Dissertations / Theses on the topic 'Normalité asymptotique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 43 dissertations / theses for your research on the topic 'Normalité asymptotique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kahn, Jonas. "Normalité asymptotique locale quantique et autres questions de statistiques quantiques." Paris 11, 2009. http://www.theses.fr/2009PA112352.
Full textThe thesis deals with miscellaneous quantum statistics problems, where the starting point is the object itself, instead of measurement data. We use model selection methods on quantum homodyne tomography. We apply our results to photocounter calibration. We study optimal discrimination of quantum states and Pauli channels, in a minimax setting. We devise an estimation scheme for unitary transformations, which has 1/n convergence speed. We give a sufficient condition for a measurement to be clean, as defined by Buscemi et al. , and characterise clean measurements on qubits. We prove there are not five complementary subalgebras isomorphic to M2(C) in M4(C). The main theme is strong quantum local asymptotic normality. We prove that i. I. D. Experiments are asymptotically equivalent to quantum Gaussian shift experiments. Ln other words, many copies of a finite-dimensional system correspond to a single copy of a Gaussian state on a CCR-algebra of the right dimension, with mean as unknown parameter. This means that there are channels that transform one state into the other, and back, without knowing the precise state. Hence, all problems solved for quantum Gaussian shift experiments are asymptotically solved for i. I. D. Experiments, ln particular, we give an explicit optimal estimation method for any well-behaved loss function, both in the minimax and Bayesian uniform frameworks
Lombard, Christophe. "Estimateurs de la densité basés sur des partitions : Convergence et normalité asymptotique." Montpellier 2, 1998. http://www.theses.fr/1998MON20154.
Full textLevallois, Serge. "Convergence et normalité asymptotique d'estimateurs de la densité : Cas i.i.d. et ergodique." Montpellier 2, 1998. http://www.theses.fr/1998MON20236.
Full textTran, Ngoc Khue. "Propriété LAN pour des processus de diffusion avec sauts avec observations discrètes via le calcul de Malliavin." Thesis, Paris 13, 2014. http://www.theses.fr/2014PA132008/document.
Full textIn this thesis we apply the Malliavin calculus in order to obtain the local asymptotic normality (LAN) property from discrete observations for certain uniformly elliptic diffusion processes with jumps. In Chapter 2 we review the proof of the local asymptotic mixed normality (LAMN) property for diffusion processes with jumps from continuous observations, and as a consequence, we derive the LAN property when supposing the ergodicity of the process. In Chapter 3 we establish the LAN property for a simple Lévy process whose drift and diffusion parameters as well as its intensity are unknown. In Chapter 4, using techniques of the Malliavin calculus and the estimates of the transition density, we prove that the LAN property is satisfied for a jump-diffusion process whose drift coefficient depends on an unknown parameter. Finally, in the same direction we obtain in Chapter 5 the LAN property for a jump-diffusion process where two unknown parameters determine the drift and diffusion coefficients of the jump-diffusion process
Soltane, Marius. "Statistique asymptotique de certaines séries chronologiques à mémoire." Thesis, Le Mans, 2020. http://cyberdoc-int.univ-lemans.fr/Theses/2020/2020LEMA1027.pdf.
Full textThis thesis is devoted to asymptotic inferenre of differents chronological models driven by a noise with memory. In these models, the least squares estimator is not consistent and we consider other estimators. We begin by studying the almost-sureasymptotic properties of the maximum likelihood estimator of the autoregressive coefficient in an autoregressive process drivenby a stationary Gaussian noise. We then present a statistical procedure in order to detect a change of regime within this model,taking inspiration from the classic case driven by a strong white noise. Then we consider an autoregressive model where the coefficients are random and have a short memory. Here again, the least squares estimator is not consistent and we correct the previous statistic in order to correctly estimate the parameters of the model. Finally we study a new joint estimator of the Hurst exponent and the variance in a fractional Gaussian noise observed at high frequency whose qualities are comparable to the maximum likelihood estimator
Benhmida, Saïd. "Robustesse et comportement asymptotique d'un TRA-estimateur des coefficients d'un processus ARMA (p,q)." Nancy 1, 1995. http://www.theses.fr/1995NAN10035.
Full textRoman, Claire. "Etude des valeurs extrêmes en présence d'une covariable de grande dimension." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAD026.
Full textThe aim of the thesis is to study some estimators of extreme conditional quantiles by using the inversion method of associated survival function local estimators. These estimators depend on weights function whose role is to select the more relevant covariates in a sample. In a first chapter, we establish the asymptotic normality of these estimators. It requires a new condition on the distribution of interest which is called Tail First Order condition. This condition is satisfied by distributions verifying the Gnedenko-Fisher-Tippet theorem but also by super heavy-tailed distributions. Other classical conditions are necessary, in particular about the nature of the quantile which has to be intermediate. In a second chapter, we define by extrapolation a new extreme quantile estimator and we prove the consistency. The curse of dimensionality problem is also discussed. In both chapters, some particular cases are studied as the well known Nadaraya-Watson estimator or nearest neighbors estimator. The perfomances of the different estimators are tested with simulation study. An application to real data set has been done too
Godet, Fanny. "Prévision linéaire des processus à longue mémoire." Phd thesis, Université de Nantes, 2008. http://tel.archives-ouvertes.fr/tel-00349384.
Full textLévy-Leduc, Céline. "Estimation semi-paramétrique de la période de fonctions périodiques inconnues dans divers modèles statistiques : théorie et applications." Paris 11, 2004. http://www.theses.fr/2004PA112146.
Full textThis thesis is devoted to semiparametric period estimation of unknown periodic functions in various statistical models as well as the construction of nonparametric tests to detect a periodic signal in the midst of noise. In chapter 1, we propose asymptotically optimal estimators of the period of an unknown periodic function and of the periods of two periodic functions from their sum corrupted by Gaussian white noise. In chapter 2, we propose a practical implementation of the period estimation method based on the ideas developed in the first chapter that we test on simulated laser vlbrometry signals. This algorithm is used in chapter 3 on real musical data. In chapter 4, we propose an estimator of the period when the observations are those of a particular almost periodic function corrupted by Gaussian white noise as well as a practical implementation of the method. This algorithm has also been tested on laser vibrometry data. In chapter 5, we propose a test in order to detect periodic functions in the midst of noise when the period of the function and the variance of noise are unknown. It is proved to be adaptive in the minimax sense and has been tested on laser vibrometry data
Caron, Emmanuel. "Comportement des estimateurs des moindres carrés du modèle linéaire dans un contexte dépendant : Étude asymptotique, implémentation, exemples." Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0036.
Full textIn this thesis, we consider the usual linear regression model in the case where the error process is assumed strictly stationary.We use a result from Hannan (1973) who proved a Central Limit Theorem for the usual least squares estimator under general conditions on the design and on the error process. Whatever the design and the error process satisfying Hannan’s conditions, we define an estimator of the asymptotic covariance matrix of the least squares estimator and we prove its consistency under very mild conditions. Then we show how to modify the usual tests on the parameter of the linear model in this dependent context. We propose various methods to estimate the covariance matrix in order to correct the type I error rate of the tests. The R package slm that we have developed contains all of these statistical methods. The procedures are evaluated through different sets of simulations and two particular examples of datasets are studied. Finally, in the last chapter, we propose a non-parametric method by penalization to estimate the regression function in the case where the errors are Gaussian and correlated
Khardani, Salah. "Prévision non paramétrique dans les modèles de censure via l'estimation du mode conditionnel." Littoral, 2010. http://www.theses.fr/2010DUNK0277.
Full textIn this work, we address the problem of estimating the mode and conditional mode functions, for independent and dependent data, under random censorship. Firstly, we consider an independent and identically distributed (iid) sequence random variables (rvs) {T_i , i [equal to or higher than]1}, with density f. This sequence is right-censored by another iid sequence of rvs {Ci , i[equal to or higher than]1} which is supposed to be independent of {T_i , i [equal to or higher than]1}. We are interested in the regression problem of T given a covariable X. We state convergence and asymptomatic normality of Kernel-based estimators of conditional density and mode. Using the “plug-in” method for the unknown parameters, confidence intervals are gicen. Also simulations are drawn. In a second step we deal with the simple mode, given by par θ = arg max_{t. IR} f (t). Here, the sequence {T_i , i [equal to or higher than]1} is supposed to be stationary and strongly mixing whereas the {Ci , i[equal to or higher than]1} are iid. We build a mode estimator (based on a density kernel estimator) for which we state the almost sure consistency. Finally, we extend the conditional mode consistency results to the case where the {T_i , i [equal to or higher than]1} are strongly mixing
Degras, David. "Contribution à l'étude de la régression non paramétrique et à l'estimation de la moyenne d'un processus à temps continu." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00201438.
Full textLacombe, Jean-Pierre. "Analyse statistique de processus de poisson non homogènes. Traitement statistique d'un multidétecteur de particules." Phd thesis, Grenoble 1, 1985. http://tel.archives-ouvertes.fr/tel-00318875.
Full textPoulin, Nicolas. "Estimation de la fonction des quantiles pour des données tronquées." Littoral, 2006. http://www.theses.fr/2006DUNK0159.
Full textIn the left-truncation model, the pair of random variables Y and T with respective distribution function F and G are observed only if Y ≥ T. Let (Yi,Ti) ; 1 ≤ i ≤ n be an observed sample of this pair of random variables. The quantile function of F is estimated by the quantile function of the Lynden-Bell (1971) estimator. After giving some results of the literature in the case of independant data, we consider the α-mixing framework. We obtain strong consistency with rates, give a strong representation for the estimator of the quantile as a mean of random variables with a neglible rest and asymptotic normality. As regards the second topic of this thesis, we consider a multidimensionnal explanatory random variable X of Y which plays the role of a response. We establish strong consitency and asymptotic normality of the conditional distribution function and those of the conditional quantile function of Y given X when Y is subject to truncation. Simulations are drawn to illustrate the results for finite samples
Ferrani, Yacine. "Sur l'estimation non paramétrique de la densité et du mode dans les modèles de données incomplètes et associées." Electronic Thesis or Diss., Littoral, 2014. http://www.theses.fr/2014DUNK0370.
Full textThis thesis deals with the study of asymptotic properties of e kernel (Parzen-Rosenblatt) density estimate under associated and censored model. In this setting, we first recall with details the existing results, studied in both i.i.d. and strong mixing condition (α-mixing) cases. Under mild standard conditions, it is established that the strong uniform almost sure convergence rate, is optimal. In the part dedicated to the results of this thesis, two main and original stated results are presented : the first result concerns the strong uniform consistency rate of the studied estimator under association hypothesis. The main tool having permitted to achieve the optimal speed, is the adaptation of the Theorem due to Doukhan and Neumann (2007), in studying the term of fluctuations (random part) of the gap between the considered estimator and the studied parameter (density). As an application, the almost sure convergence of the kernel mode estimator is established. The stated results have been accepted for publication in Communications in Statistics-Theory & Methods ; The second result establishes the asymptotic normality of the estimator studied under the same model and then, constitute an extension to the censored case, the result stated by Roussas (2000). This result is submitted for publication
Ferrani, Yacine. "Sur l'estimation non paramétrique de la densité et du mode dans les modèles de données incomplètes et associées." Thesis, Littoral, 2014. http://www.theses.fr/2014DUNK0370/document.
Full textThis thesis deals with the study of asymptotic properties of e kernel (Parzen-Rosenblatt) density estimate under associated and censored model. In this setting, we first recall with details the existing results, studied in both i.i.d. and strong mixing condition (α-mixing) cases. Under mild standard conditions, it is established that the strong uniform almost sure convergence rate, is optimal. In the part dedicated to the results of this thesis, two main and original stated results are presented : the first result concerns the strong uniform consistency rate of the studied estimator under association hypothesis. The main tool having permitted to achieve the optimal speed, is the adaptation of the Theorem due to Doukhan and Neumann (2007), in studying the term of fluctuations (random part) of the gap between the considered estimator and the studied parameter (density). As an application, the almost sure convergence of the kernel mode estimator is established. The stated results have been accepted for publication in Communications in Statistics-Theory & Methods ; The second result establishes the asymptotic normality of the estimator studied under the same model and then, constitute an extension to the censored case, the result stated by Roussas (2000). This result is submitted for publication
Hamdoune, Saïd. "Étude des problèmes d'estimation de certains modèles ARMA évolutifs." Nancy 1, 1995. http://www.theses.fr/1995NAN10052.
Full textEzzahar, Abdessamad. "Estimation et détection d'un signal contaminé par un bruit autorégressif." Phd thesis, Grenoble 1, 1991. http://tel.archives-ouvertes.fr/tel-00339831.
Full textSalami, Ali. "Inférence statistique pour un modèle de dégradation en présence de variables explicatives." Phd thesis, Université de Pau et des Pays de l'Adour, 2011. http://tel.archives-ouvertes.fr/tel-00608581.
Full textBenelmadani, Djihad. "Contribution à la régression non paramétrique avec un processus erreur d'autocovariance générale et application en pharmacocinétique." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM034/document.
Full textIn this thesis, we consider the fixed design regression model with repeated measurements, where the errors form a process with general autocovariance function, i.e. a second order process (stationary or nonstationary), with a non-differentiable covariance function along the diagonal. We are interested, among other problems, in the nonparametric estimation of the regression function of this model.We first consider the well-known kernel regression estimator proposed by Gasser and Müller. We study its asymptotic performance when the number of experimental units and the number of observations tend to infinity. For a regular sequence of designs, we improve the higher rates of convergence of the variance and the bias. We also prove the asymptotic normality of this estimator in the case of correlated errors.Second, we propose a new kernel estimator of the regression function based on a projection property. This estimator is constructed through the autocovariance function of the errors, and a specific function belonging to the Reproducing Kernel Hilbert Space (RKHS) associated to the autocovariance function. We study its asymptotic performance using the RKHS properties. These properties allow to obtain the optimal convergence rate of the variance. We also prove its asymptotic normality. We show that this new estimator has a smaller asymptotic variance then the one of Gasser and Müller. A simulation study is conducted to confirm this theoretical result.Third, we propose a new kernel estimator for the regression function. This estimator is constructed through the trapezoidal numerical approximation of the kernel regression estimator based on continuous observations. We study its asymptotic performance, and we prove its asymptotic normality. Moreover, this estimator allow to obtain the asymptotic optimal sampling design for the estimation of the regression function. We run a simulation study to test the performance of the proposed estimator in a finite sample set, where we see its good performance, in terms of Integrated Mean Squared Error (IMSE). In addition, we show the reduction of the IMSE using the optimal sampling design instead of the uniform design in a finite sample set.Finally, we consider an application of the regression function estimation in pharmacokinetics problems. We propose to use the nonparametric kernel methods, for the concentration-time curve estimation, instead of the classical parametric ones. We prove its good performance via simulation study and real data analysis. We also investigate the problem of estimating the Area Under the concentration Curve (AUC), where we introduce a new kernel estimator, obtained by the integration of the regression function estimator. We prove, using a simulation study, that the proposed estimators outperform the classical one in terms of Mean Squared Error. The crucial problem of finding the optimal sampling design for the AUC estimation is investigated using the Generalized Simulating Annealing algorithm
Delsol, Laurent. "Régression sur variable fonctionnelle : estimation, tests de structure et applications." Phd thesis, Université Paul Sabatier - Toulouse III, 2008. http://tel.archives-ouvertes.fr/tel-00449806.
Full textDiop, Aba. "Inférence statistique dans le modèle de régression logistique avec fraction immune." Phd thesis, Université de La Rochelle, 2012. http://tel.archives-ouvertes.fr/tel-00829844.
Full textYahia, Djabrane. "Conditional quantile for truncated dependent data." Littoral, 2010. http://www.theses.fr/2010DUNK0297.
Full textIn this thesis we study some asymptotic properties of the kernel conditional quantile estimator when the interest variable is subject to random left truncation. The uniform strong convergence rate of the estimator is obtained. In addition, it is shown that, under regularity conditions and suitably normalized, the kernel estimate of the conditional quantile is asymptotically normally distributed. Our interest in conditional quantile estimation is motivated by it’s robusteness, the constructing of the confidence bands and the forecasting from thime series data. Our results are obtained in a more general setting (strong mixing) which includes time series modelling as a special case
Dupuy, Jean-François. "Modélisation conjointe de données longitudinales et de durées de vie." Phd thesis, Université René Descartes - Paris V, 2002. http://tel.archives-ouvertes.fr/tel-00002667.
Full textBoistard, Hélène. "Eficacia asintotica tests relacionados con el estadística de Wasserstein." Toulouse 3, 2007. http://www.theses.fr/2007TOU30155.
Full textThe goodness of fit test based on the Wasserstein distance is a test which is well adapted to location-scale families. The asymptotic distribution under the null hypothesis has been known since the works by del Barrio et al. (1999, 2000). The subject of this thesis is the study of the asymptotic power of this test and of some related tests, owing to several efficiency criteria. In the first chapter, a short introduction presents the problem and the tools to be used. The second chapter is devoted to the the proof of some asymptotic results for multiple integrals with respect to the empirical process. These statistics are strongly related to U-statistics, but they permit an important simplification of the classical hypotheses to establish the asymptotic distribution under the null hypothesis, under contiguous alternative and for the bootstrap. In the third chapter, we prove that the Wasserstein test statistic is equivalent to a test based on the double integral with respect to the empirical process. This allows us to apply to this test the results of the previous chapter, and to obtain some information about its asymptotic efficiency in the framework of Gaussian shift experiments. .
Diallo, Alpha Oumar. "Inférence statistique dans des modèles de comptage à inflation de zéro. Applications en économie de la santé." Thesis, Rennes, INSA, 2017. http://www.theses.fr/2017ISAR0027/document.
Full textThe zero-inflated regression models are a very powerful tool for the analysis of counting data with excess zeros from various areas such as epidemiology, health economics or ecology. However, the theoretical study in these models attracts little attention. This manuscript is interested in the problem of inference in zero-inflated count models.At first, we return to the question of the maximum likelihood estimator in the zero-inflated binomial model. First we show the existence of the maximum likelihood estimator of the parameters in this model. Then, we demonstrate the consistency of this estimator, and let us establish its asymptotic normality. Then, a comprehensive simulation study finite sample sizes are conducted to evaluate the consistency of our results. Finally, an application on real health economics data has been conduct.In a second time, we propose a new statistical analysis model of the consumption of medical care. This model allows, among other things, to identify the causes of the non-use of medical care. We have studied rigorously the mathematical properties of the model. Then, we carried out an exhaustive numerical study using computer simulations and finally applied to the analysis of a database on health care several thousand patients in the USA.A final aspect of this work was to focus on the problem of inference in the zero inflation binomial model in the context of missing covariate data. In this case we propose the weighting method by the inverse of the selection probabilities to estimate the parameters of the model. Then, we establish the consistency and asymptotic normality of the estimator offers. Finally, a simulation study on several samples of finite sizes is conducted to evaluate the behavior of the estimator
Stupfler, Gilles. "Un modèle de Markov caché en assurance et Estimation de frontière et de point terminal." Phd thesis, Université de Strasbourg, 2011. http://tel.archives-ouvertes.fr/tel-00638368.
Full textBelouni, Mohamad. "Plans d'expérience optimaux en régression appliquée à la pharmacocinétique." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM056/document.
Full textThe problem of interest is to estimate the concentration curve and the area under the curve (AUC) by estimating the parameters of a linear regression model with autocorrelated error process. We construct a simple linear unbiased estimator of the concentration curve and the AUC. We show that this estimator constructed from a sampling design generated by an appropriate density is asymptotically optimal in the sense that it has exactly the same asymptotic performance as the best linear unbiased estimator (BLUE). Moreover, we prove that the optimal design is robust with respect to a misspecification of the autocovariance function according to a minimax criterion. When repeated observations are available, this estimator is consistent and has an asymptotic normal distribution. All those results are extended to the error process of Hölder with index including between 0 and 2. Finally, for small sample sizes, a simulated annealing algorithm is applied to a pharmacokinetic model with correlated errors
Bouhadjera, Feriel. "Estimation non paramétrique de la fonction de régression pour des données censurées : méthodes locale linéaire et erreur relative." Thesis, Littoral, 2020. http://www.theses.fr/2020DUNK0561.
Full textIn this thesis, we are interested in developing robust and efficient methods in the nonparametric estimation of the regression function. The model considered here is the right-hand randomly censored model which is the most used in different practical fields. First, we propose a new estimator of the regression function by the local linear method. We study its almost uniform convergence with rate. We improve the order of the bias term. Finally, we compare its performance with that of the classical kernel regression estimator using simulations. In the second step, we consider the regression function estimator, based on theminimization of the mean relative square error (called : relative regression estimator). We establish the uniform almost sure consistency with rate of the estimator defined for independent and identically distributed observations. We prove its asymptotic normality and give the explicit expression of the variance term. We conduct a simulation study to confirm our theoretical results. Finally, we have applied our estimator on real data. Then, we study the almost sure uniform convergence (on a compact set) with rate of the relative regression estimator for observations that are subject to a dependency structure of α-mixing type. A simulation study shows the good behaviour of the studied estimator. Predictions on generated data are carried out to illustrate the robustness of our estimator. Finally, we establish the asymptotic normality of the relative regression function estimator for α-mixing data. We construct the confidence intervals and perform a simulation study to validate our theoretical results. In addition to the analysis of the censored data, the common thread of this modest contribution is the proposal of two alternative prediction methods to classical regression. The first approach corrects the border effects created by classical kernel estimators and reduces the bias term. While the second is more robust and less affected by the presence of outliers in the sample
Lounis, Tewfik. "Inférences dans les modèles ARCH : tests localement asymptotiquement optimaux." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0222/document.
Full textThe purpose of this phD thesis is the construction of alocally asymptotically optimal tests. In this testing problem, the considered model contains a large class of time series models. LAN property was the fundamental tools in our research works. Our results are applied in financial area
Mailhot, Mélina. "Puissances asymptotiques et à tailles finies de tests de normalité sous des alternatives locales." Thèse, Université du Québec à Trois-Rivières, 2009. http://depot-e.uqtr.ca/1888/1/030131504.pdf.
Full textHorrigue, Walid. "Prévision non paramétrique dans les modèles de censure via l'estimation du quantile conditionnel en dimension infinie." Thesis, Littoral, 2012. http://www.theses.fr/2012DUNK0511.
Full textIn this thesis, we study some asymptotic properties of conditional functional parameters in nonparametric statistics setting, when the explanatory variable takes its values in infinite dimension space. In this nonparametric setting, we consider the estimators of the usual functional parameters, as the conditional law, the conditional probability density, the conditional quantile. We are essentially interested in the problem of forecasting in the nonparametric conditional models, when the data are functional random variables. Firstly, we propose an estimator of the conditional quantile and we establish its uniform strong convergence with rates over a compact subset. To follow the convention in biomedical studies, we consider an identically distributed sequence {Ti, i ≥ 1}, here density f, right censored by a random {Ci, i ≥ 1} also assumed independent identically distributed and independent of {Ti, i ≥ 1}. Our study focuses on dependent data and the covariate X takes values in an infinite space dimension. In a second step we establish the asymptotic normality of the kernel estimator of the conditional quantile, under α-mixing assumption and on the concentration properties on small balls of the probability measure of the functional regressors. Many applications in some particular cases have been also given
Kabui, Ali. "Value at risk et expected shortfall pour des données faiblement dépendantes : estimations non-paramétriques et théorèmes de convergences." Phd thesis, Université du Maine, 2012. http://tel.archives-ouvertes.fr/tel-00743159.
Full textServien, Rémi. "Estimation de régularité locale." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2010. http://tel.archives-ouvertes.fr/tel-00730491.
Full textMatias, Catherine. "Estimation dans des modèles à variables cachées." Phd thesis, Université Paris Sud - Paris XI, 2001. http://tel.archives-ouvertes.fr/tel-00008383.
Full textAhmad, Ali. "Contribution à l'économétrie des séries temporelles à valeurs entières." Thesis, Lille 3, 2016. http://www.theses.fr/2016LIL30059/document.
Full textThe framework of this PhD dissertation is the conditional mean count time seriesmodels. We propose the Poisson quasi-maximum likelihood estimator (PQMLE) for the conditional mean parameters. We show that, under quite general regularityconditions, this estimator is consistent and asymptotically normal for a wide classeof count time series models. Since the conditional mean parameters of some modelsare positively constrained, as, for example, in the integer-valued autoregressive (INAR) and in the integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH), we study the asymptotic distribution of this estimator when the parameter lies at the boundary of the parameter space. We deduce a Waldtype test for the significance of the parameters and another Wald-type test for the constance of the conditional mean. Subsequently, we propose a robust and general goodness-of-fit test for the count time series models. We derive the joint distribution of the PQMLE and of the empirical residual autocovariances. Then, we deduce the asymptotic distribution of the estimated residual autocovariances and also of a portmanteau test. Finally, we propose the PQMLE for estimating, equation-by-equation (EbE), the conditional mean parameters of a multivariate time series of counts. By using slightly different assumptions from those given for PQMLE, we show the consistency and the asymptotic normality of this estimator for a considerable variety of multivariate count time series models
Elamine, Abdallah Bacar. "Régression non-paramétrique pour variables fonctionnelles." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20017.
Full textThis thesis is divided in four sections with an additionnal presentation. In the first section, We expose the essential mathematics skills for the comprehension of the next sections. In the second section, we adress the problem of local non parametric with functional inputs. First, we propose an estimator of the unknown regression function. The construction of this estimator is related to the resolution of a linear inverse problem. Using a classical method of decomposition, we establish a bound for the mean square error (MSE). This bound depends on the small ball probability of the regressor which is assumed to belong to the class of Gamma varying functions. In the third section, we take again the work done in the preceding section by being situated in the frame of data belonging to a semi-normed space with infinite dimension. We establish bound for the MSE of the regression operator. This MSE can be seen as a function of the small ball probability function. In the last section, we interest to the estimation of the auxiliary function. Then, we establish the convergence in mean square and the asymptotic normality of the estimator. At last, by simulations, we study the bahavour of this estimator in a neighborhood of zero
Bassene, Aladji. "Contribution à la modélisation spatiale des événements extrêmes." Thesis, Lille 3, 2016. http://www.theses.fr/2016LIL30039/document.
Full textIn this thesis, we investigate nonparametric modeling of spatial extremes. Our resultsare based on the main result of the theory of extreme values, thereby encompass Paretolaws. This framework allows today to extend the study of extreme events in the spatialcase provided if the asymptotic properties of the proposed estimators satisfy the standardconditions of the Extreme Value Theory (EVT) in addition to the local conditions on thedata structure themselves. In the literature, there exists a vast panorama of extreme events models, which are adapted to the structures of the data of interest. However, in the case ofextreme spatial data, except max-stables models, little or almost no models are interestedin non-parametric estimation of the tail index and/or extreme quantiles. Therefore, weextend existing works on estimating the tail index and quantile under independent ortime-dependent data. The specificity of the methods studied resides in the fact that theasymptotic results of the proposed estimators take into account the spatial dependence structure of the relevant data, which is far from trivial. This thesis is then written in thecontext of spatial statistics of extremes. She makes three main contributions.• In the first contribution of this thesis, we propose a new approach of the estimatorof the tail index of a heavy-tailed distribution within the framework of spatial data. This approach relies on the estimator of Hill (1975). The asymptotic properties of the estimator introduced are established when the spatial process is adequately approximated by aspatial M−dependent process, spatial linear causal process or when the process satisfies a strong mixing condition.• In practice, it is often useful to link the variable of interest Y with covariate X. Inthis situation, the tail index depends on the observed value x of the covariate X and theunknown fonction (.) will be called conditional tail index. In most applications, the tailindexof an extreme value is not the main attraction, but it is used to estimate for instance extreme quantiles. The contribution of this chapter is to adapt the estimator of the tail index introduced in the first part in the conditional framework and use it to propose an estimator of conditional extreme quantiles. We examine the models called "fixed design"which corresponds to the situation where the explanatory variable is deterministic. To tackle the covariate, since it is deterministic, we use the window moving approach. Westudy the asymptotic behavior of the estimators proposed and some numerical resultsusing simulated data with the software "R".• In the third part of this thesis, we extend the work of the second part of the framemodels called "random design" for which the data are spatial observations of a pair (Y,X) of real random variables . In this last model, we propose an estimator of heavy tail-indexusing the kernel method to tackle the covariate. We use an estimator of the conditional tail index belonging to the family of the estimators introduced by Goegebeur et al. (2014b)
Detais, Amélie. "Maximum de vraisemblance et moindre carrés pénalisés dans des modèles de durée de vie censurées." Toulouse 3, 2008. http://thesesups.ups-tlse.fr/820/.
Full textLife data analysis is used in various application fields. Different methods have been proposed for modelling such data. In this thesis, we are interested in two distinct modelisation types, the stratified Cox model with randomly missing strata indicators and the right-censored linear regression model. We propose methods for estimating the parameters and establish the asymptotic properties of the obtained estimators in each of these models. First, we consider a generalization of the Cox model, allowing different groups, named strata, of the population to have distinct baseline intensity functions, whereas the regression parameter is shared by all the strata. In this stratified proportional intensity model, we are interested in the parameters estimation when the strata indicator is missing for some of the population individuals. Nonparametric maximum likelihood estimators are proposed for the model parameters and their consistency and asymptotic normality are established. We show the efficiency of the regression parameter and obtain consistent estimators of its variance. The Expectation-Maximization algorithm is proposed and developed for the evaluation of the estimators of the model parameters. Second, we are interested in the regression linear model when the response data is randomly right-censored. We introduce a new estimator of the regression parameter, which minimizes a Kaplan-Meier-weighted penalized least squares criterion. Results of consistency and asymptotic normality are obtained and a simulation study is conducted in order to investigate the small sample properties of this LASSO-type estimator. The bootstrap method is used for the estimation of the asymptotic variance
Bontemps, Dominique. "Statistiques discrètes et Statistiques bayésiennes en grande dimension." Phd thesis, Université Paris Sud - Paris XI, 2010. http://tel.archives-ouvertes.fr/tel-00561749.
Full textReding, Lucas. "Contributions au théorème central limite et à l'estimation non paramétrique pour les champs de variables aléatoires dépendantes." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMR049.
Full textThis thesis deals with the central limit theorem for dependent random fields and its applications to nonparametric statistics. In the first part, we establish some quenched central limit theorems for random fields satisfying a projective condition à la Hannan (1973). Functional versions of these theorems are also considered. In the second part, we prove the asymptotic normality of kernel density and regression estimators for strongly mixing random fields in the sense of Rosenblatt (1956) and for weakly dependent random fields in the sense of Wu (2005). First, we establish the result for the kernel regression estimator introduced by Elizbar Nadaraya (1964) and Geoffrey Watson (1964). Then, we extend these results to a large class of recursive estimators defined by Peter Hall and Prakash Patil (1994)
Bennala, Nezar. "Optimal tests for panel data." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210081.
Full textDans le premier chapitre, nous considérons un modèle à erreurs composées et nous nous intéressons au problème qui consiste à tester l'absence de l'effet individuel aléatoire. Nous
établissons la propriété de normalité locale asymptotique (LAN), ce qui nous permet de construire des procédures paramétriques localement et asymptotiquement optimales (“les plus stringentes”)
pour le problème considéré. L'optimalité de ces procédures est liée à la densité-cible f1. Ces propriétés d'optimalité sont hautement paramétriques puisqu'elles requièrent que la densité sous-jacente soit f1. De plus, ces procédures ne seront valides que si la densité-cible f1 et la densité sous-jacent g1 coincïdent. Or, en pratique, une spécification correcte de la densité sous-jacente g1 est non réaliste, et g1 doit être considérée comme un paramètre de nuissance. Pour éliminer cette nuisance, nous adoptons l'argument d'invariance et nous nous restreignons aux procédures fondées sur des statistiques qui sont mesurables par rapport au vecteur des rangs. Les tests que nous obtenons restent valide quelle que soit la densité sous-jacente et sont localement et asymptotiquement les plus stringents. Afin d'avoir des renseignements sur l'efficacité des tests
fondés sur les rangs sous différentes lois, nous calculons les efficacités asymptotiques relatives de ces tests par rapport aux tests pseudo-gaussiens, sous des densités g1 quelconques. Enfin, nous proposons quelques simulations pour comparer les performances des procédures proposées.
Dans le deuxième chapitre, nous considérons un modèle à erreurs composées avec autocorrélation d'ordre 1 et nous montrons que ce modèle jouit de la propriété LAN. A partir de ce résultat, nous construisons des tests optimaux, au sens local et asymptotique, pour trois problèmes de tests importants dans ce contexte :(a) test de l'absence d'effet individuel et d'autocorrélation; (b) test de l'absence d'effet individuel en présence d'une autocorrélation non
spécifiée; et (c) test de l'absence d'autocorrélation en présence d'un effet individuel non spécifié. Enfin, nous proposons quelques simulations pour comparer les performances des tests pseudogaussiens
et des tests classiques.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Cassart, Delphine. "Optimal tests for symmetry." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210693.
Full textLa construction de modèles d'asymétrie est un sujet de recherche qui a connu un grand développement ces dernières années, et l'obtention des tests optimaux (pour trois modèles différents) est une étape essentielle en vue de leur mise en application.
Notre approche est fondée sur la théorie de Le Cam d'une part, pour obtenir les propriétés de normalité asymptotique, bases de la construction des tests paramétriques optimaux, et la théorie de Hajek d'autre part, qui, via un principe d'invariance permet d'obtenir les procédures non-paramétriques.
Nous considérons dans ce travail deux classes de distributions univariées asymétriques, l'une fondée sur un développement d'Edgeworth (décrit dans le Chapitre 1), et l'autre construite en utilisant un paramètre d'échelle différent pour les valeurs positives et négatives (le modèle de Fechner, décrit dans le Chapitre 2).
Le modèle d'asymétrie elliptique étudié dans le dernier chapitre est une généralisation multivariée du modèle du Chapitre 2.
Pour chacun de ces modèles, nous proposons de tester l'hypothèse de symétrie par rapport à un centre fixé, puis par rapport à un centre non spécifié.
Après avoir décrit le modèle pour lequel nous construisons les procédures optimales, nous obtenons la propriété de normalité locale asymptotique. A partir de ce résultat, nous sommes capable de construire les tests paramétriques localement et asymptotiquement optimaux. Ces tests ne sont toutefois valides que si la densité sous-jacente f est correctement spécifiée. Ils ont donc le mérite de déterminer les bornes d'efficacité paramétrique, mais sont difficilement applicables.
Nous adaptons donc ces tests afin de pouvoir tester les hypothèses de symétrie par rapport à un centre fixé ou non, lorsque la densité sous-jacente est considérée comme un paramètre de nuisance.
Les tests que nous obtenons restent localement et asymptotiquement optimaux sous f, mais restent valides sous une large classe de densités.
A partir des propriétés d'invariance du sous-modèle identifié par l'hypothèse nulle, nous obtenons les tests de rangs signés localement et asymptotiquement optimaux sous f, et valide sous une vaste classe de densité. Nous présentons en particulier, les tests fondés sur les scores normaux (ou tests de van der Waerden), qui sont optimaux sous des hypothèses Gaussiennes, tout en étant valides si cette hypothèse n'est pas vérifiée.
Afin de comparer les performances des tests paramétriques et non paramétriques présentés, nous calculons les efficacités asymptotiques relatives des tests non paramétriques par rapport aux tests pseudo-Gaussiens, sous une vaste classe de densités non-Gaussiennes, et nous proposons quelques simulations.
Doctorat en sciences, Orientation statistique
info:eu-repo/semantics/nonPublished