Dissertations / Theses on the topic 'Normed linear spaces and Banach spaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 39 dissertations / theses for your research on the topic 'Normed linear spaces and Banach spaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Vuong, Thi Minh Thu. "Complemented and uncomplemented subspaces of Banach spaces." Thesis, University of Ballarat, 2006. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/51906.
Full textMaster of Mathematical Sciences
Vuong, Thi Minh Thu. "Complemented and uncomplemented subspaces of Banach spaces." University of Ballarat, 2006. http://archimedes.ballarat.edu.au:8080/vital/access/HandleResolver/1959.17/15540.
Full textMaster of Mathematical Sciences
Garcia, Francisco Javier. "THREE NON-LINEAR PROBLEMS ON NORMED SPACES." Kent State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=kent1171042141.
Full textVuong, Thi Minh Thu University of Ballarat. "Complemented and uncomplemented subspaces of Banach spaces." University of Ballarat, 2006. http://archimedes.ballarat.edu.au:8080/vital/access/HandleResolver/1959.17/12748.
Full textMaster of Mathematical Sciences
Baratov, Rishat. "Efficient conic decomposition and projection onto a cone in a Banach ordered space." Thesis, University of Ballarat, 2005. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/61401.
Full textTzschichholtz, Ingo. "Contributions to Lattice-like Properties on Ordered Normed Spaces." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1153429885228-05773.
Full textBanach lattices play an important role in the theory of ordered normed spaces. One reason is, that many ordered normed vector spaces, that are important in practice, turn out to be Banach lattices, on the other hand, the lattice structure and strong relations between order and norm allow a deep understanding of such ordered normed spaces. At this point the following is to be considered. - The analysis of some results in the rich Banach lattice theory leads to the conjecture, that sometimes the lattice norm property is no necessary supposition. General ordered normed spaces with a convenient positive cone were already examined, where some valuable duality properties could be achieved. We point out the properties of normality, non-flatness and regularity of a cone, which are a weaker relation between order and norm than the lattice norm property in normed vector lattices. - The notion of disjointness in vector lattices has already been generalized to arbitrary ordered vector spaces. Many properties of disjoint elements, the disjoint complement of a set etc., well known from the vector lattice theory, are preserved. The modulus of a vector as well as the concept of the solidness of a set can be introduced in a similar way, namely by replacing suprema and infima by sets of upper and lower bounds, respectively. We take such ideas up in the present thesis. A generalized version of the M-norm property is introduced and examined in section m-norms. ======= AM-spaces and approximate order unit spaces are examples of ordered normed spaces with m-norm. The main points of this section are the special properties of the positive cone and the norm of such spaces and the duality properties of spaces with m-norm. Minimal total sets ================== In this section we examine the mentioned generalized disjointness in ordered normed spaces. Total sets as well as minimal total sets and their relation to disjoint elements play an inportant at this. Normed pre-Riesz spaces ======================= As already known, every pre-Riesz space can be order densely embedded into an (up to isomorphism) unique vector lattice, the so called Riesz completion. If, in addition, the pre-Riesz space is normed and its positive cone is closed, then a lattice norm can be introduced on the Riesz completion, that turns out to be equivalent to the primary norm on the pre-Riesz space in many cases. Positive linear continuous functionals on the pre-Riesz space are extendable to positive linear continuous functionals in this setting. Here we investigate, how some order relations on a set of continuous functionals can be preserved to the set of the extension. In the last paragraph of this section the obtained results are applied for investigations of some questions concerning the weak and the weak* topology on ordered normed vector spaces. On the one hand, we focus on disjoint sequences in ordered normed spaces. On the other hand, we deal with decreasing sequences and nets and disjoint sequences of linear continuous functionals on ordered normed spaces
Tzschichholtz, Ingo. "Contributions to Lattice-like Properties on Ordered Normed Spaces." Doctoral thesis, Technische Universität Dresden, 2005. https://tud.qucosa.de/id/qucosa%3A24878.
Full textBanach lattices play an important role in the theory of ordered normed spaces. One reason is, that many ordered normed vector spaces, that are important in practice, turn out to be Banach lattices, on the other hand, the lattice structure and strong relations between order and norm allow a deep understanding of such ordered normed spaces. At this point the following is to be considered. - The analysis of some results in the rich Banach lattice theory leads to the conjecture, that sometimes the lattice norm property is no necessary supposition. General ordered normed spaces with a convenient positive cone were already examined, where some valuable duality properties could be achieved. We point out the properties of normality, non-flatness and regularity of a cone, which are a weaker relation between order and norm than the lattice norm property in normed vector lattices. - The notion of disjointness in vector lattices has already been generalized to arbitrary ordered vector spaces. Many properties of disjoint elements, the disjoint complement of a set etc., well known from the vector lattice theory, are preserved. The modulus of a vector as well as the concept of the solidness of a set can be introduced in a similar way, namely by replacing suprema and infima by sets of upper and lower bounds, respectively. We take such ideas up in the present thesis. A generalized version of the M-norm property is introduced and examined in section m-norms. ======= AM-spaces and approximate order unit spaces are examples of ordered normed spaces with m-norm. The main points of this section are the special properties of the positive cone and the norm of such spaces and the duality properties of spaces with m-norm. Minimal total sets ================== In this section we examine the mentioned generalized disjointness in ordered normed spaces. Total sets as well as minimal total sets and their relation to disjoint elements play an inportant at this. Normed pre-Riesz spaces ======================= As already known, every pre-Riesz space can be order densely embedded into an (up to isomorphism) unique vector lattice, the so called Riesz completion. If, in addition, the pre-Riesz space is normed and its positive cone is closed, then a lattice norm can be introduced on the Riesz completion, that turns out to be equivalent to the primary norm on the pre-Riesz space in many cases. Positive linear continuous functionals on the pre-Riesz space are extendable to positive linear continuous functionals in this setting. Here we investigate, how some order relations on a set of continuous functionals can be preserved to the set of the extension. In the last paragraph of this section the obtained results are applied for investigations of some questions concerning the weak and the weak* topology on ordered normed vector spaces. On the one hand, we focus on disjoint sequences in ordered normed spaces. On the other hand, we deal with decreasing sequences and nets and disjoint sequences of linear continuous functionals on ordered normed spaces.
Johnson, Solomon Nathan. "Best simultaneous approximation in normed linear spaces." Thesis, Rhodes University, 2018. http://hdl.handle.net/10962/58985.
Full textWilcox, Diane. "Multivalued semi-Fredholm operators in normed linear spaces." Doctoral thesis, University of Cape Town, 2002. http://hdl.handle.net/11427/4945.
Full textCertain properties associated with these classes are stable under small perturbation, i.e. stable under additive perturbation by continuous operators whose norms are less than the minimum modulus of the relation being perturbed, and are also stable under perturbation by compact, strictly singular or strictly cosingular operators. In this work we continue the study of these classes and introduce the classes of α-Atkinson and β-Atkinson relations. These are subclasses of upper and lower semi-Fredholm relations respectively, having generalised inverses and defined in terms of the existence of continuous projections onto their ranges and nullspaces.
Ameur, Yacin. "Interpolation of Hilbert spaces /." Uppsala : Matematiska institutionen, Univ. [distributör], 2001. http://publications.uu.se/theses/91-506-1531-9/.
Full textTaylor, Barbara J. "Chebyshev centers and best simultaneous approximation in normed linear spaces." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63872.
Full textSbeih, Reema. "NON-LINEAR MAPS BETWEEN SUBSETS OF BANACH SPACES." Kent State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=kent1251217291.
Full textMalý, Lukáš. "Newtonian Spaces Based on Quasi-Banach Function Lattices." Licentiate thesis, Linköpings universitet, Matematik och tillämpad matematik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-79166.
Full textDahler, Cheryl L. (Cheryl Lewis). "Duals and Reflexivity of Certain Banach Spaces." Thesis, University of North Texas, 1991. https://digital.library.unt.edu/ark:/67531/metadc500848/.
Full text陳志輝 and Chi-fai Alan Bryan Chan. "Some aspects of generalized numerical ranges and numerical radii associated with positive semi-definite functions." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31232954.
Full textChan, Chi-fai Alan Bryan. "Some aspects of generalized numerical ranges and numerical radii associated with positive semi-definite functions /." [Hong Kong : University of Hong Kong], 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13525256.
Full textFeinstein, Joel Francis. "Derivations from Banach function algebras." Thesis, University of Leeds, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329058.
Full textKalauch, Anke. "Positive-off-diagonal Operators on Ordered Normed Spaces and Maximum Principles for M-Operators." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1169822895129-71711.
Full textM-Matrizen werden in der numerischen Mathematik vielfältig angewandt. Eine Verallgemeinerung dieser Matrizen sind entsprechende Operatoren auf halbgeordneten normierten Räumen. Bekannte Aussagen aus der Theorie der M-Matrizen werden auf diese Situation übertragen. Für zwei verschiedene Typen von M-Operatoren werden die folgenden Fragen behandelt: 1. Für welche geordneten normierten Räume sind die beiden Typen gleich? Dies führt zur Untersuchung außerdiagonal-positiver Operatoren. 2. Welche Bedingungen an einen M-Operator sichern, dass seine (positive) Inverse gewissen Maximumprinzipien genügt? Es werden Verallgemeinerungen des "Maximumprinzips für inverse Spalteneinträge" angegeben und untersucht
Kalauch, Anke. "Positive-off-diagonal Operators on Ordered Normed Spaces and Maximum Principles for M-Operators." Doctoral thesis, Technische Universität Dresden, 2006. https://tud.qucosa.de/id/qucosa%3A25013.
Full textM-Matrizen werden in der numerischen Mathematik vielfältig angewandt. Eine Verallgemeinerung dieser Matrizen sind entsprechende Operatoren auf halbgeordneten normierten Räumen. Bekannte Aussagen aus der Theorie der M-Matrizen werden auf diese Situation übertragen. Für zwei verschiedene Typen von M-Operatoren werden die folgenden Fragen behandelt: 1. Für welche geordneten normierten Räume sind die beiden Typen gleich? Dies führt zur Untersuchung außerdiagonal-positiver Operatoren. 2. Welche Bedingungen an einen M-Operator sichern, dass seine (positive) Inverse gewissen Maximumprinzipien genügt? Es werden Verallgemeinerungen des "Maximumprinzips für inverse Spalteneinträge" angegeben und untersucht.
Malý, Lukáš. "Sobolev-Type Spaces : Properties of Newtonian Functions Based on Quasi-Banach Function Lattices in Metric Spaces." Doctoral thesis, Linköpings universitet, Matematik och tillämpad matematik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-105616.
Full textYao, Liangjin. "On Monotone linear relations and the sum problem in Banach spaces." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/39970.
Full textFarmer, Matthew Ray. "Strong Choquet Topologies on the Closed Linear Subspaces of Banach Spaces." Thesis, University of North Texas, 2011. https://digital.library.unt.edu/ark:/67531/metadc84202/.
Full textHanauska, Franz Verfasser], and Michael [Akademischer Betreuer] [Demuth. "On the discrete spectrum of linear operators on Banach spaces / Franz Hanauska ; Betreuer: Michael Demuth." Clausthal-Zellerfeld : Technische Universität Clausthal, 2016. http://d-nb.info/1231365242/34.
Full textGhaemi, Mohammad B. "Spectral theory of linear operators." Thesis, Connect to e-thesis, 2000. http://theses.gla.ac.uk/998/.
Full textPh.D. thesis submitted to the Department of Mathematics, University of Glasgow, 2000. Includes bibliographical references. Print version also available.
Duda, Jakub. "Aspects of delta-convexity /." free to MU campus, to others for purchase, 2003. http://wwwlib.umi.com/cr/mo/fullcit?p3115539.
Full textAlbasrawi, Fatimah Hassan. "Floquet Theory on Banach Space." TopSCHOLAR®, 2013. http://digitalcommons.wku.edu/theses/1234.
Full textZeekoei, Elroy Denovanne. "A study of Dunford-Pettis-like properties with applications to polynomials and analytic functions on normed spaces / Elroy Denovanne Zeekoei." Thesis, North-West University, 2011. http://hdl.handle.net/10394/7586.
Full textThesis (M.Sc. (Mathematics))--North-West University, Potchefstroom Campus, 2012.
Bahreini, Esfahani Manijeh. "Complemented Subspaces of Bounded Linear Operators." Thesis, University of North Texas, 2003. https://digital.library.unt.edu/ark:/67531/metadc4349/.
Full textJatobá, Ariosvaldo Marques. "Fatoração de operadores fracamente compactos entre espaços de Banach." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307333.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação
Made available in DSpace on 2018-08-04T19:54:16Z (GMT). No. of bitstreams: 1 Jatoba_AriosvaldoMarques_M.pdf: 1695585 bytes, checksum: 3e9af91b8444dc2cdb0bfefa05a23872 (MD5) Previous issue date: 2005
Resumo: Nosso primeiro objetivo é provar uma importante caracterização de conjuntos fracamente compactos em espaços de Banach, o Teorema de Eberlein-Smulian, que diz que um subconjunto K de um espaço de Banach é fracamente compacto se, e somente se, toda seqüência em K tem uma subseqüência que converge fracamente para um elemento de K. Em seguida nós provamos uma importante caracterização de operadores fracamente compactos entre espaços de Banach, o Teorema de Gantmacher, que diz que um operador linear contínuo T: E -> F entre espaços de Banach é fracamente compacto se, e somente se, o seu adjunto T': F'-> E' é fracamente compacto. Finalmente, nós provamos o resultado principal deste trabalho, o Teorema de Fatoração de Davis, Figiel, Johnson e Pelczynski, que diz que, um operador linear contínuo T: E -> F entre espaços deBanach é fracamente compacto se, e somente se, T fatora-se através de um espaço de Banach reflexivo, isto é, existem um espaço de Banach reflexivo G e operadores lineares contínuos S: E-> G and L: G -> F tais que T = L o S. U ma aplicação deste resultado é que um polinômio m- homogêneo contínuo P: E -> F entre espaços de Banach é fracamente compacto se, e somente se, existem um espaço de Banach reflexivo G, um polinômio contínuo m-homogêneo Q: E-> G e um operador linear contínuo L: G -> F tais que P = L o Q
Abstract: Our first aim is to prove an important caracterization of weakly compact sets in Banach spaces, the Eberlein-¿mulian Theorem which says that a subset K of a Banach space is weakly compact if and only if each sequence in K has a subsequence which converges weakly to an element of K. We next prove an important caracterization of weakly compact operators between Banach spaces, the Gantmacher Theorem, which says that a continuous linear operator T: E -> F between Banach spaces is weakly compact if and only if its adjoint T': F'-> E' is weakly compact. Finally, we prove the principal result of this work, the Factorization Theorem of Davis, Figiel, Johnson and Pelczynski, which says that a continuous linear operator T: E -> F between Banach spaces is weakly compact if and only if T factors through a reflexive Banach space, i.e, there are a reflexive Banach space G and continuous linear operators S: E-> G and L: G -> F such that T = L o S. An application of this result is that an m-homogeneous continuous polynomial P: E -> F between Banach spaces is weakly compact if and only if there are a reflexive Banach space G, an m-homogeneous continuous polynomial Q: E -> G and a continuous linear operator L: G -> F such that P = L o Q
Mestrado
Analise Funcional
Mestre em Matemática
Silva, André Luis Porto da. "Versões não-lineares do teorema clássico de Banach-Stone." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-07092016-000557/.
Full textIn this work we present two theorems proved by Gorak in 2011. These results are generalizations of the Banach-Stone Theorem envolving a class of not-necessarily linear functions, called quasi-isometries.
Van, Zyl Augustinus Johannes. "Metrical aspects of the complexification of tensor products and tensor norms." Thesis, Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-07142009-180520.
Full textCerna, Maguina Bibiano Martin. "Operadores multilineares p-fatoraveis." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306107.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-04T22:15:35Z (GMT). No. of bitstreams: 1 CernaMaguina_BibianoMartin_D.pdf: 1394612 bytes, checksum: ca6a283533782089f15a071899a0ffd2 (MD5) Previous issue date: 2005
Resumo: Neste trabalho, damos uma generalização do conceito e da teoria das aplicações lineares p-fatoráveis para o caso multilinear. Fornecemos duas definições; baseadas na definição 2.2 chegamos a obter alguns resultados. Seguindo a ideas do Pietsch, e baseada na definição 3.9 previa generalização de algumas definições e teoremas dos ideais lineares para o caso multilinear tentamos provar a equivalência das duas definições
Abstract: In this work, we give one generalization of the concept and the linear theory of applications p - factories for the multilinear case. We supply two definitions; based in definition 2.2 we arrive to get some results. Following the ideas of the Pietsch, and based in definition 3.9 it foresaw generalization of some definitions and theorems of the linear ideals for the multilinear case we try to prove the equivalence of the two definitions
Doutorado
Matematica
Doutor em Matemática
"Operators between ordered normed spaces." Chinese University of Hong Kong, 1991. http://library.cuhk.edu.hk/record=b5886856.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 1991.
Includes bibliographical references.
Introduction --- p.1
Chapter Chapter 0. --- Preliminary --- p.4
Chapter 0.1 --- Topological vector spaces
Chapter 0.2 --- Ordered vector spaces
Chapter 0.3 --- Ordered normed spaces
Chapter 0.4 --- Ordered topological vector spaces
Chapter 0.5 --- Ordered bornological vector spaces
Chapter Chapter 1. --- Results on Ordered Normed Spaces --- p.23
Chapter 1.1 --- Results on e∞-spaces and e1-spaces
Chapter 1.2 --- Complemented subspaces of ordered normed spaces
Chapter 1.3 --- Half injections and Half surjections
Chapter 1.4 --- Strict quotients and strict subspaces
Chapter Chapter 2. --- Helley's Selection Theorem and Local Reflexivity Theorem of order type --- p.55
Chapter 2.1 --- Helley's selection theorem of order type
Chapter 2.2 --- Local reflexivity theorem of order type
Chapter Chapter 3. --- Operator Modules and Ideal Cones --- p.68
Chapter 3.1 --- Operator modules and ideal cones
Chapter 3.2 --- Space cones and space modules
Chapter 3.3 --- Injectivity and surjectivity
Chapter 3. 4 --- Dual and pre-dual
Chapter Chapter 4. --- Topologies and Bornologies Defined by Operator Modules and Ideal Cones --- p.95
Chapter 4.1 --- Generalized polars
Chapter 4.2 --- Topologies and bornologies defined by β and ε
Chapter 4. 3 --- Injectivity and generating topologies
Chapter 4.4 --- Surjectivity and generating bornologies
Chapter 4.5 --- The solid property and the generating topologies
Chapter 4.6 --- The solid property and the generating bornologies
Chapter Chapter 5. --- Semi-norms and Bounded disks defined by Operator Modules and Ideal Cones --- p.129
Chapter 5.1 --- Results on semi-norms
Chapter 5.2 --- Results on bounded disks
References --- p.146
Notations --- p.149
"Linear regularity of closed sets in Banach spaces." 2004. http://library.cuhk.edu.hk/record=b6073746.
Full text"Nov 2004."
Thesis (Ph.D.)--Chinese University of Hong Kong, 2004.
Includes bibliographical references (p. 78-82)
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Mode of access: World Wide Web.
Abstracts in English and Chinese.
Lokesha, V. "Studies on theory of linear operators on Banach spaces." Thesis, 2002. http://hdl.handle.net/2009/1553.
Full text"Approximation theorems for linear integrodifferential equations in Banach spaces." Tulane University, 1991.
Find full textacase@tulane.edu
Flores, Guillermo Javier. "Interpolación de operadores en espacios Lp." Bachelor's thesis, 2010. http://hdl.handle.net/11086/24.
Full textEn el capítulo I presentamos el 'Teorema de convexidad de Riesz-Thorin' y diferentes aplicaciones. Y concluimos con el 'Teorema de interpolación de Riesz-Stein'. En el capítulo II, hacemos un breve estudio de 'operadores de tipo débil y función distribución', definimos la clase de Marcinkievicz y demostramos los 'Teoremas de interpolación de Marcinkievicz. Caso diagonal y caso general'. Damos algunas aplicaciones. Concluimos este capítulo con las 'Condiciones de Kolmogoroff y Zygmund'. Este trabajo contiene un Apéndice donde destacamos variados resultados matemáticos, fundamentales para el entendimiento de los dos capítulos.
Lee, Wha-Suck. "An algebraic - analytic framework for the study of intertwined families of evolution operators." Thesis, 2015. http://hdl.handle.net/2263/43532.
Full textThesis (PhD)--University of Pretoria, 2015.
Mathematics and Applied Mathematics
Unrestricted
Скрипник, Кирило Віталійович. "Дослідження властивостей компактних операторів у банахових просторах." Магістерська робота, 2020. https://dspace.znu.edu.ua/jspui/handle/12345/2559.
Full textUA : Робота викладена на 50 сторінках друкованого тексту, містить 12 джерел. Об’єкт дослідження: компактні оператори у банахових просторах. Мета роботи: дослідити властивості компактних операторів у банахових просторах. Метод дослідження: аналітичний. У кваліфікаційній роботі досліджуються властивості компактних операторів, заданих у банахових просторах. Весь теоретичний матеріал проілюстровано прикладами та задачами. Розглянуто застосування компактних операторів до розв’язання інтегральних рівнянь.
EN : The work is presented on 50 pages of printed text, 12 references. The object of the study is compact operators in Banach space. The aim of the study is to study the properties of the compact operators in the Banach space. The method of research is analytical. In the qualification paper the properties of compact operators are investigated, given in Banach spaces. All theoretical material is illustrated with examples and tasks. The application of compact operators to the solution of integral equations is considered.