Academic literature on the topic 'Notch stress intensity factors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Notch stress intensity factors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Notch stress intensity factors"
Chen, Bo, and You Tang Li. "Dimensionless Stress Intensity Factors of an Annular Notched Shaft." Key Engineering Materials 488-489 (September 2011): 174–77. http://dx.doi.org/10.4028/www.scientific.net/kem.488-489.174.
Full textPING, XUE-CHENG, MENG-CHENG CHEN, NAO-AKI NODA, and YI-HUA XIAO. "ANALYSIS OF GENERALIZED STRESS INTENSITY FACTORS OF V-SHAPED NOTCH PROBLEMS BY FEM." International Journal of Computational Methods 10, no. 06 (May 2, 2013): 1350068. http://dx.doi.org/10.1142/s0219876213500680.
Full textNowell, D., D. Dini, and P. Duó. "Stress analysis of V-notches with and without cracks, with application to foreign object damage." Journal of Strain Analysis for Engineering Design 38, no. 5 (July 1, 2003): 429–41. http://dx.doi.org/10.1243/03093240360713487.
Full textHorníková, Jana, Pavel Šandera, Stanislav Žák, and Jaroslav Pokluda. "Stress Intensity Factors for Cracks Emanating from a Notch under Shear-Mode Loading." Key Engineering Materials 774 (August 2018): 48–53. http://dx.doi.org/10.4028/www.scientific.net/kem.774.48.
Full textKarim Hussain, Mirzaul, and K. S. R. K. Murthy. "Numerical Estimation of Notch Stress Intensity Factors of Sharp V-Notches." MATEC Web of Conferences 172 (2018): 03001. http://dx.doi.org/10.1051/matecconf/201817203001.
Full textFodil, Lahouari, Abdallah El Azzizi, and Mohammed Hadj Meliani. "Estimation of Mixed-Mode Stress Intensity Factors with Presence of the Confinement Parameters T-Stress and A3." Advanced Engineering Forum 18 (September 2016): 52–57. http://dx.doi.org/10.4028/www.scientific.net/aef.18.52.
Full textLi, You Tang, Zhi Yuan Rui, and Chang Feng Yan. "A New Method to Calculate Dynamic Stress Intensity Factor for V-Notch in a Bi-Material Plate." Key Engineering Materials 385-387 (July 2008): 217–20. http://dx.doi.org/10.4028/www.scientific.net/kem.385-387.217.
Full textTuris, Matúš, Oľga Ivánková, Peter Burik, and Milan Držík. "Determination of Stress Intensity Factors under Shock Loading Using a Diffraction-Based Technique." Applied Sciences 11, no. 10 (May 17, 2021): 4574. http://dx.doi.org/10.3390/app11104574.
Full textRADAJ, D. "T-stress corrected notch stress intensity factors with application to welded lap joints." Fatigue & Fracture of Engineering Materials & Structures 33, no. 6 (March 11, 2010): 378–89. http://dx.doi.org/10.1111/j.1460-2695.2010.01454.x.
Full textPang, H. L. J. "Stress analysis of short weld toe cracks." Journal of Strain Analysis for Engineering Design 28, no. 1 (January 1, 1993): 1–4. http://dx.doi.org/10.1243/03093247v281001.
Full textDissertations / Theses on the topic "Notch stress intensity factors"
Ščotka, Martin. "Vliv koncentrace napětí ve vrubu na napjatost a deformaci na čele trhlin zatížených ve smykových zátěžných módech." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-318836.
Full textAfshar, Hosseinabadi Reza. "Stress analysis of periodic notches by using the strain energy density approach." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423526.
Full textQuesta ricerca si concentra su "Analisi delle sollecitazioni di intagliati periodici utilizzando l'approccio di densità di energia di deformazione", si è occupato di problematiche relative alla modellazione bidimensionale e tridimensionale di intagli periodici raccordati e a spigolo vivo. Bulloni, viti e connessioni rotanti spalle, come esempi di componenti intagliati periodiche, svolgono un ruolo importante nelle performance delle macchine. L'attività ha coinvolto prevalentemente la modellazione numerica in campo elastico ed ha permesso di ottenere delle semplici espressioni per la stima dei fattori d’intensificazione delle tensioni (NSIFs) e dei fattori teorici di concentrazione delle tensioni (SCFs) in funzione di tutti i parametri geometrici considerati. Le analisi numeriche sono state effettuate in prima battuta con mesh fitte e successivamente con mesh molto rade. Nel secondo caso l’energia di deformazione mediata in un volume di controllo ha permesso di determinare con precisione i fattori tensionali di riferimento e alcune espressioni per l’applicazione diretta a problematiche simili. Nel caso tridimensionale sono stati studiati e analizzati gli effetti legati allo spessore con particolare riferimento ai modi accoppiati che vengono automaticamente generati per effetto Poisson e che possono incidere in modo rilevante sull’integrità strutturale di componenti meccanici. I risultati raggiunti sono stati applicati a casi aziendali con due collaborazioni tutt’ora in atto con Officine Meccaniche Zanetti e Omera formalizzate in progetti di ricerca in cui il dottorando è stato il principale protagonista.
Hrstka, Miroslav. "Evaluation of Fracture Mechanical Parameters for Bi-Piezo-Material Notch." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-399212.
Full textTreifi, Muhammad. "Fractal-like finite element method and strain energy approach for computational modelling and analysis of geometrically V-notched plates." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/fractallike-finite-element-method-and-strain-energy-approach-for-computational-modelling-and-analysisof-geometrically-vnotched-plates(93e63366-8eef-4a29-88a4-0c89cf13ec1f).html.
Full textKrepl, Ondřej. "Napjatost v okolí velmi ostrých bimateriálových vrubů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230865.
Full textŠtegnerová, Kateřina. "Aplikace zobecněné lineárně elastické lomové mechaniky na odhad počátku šíření trhliny z ostrého V-vrubu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230773.
Full textHrstka, Miroslav. "Popis rozložení napětí v okolí bimateriálového vrubu pomocí zobecněného faktoru intenzity napětí." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230355.
Full textCARVALHO, EDUARDO ATEM DE. "STRESS INTENSITY FACTORS AND STRESS CONCENTRATION FACTORS FOR V NOTCHES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1992. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24990@1.
Full textA partir das equações de Williams e Creager foi desenvolvido um método híbrido, que acopla fotoelasticidade a um método numérico-computacional para determinação a dos fatores de intensificação de tensões (FIT) em placas planas sujeitas aos Modos I e II de abertura, com ou sem arredondamento na raiz do entalhe. Às equações propostas acopla-se um polinômio completo que representa uma tensão não-singular (sigma). Assim feito é possível a determinação dos coeficientes KI, KI e termos de sigma. Três programas de computador foram desenvolvidos para as formulações (Williams ou Creager): O primeiro: a partir da configuração das franjas isocromáticas, obtém-se KI e KII e os termos relativos à tensão não singular. O segundo: o desvio relativo a cada ordem de franja é determinado a partir dos termos acima. O terceiro: a partir dos valores determinados regenera-se as franjas isocromáticas para compara-las com as originais. As formulações foram testadas em modelos de barras com trincas e entalhes (com e sem arredondamento na raiz) e seus resultados comparados com dados disponíveis na literatura. Os fatores de influência na determinação de KI e KII, estudados foram: a quantidade de pontos e o ângulo delimitador da região de coleta de dados, bem como a influência dos termos referentes ao campo não singular e alguns aspectos do método numérico implementado. Como aplicação estudou-se o caso do corpo de prova tipo Charpy, onde, a partir das equações de Creager e dos valores de KI e KII assim determinados, pôde-se obter o valor de Kt para uma dada geometria.
A hybrid method coupling photoelasticity to a numerical-computational method which implements the William s (modes I and II) and Creager s (mode I) equations has been developed to determine the mixed-mode stress intensity factors in sharp notches and blunt cracks. The equations take into account the presence or not of a radius in the tip of the notch. To the proposed equations was added a complete polynomial, which represents the non-singular stress field. Three computational programs were developed for both formulations (William s and Creager): one to determine KI, KII and the non-singular terms, the second to evaluate the error between the actual situation and the results obtained and the third to regenerate the isochromatic fringes. The method has been tested in bars with cracks and notches (taking or not into account the existence of the radius at the depth of the notch) and the results were compared to experimental and analytical data found in the literature. Factors which have influence on the determination of KI, KII, were discussed: the number of data points and sector angle where those points are collected as well as the influence of the number of non-singular terms and some aspects of the numeric method. Two applications were studied: Charpy type test specimen under tension and bending and a beam with deep simetrycal grooves. With the values of KI and KII obtained by the Creager s equations one can determine the valeu of sigma x and sigma y in the analyzed situation, as well as the Kt value.
Roy, Michael Robert. "Stress intensity factors for ship details." Thesis, Heriot-Watt University, 2009. http://hdl.handle.net/10399/2287.
Full textChoi, John O. "Dynamic stress intensity factors in orthotropic materials." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/12409.
Full textBooks on the topic "Notch stress intensity factors"
Pukas, S. R. On plane strain mode 1 stress intensity factors for a single edge notch beam specimen of span/width ratio 4 under three point loading. Glasgow: National Engineering Laboratory, 1985.
Find full textPukas, S. R. On plane strain mode 1 stress intensity factors for a single edge notch beam specimen of span/width ratio 4 under three point loading. East Kilbridge: National Engineering Laboratory, 1985.
Find full text1943-, Murakami Y., Hasebe N, and Nihon Zairyō Gakkai, eds. Stress intensity factors handbook. 3rd ed. Amsterdam: Elsevier, 2001.
Find full text1943-, Murakami Y., ed. Stress intensity factors handbook. Oxford [Oxfordshire]: Pergamon, 1987.
Find full text1943-, Murakami Y., and Nihon Zairyō Gakkai, eds. Stress intensity factors handbook, volume 3. Kyoto, Japan: Society of Materials Science, Japan ; Oxford ; New York : Pergamon, 1992.
Find full textFett, Theo. Stress intensity factors and weight functions. Southampton, UK: Computational Mechanics Publications, 1997.
Find full textFett, Theo. Stress intensity factors, T-stresses, weight functions. Karlsruhe: IKM, 2008.
Find full textBinienda, Wieslaw K. Calculation of stress intensity factors in an isotropic multicracked plate. [Washington, DC: National Aeronautics and Space Administration, 1992.
Find full textJ, Zhang, U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Engineering Technology., and Argonne National Laboratory, eds. Residual stresses and associated stress intensity factors in core shroud weldments. Washington, DC: Division of Engineering Technology, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1999.
Find full textN, Atluri Satya, Newman J. C, and Langley Research Center, eds. Stress-intensity factors for small surface and corner cracks in plates. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1988.
Find full textBook chapters on the topic "Notch stress intensity factors"
Wang, Feng Hui. "Stress Intensity Factor of Notch/Crack Configuration under Bending Load for Brittle Materials." In Fracture and Damage Mechanics V, 1051–54. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-413-8.1051.
Full textMinor, E. L., M. Louah, Z. Azari, G. Pluvinage, and A. Kifani. "Brittle Mixed Mode Fracture I+II: Emanating from Notches -Equivalent Notch Stress Intensity Factor -H." In Transferability of Fracture Mechanical Characteristics, 337–50. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0608-8_24.
Full textZehnder, Alan T. "Stress Intensity Factors." In Encyclopedia of Tribology, 3335–40. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_257.
Full textHills, D. A., and D. Nowell. "Kinked Cracks: Finding Stress Intensity Factors." In Applied Stress Analysis, 36–50. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0779-9_4.
Full textYosibash, Zohar. "Computing Generalized Stress Intensity Factors (GSIFs)." In Interdisciplinary Applied Mathematics, 133–56. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1508-4_6.
Full textGdoutos, E. E. "Stress Intensity Factors for a Linear Stress Distribution." In Problems of Fracture Mechanics and Fatigue, 53–56. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2774-7_12.
Full textKonsta-Gdoutos, M. S. "Calculation of Stress Intensity Factors by Superposition." In Problems of Fracture Mechanics and Fatigue, 45–48. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2774-7_10.
Full textGdoutos, E. E. "Calculation of Stress Intensity Factors by Integration." In Problems of Fracture Mechanics and Fatigue, 49–51. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2774-7_11.
Full textBanks-Sills, Leslie. "Methods of Calculating Stress Intensity Factors–Delaminations." In Interface Fracture and Delaminations in Composite Materials, 67–75. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60327-8_6.
Full textGdoutos, E. E. "Mixed-Mode Stress Intensity Factors in Cylindrical Shells." In Problems of Fracture Mechanics and Fatigue, 57–61. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2774-7_13.
Full textConference papers on the topic "Notch stress intensity factors"
Hasegawa, Kunio, Pierre Dulieu, and Valery Lacroix. "Stress Intensity Factor Interaction of Subsurface Flaws Under Notches." In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65670.
Full textKamel, Simon, Catrin Davies, Hyeong Lee, and Kamran Nikbin. "Effect of Crack Extension in a Compact Tension C(T) Specimen Containing a Residual Stress on the Stress Intensity Factors." In ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/pvp2010-25157.
Full textEkwaro-Osire, S., M. P. H. Khandaker, and K. Gautam. "Probabilistic Analysis of Notched Micro Specimen Under Three-Point Loading." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85493.
Full textGarnadt, Florian, Christian Kontermann, Henning Almstedt, and Matthias Oechsner. "Application and Verification of an Engineering Approach to Assess Notch Support for Low Cycle Fatigue Loadings." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15402.
Full textCorleto, Carlos R., and Brian B. Cole. "Scratch Tip Radius Effects on K-Controlled Slow Crack Growth in PE Pipe." In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48577.
Full textKeller, Scott G., and Ali P. Gordon. "An Experimental Approach for Delayed Stress Corrosion." In ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/pvp2010-25814.
Full textMatsuno, Hiroshi. "A Practical Criterion on Fatigue Crack Growth Rates at Notches and Its Application to Part-Through-Thickness Fatigue Cracks in Notched Plates Subjected to Cyclic Bending." In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93499.
Full textOwolabi, Gbadebo, Benedict Egboiyi, Horace Whitworth, and Olanrewaju Aluko. "On Fatigue Strength Reduction Factor: State of the Art." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-85893.
Full textZaki, A. S., and H. Ghonem. "A Model for Fatigue Crack Initiation From Notches." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/nde-25805.
Full textHattori, T., and M. Yamashita. "Fatigue Strength Evaluation Methods Using Stress Distributions." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40114.
Full textReports on the topic "Notch stress intensity factors"
Fawaz, S. A., and J. J. de Rijck. Stress Intensity Factors and Crack Interaction in Adjacent Holes. Fort Belvoir, VA: Defense Technical Information Center, April 2000. http://dx.doi.org/10.21236/ada380271.
Full textSmith, C. W., D. M. Constantinescu, and C. T. Liu. Stress Intensity Factors and Crack Paths for Cracks in Photoelastic Motor Grain Models. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada410794.
Full textSmith, C. W., K. T. Gloss, D. M. Constantinescu, and C. T. Liu. Stress Intensity Factors for Cracks Within and Near to Bondlines in Soft Incompressible Materials. Fort Belvoir, VA: Defense Technical Information Center, June 2000. http://dx.doi.org/10.21236/ada410444.
Full textPu, S. L. Stress Intensity Factors at Radial Cracks of Unequal Depth in Partially Autofrettaged, Pressurized Cylinders. Fort Belvoir, VA: Defense Technical Information Center, June 1985. http://dx.doi.org/10.21236/ada157866.
Full textDadfarnia, Mohsen, Kevin A. Nibur, Christopher W. San Marchi, Petros Sofronis, Brian P. Somerday, James W. ,. III Foulk, and Gary A. Hayden. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas. Office of Scientific and Technical Information (OSTI), July 2010. http://dx.doi.org/10.2172/993303.
Full textCramer, Grant R., and Nirit Bernstein. Mechanisms for Control of Leaf Growth during Salinity Stress. United States Department of Agriculture, September 1994. http://dx.doi.org/10.32747/1994.7570555.bard.
Full textChristopher, David A., and Avihai Danon. Plant Adaptation to Light Stress: Genetic Regulatory Mechanisms. United States Department of Agriculture, May 2004. http://dx.doi.org/10.32747/2004.7586534.bard.
Full textFATIGUE PERFORMANCE OF RIB-TO-DECK JOINTS STRENGTHENED WITH INTERNAL WELDING. The Hong Kong Institute of Steel Construction, August 2022. http://dx.doi.org/10.18057/icass2020.p.268.
Full text