèle de régression linéaire censuré à droite. Nous proposons des méthodes d'estimation des paramètres et établissons les propriétés asymptotiques des estimateurs obtenus dans chacun de ces modèles. Dans un premier temps, nous considérons une généralisation du modèle de Cox qui permet à différents groupes de la population, appelés strates, de posséder des fonctions d'intensité de base différentes tandis que la valeur du paramètre de régression est commune. Dans ce modèle à intensité proportionnelle stratifié, nous nous intéressons à l'estimation des paramètres lorsque l'indicateur de strate est manquant pour certains individus de la population. Des estimateurs du maximum de vraisemblance non paramétrique pour les paramètres du modèle sont proposés et nous montrons leurs consistance et normalité asymptotique. L'efficacité du paramètre de régression est établie et des estimateurs consistants de sa variance asymptotique sont également obtenus. Pour l'évaluation des estimateurs du modèle, nous proposons l'utilisation de l'algorithme Espérance-Maximisation et le développons dans ce cas particulier. Dans un second temps, nous nous intéressons au modèle de régression linéaire lorsque la donnée réponse est censurée aléatoirement à droite. Nous introduisons un nouvel estimateur du paramètre de régression minimisant un critère des moindres carrés pénalisé et pondéré par des poids de Kaplan-Meier. Des résultats de consistance et normalité asymptotique sont obtenus et une étude de simulations est effectuée pour illustrer les propriétés de cet estimateur de type LASSO. La méthode bootstrap est utilisée pour l'estimation de la variance asymptotique
Life data analysis is used in various application fields. Different methods have been proposed for modelling such data. In this thesis, we are interested in two distinct modelisation types, the stratified Cox model with randomly missing strata indicators and the right-censored linear regression model. We propose methods for estimating the parameters and establish the asymptotic properties of the obtained estimators in each of these models. First, we consider a generalization of the Cox model, allowing different groups, named strata, of the population to have distinct baseline intensity functions, whereas the regression parameter is shared by all the strata. In this stratified proportional intensity model, we are interested in the parameters estimation when the strata indicator is missing for some of the population individuals. Nonparametric maximum likelihood estimators are proposed for the model parameters and their consistency and asymptotic normality are established. We show the efficiency of the regression parameter and obtain consistent estimators of its variance. The Expectation-Maximization algorithm is proposed and developed for the evaluation of the estimators of the model parameters. Second, we are interested in the regression linear model when the response data is randomly right-censored. We introduce a new estimator of the regression parameter, which minimizes a Kaplan-Meier-weighted penalized least squares criterion. Results of consistency and asymptotic normality are obtained and a simulation study is conducted in order to investigate the small sample properties of this LASSO-type estimator. The bootstrap method is used for the estimation of the asymptotic variance
APA, Harvard, Vancouver, ISO, and other styles
40

Bontemps, Dominique. "Statistiques discrètes et Statistiques bayésiennes en grande dimension." Phd thesis, Université Paris Sud - Paris XI, 2010. http://tel.archives-ouvertes.fr/tel-00561749.

Full text
Abstract:
Dans cette thèse de doctorat, nous présentons les travaux que nous avons effectués dans trois directions reliées : la compression de données en alphabet infini, les statistiques bayésiennes en dimension infinie, et les mélanges de distributions discrètes multivariées. Dans le cadre de la compression de données sans perte, nous nous sommes intéressé à des classes de sources stationnaires sans mémoire sur un alphabet infini, définies par une condition d'enveloppe à décroissance exponentielle sur les distributions marginales. Un équivalent de la redondance minimax de ces classes a été obtenue. Un algorithme approximativement minimax ainsi que des a-priori approximativement les moins favorables, basés sur l'a-priori de Jeffreys en alphabet fini, ont en outre été proposés. Le deuxième type de travaux porte sur la normalité asymptotique des distributions a-posteriori (théorèmes de Bernstein-von Mises) dans différents cadres non-paramétriques et semi-paramétriques. Tout d'abord, dans un cadre de régression gaussienne lorsque le nombre de régresseurs augmente avec la taille de l'échantillon. Les théorèmes non-paramétriques portent sur les coefficients de régression, tandis que les théorèmes semi-paramétriques portent sur des fonctionnelles de la fonction de régression. Dans nos applications au modèle de suites gaussiennes et à la régression de fonctions appartenant à des classe de Sobolev ou de régularité hölderiennes, nous obtenons simultanément le théorème de Bernstein-von Mises et la vitesse d'estimation fréquentiste minimax. L'adaptativité est atteinte pour l'estimation de fonctionnelles dans ces applications. Par ailleurs nous présentons également un théorème de Bernstein-von Mises non-paramétrique pour des modèles exponentiels de dimension croissante. Enfin, le dernier volet de ce travail porte sur l'estimation du nombre de composantes et des variables pertinentes dans des modèles de mélange de lois multinomiales multivariées, dans une optique de classification non supervisée. Ce type de modèles est utilisé par exemple pour traiter des données génotypiques. Un critère du maximum de vraisemblance pénalisé est proposé, et une inégalité oracle non-asymptotique est obtenue. Le critère retenu en pratique comporte une calibration grâce à l'heuristique de pente. Ses performances sont meilleurs que celles des critères classiques BIC et AIC sur des données simulées. L'ensemble des procédures est implémenté dans un logiciel librement accessible.
APA, Harvard, Vancouver, ISO, and other styles
41

Reding, Lucas. "Contributions au théorème central limite et à l'estimation non paramétrique pour les champs de variables aléatoires dépendantes." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMR049.

Full text
Abstract:
La thèse suivante traite du Théorème Central Limite pour des champs de variables aléatoires dépendantes et de son application à l’estimation non-paramétrique. Dans une première partie, nous établissons des théorèmes centraux limite quenched pour des champs satisfaisant une condition projective à la Hannan (1973). Les versions fonctionnelles de ces théorèmes sont également considérées. Dans une seconde partie, nous établissons la normalité asymptotique d’estimateurs à noyau de la densité et de la régression pour des champs fortement mélangeants au sens de Rosenblatt (1956) ou bien des champs faiblement dépendants au sens de Wu (2005). Dans un premier temps, nous établissons les résultats pour l’estimateur à noyau de la régression introduit par Elizbar Nadaraya (1964) et Geoffrey Watson (1964). Puis, dans un second temps, nous étendons ces résultats à une large classe d’estimateurs récursifs introduite par Peter Hall et Prakash Patil (1994)
This thesis deals with the central limit theorem for dependent random fields and its applications to nonparametric statistics. In the first part, we establish some quenched central limit theorems for random fields satisfying a projective condition à la Hannan (1973). Functional versions of these theorems are also considered. In the second part, we prove the asymptotic normality of kernel density and regression estimators for strongly mixing random fields in the sense of Rosenblatt (1956) and for weakly dependent random fields in the sense of Wu (2005). First, we establish the result for the kernel regression estimator introduced by Elizbar Nadaraya (1964) and Geoffrey Watson (1964). Then, we extend these results to a large class of recursive estimators defined by Peter Hall and Prakash Patil (1994)
APA, Harvard, Vancouver, ISO, and other styles
42

Bennala, Nezar. "Optimal tests for panel data." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210081.

Full text
Abstract:
Dans ce travail, nous proposons des procédures de test paramétriques et nonparamétriques localement et asymptotiquement optimales au sens de Hajek et Le Cam, pour deux modèles de données de panel. Notre approche est fondée sur la théorie de Le Cam d'une part, pour obtenir les propriétés de normalité asymptotique, bases de la construction des tests paramétriques optimaux, et la théorie de Hajek d'autre part, qui, via un principe d'invariance, permet d'obtenir les procédures nonparamétriques.

Dans le premier chapitre, nous considérons un modèle à erreurs composées et nous nous intéressons au problème qui consiste à tester l'absence de l'effet individuel aléatoire. Nous

établissons la propriété de normalité locale asymptotique (LAN), ce qui nous permet de construire des procédures paramétriques localement et asymptotiquement optimales (“les plus stringentes”)

pour le problème considéré. L'optimalité de ces procédures est liée à la densité-cible f1. Ces propriétés d'optimalité sont hautement paramétriques puisqu'elles requièrent que la densité sous-jacente soit f1. De plus, ces procédures ne seront valides que si la densité-cible f1 et la densité sous-jacent g1 coincïdent. Or, en pratique, une spécification correcte de la densité sous-jacente g1 est non réaliste, et g1 doit être considérée comme un paramètre de nuissance. Pour éliminer cette nuisance, nous adoptons l'argument d'invariance et nous nous restreignons aux procédures fondées sur des statistiques qui sont mesurables par rapport au vecteur des rangs. Les tests que nous obtenons restent valide quelle que soit la densité sous-jacente et sont localement et asymptotiquement les plus stringents. Afin d'avoir des renseignements sur l'efficacité des tests

fondés sur les rangs sous différentes lois, nous calculons les efficacités asymptotiques relatives de ces tests par rapport aux tests pseudo-gaussiens, sous des densités g1 quelconques. Enfin, nous proposons quelques simulations pour comparer les performances des procédures proposées.

Dans le deuxième chapitre, nous considérons un modèle à erreurs composées avec autocorrélation d'ordre 1 et nous montrons que ce modèle jouit de la propriété LAN. A partir de ce résultat, nous construisons des tests optimaux, au sens local et asymptotique, pour trois problèmes de tests importants dans ce contexte :(a) test de l'absence d'effet individuel et d'autocorrélation; (b) test de l'absence d'effet individuel en présence d'une autocorrélation non

spécifiée; et (c) test de l'absence d'autocorrélation en présence d'un effet individuel non spécifié. Enfin, nous proposons quelques simulations pour comparer les performances des tests pseudogaussiens

et des tests classiques.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
43

Cassart, Delphine. "Optimal tests for symmetry." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210693.

Full text
Abstract:
Dans ce travail, nous proposons des procédures de test paramétriques et nonparamétrique localement et asymptotiquement optimales au sens de Hajek et Le Cam, pour trois modèles d'asymétrie.

La construction de modèles d'asymétrie est un sujet de recherche qui a connu un grand développement ces dernières années, et l'obtention des tests optimaux (pour trois modèles différents) est une étape essentielle en vue de leur mise en application.

Notre approche est fondée sur la théorie de Le Cam d'une part, pour obtenir les propriétés de normalité asymptotique, bases de la construction des tests paramétriques optimaux, et la théorie de Hajek d'autre part, qui, via un principe d'invariance permet d'obtenir les procédures non-paramétriques.

Nous considérons dans ce travail deux classes de distributions univariées asymétriques, l'une fondée sur un développement d'Edgeworth (décrit dans le Chapitre 1), et l'autre construite en utilisant un paramètre d'échelle différent pour les valeurs positives et négatives (le modèle de Fechner, décrit dans le Chapitre 2).

Le modèle d'asymétrie elliptique étudié dans le dernier chapitre est une généralisation multivariée du modèle du Chapitre 2.

Pour chacun de ces modèles, nous proposons de tester l'hypothèse de symétrie par rapport à un centre fixé, puis par rapport à un centre non spécifié.

Après avoir décrit le modèle pour lequel nous construisons les procédures optimales, nous obtenons la propriété de normalité locale asymptotique. A partir de ce résultat, nous sommes capable de construire les tests paramétriques localement et asymptotiquement optimaux. Ces tests ne sont toutefois valides que si la densité sous-jacente f est correctement spécifiée. Ils ont donc le mérite de déterminer les bornes d'efficacité paramétrique, mais sont difficilement applicables.

Nous adaptons donc ces tests afin de pouvoir tester les hypothèses de symétrie par rapport à un centre fixé ou non, lorsque la densité sous-jacente est considérée comme un paramètre de nuisance.

Les tests que nous obtenons restent localement et asymptotiquement optimaux sous f, mais restent valides sous une large classe de densités.

A partir des propriétés d'invariance du sous-modèle identifié par l'hypothèse nulle, nous obtenons les tests de rangs signés localement et asymptotiquement optimaux sous f, et valide sous une vaste classe de densité. Nous présentons en particulier, les tests fondés sur les scores normaux (ou tests de van der Waerden), qui sont optimaux sous des hypothèses Gaussiennes, tout en étant valides si cette hypothèse n'est pas vérifiée.

Afin de comparer les performances des tests paramétriques et non paramétriques présentés, nous calculons les efficacités asymptotiques relatives des tests non paramétriques par rapport aux tests pseudo-Gaussiens, sous une vaste classe de densités non-Gaussiennes, et nous proposons quelques simulations.
Doctorat en sciences, Orientation statistique
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography