Academic literature on the topic 'Notch1 Receptor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Notch1 Receptor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Notch1 Receptor"
Wu, Guangyu, Svetlana Lyapina, Indranil Das, Jinhe Li, Mark Gurney, Adele Pauley, Inca Chui, Raymond J. Deshaies, and Jan Kitajewski. "SEL-10 Is an Inhibitor of Notch Signaling That Targets Notch for Ubiquitin-Mediated Protein Degradation." Molecular and Cellular Biology 21, no. 21 (November 1, 2001): 7403–15. http://dx.doi.org/10.1128/mcb.21.21.7403-7415.2001.
Full textTakam Kamga, Paul, Federica Resci, Giada Dal Collo, Annalisa Adamo, Riccardo Bazzoni, Angela Mercuri, Massimiliano Bonifacio, and Mauro Krampera. "Prognostic Impact of Notch Signaling in Acute Myeloid Leukemia (AML)." Blood 132, Supplement 1 (November 29, 2018): 5242. http://dx.doi.org/10.1182/blood-2018-99-118701.
Full textLiu, Xiaoxia, Qingqing Luo, Yanfang Zheng, Xiaoping Liu, Ying Hu, Weifang Liu, Minglian Luo, Yin Zhao, and Li Zou. "NOTCH4 signaling controls EFNB2-induced endothelial progenitor cell dysfunction in preeclampsia." Reproduction 152, no. 1 (July 2016): 47–55. http://dx.doi.org/10.1530/rep-16-0132.
Full textTu, Jian, Yang Li, Zhiqiang Hu, and Zhongbin Chen. "Radiosurgery inhibition of the Notch signaling pathway in a rat model of arteriovenous malformations." Journal of Neurosurgery 120, no. 6 (June 2014): 1385–96. http://dx.doi.org/10.3171/2013.12.jns131595.
Full textHadland, Brandon K., Barbara Varnum-Finney, Randall T. Moon, Michael Gustave Poulos, Jason M. Butler, Shahin Rafii, and Irwin D. Bernstein. "Notch Signaling By Either Notch1 or Notch2 Mediates Expansion of AGM-Derived Long-Term HSC Populations in Vitro." Blood 124, no. 21 (December 6, 2014): 2897. http://dx.doi.org/10.1182/blood.v124.21.2897.2897.
Full textUrata, Yusuke, Wataru Saiki, Yohei Tsukamoto, Hiroaki Sago, Hideharu Hibi, Tetsuya Okajima, and Hideyuki Takeuchi. "Xylosyl Extension of O-Glucose Glycans on the Extracellular Domain of NOTCH1 and NOTCH2 Regulates Notch Cell Surface Trafficking." Cells 9, no. 5 (May 14, 2020): 1220. http://dx.doi.org/10.3390/cells9051220.
Full textDemitrack, Elise S., Gail B. Gifford, Theresa M. Keeley, Nobukatsu Horita, Andrea Todisco, D. Kim Turgeon, Christian W. Siebel, and Linda C. Samuelson. "NOTCH1 and NOTCH2 regulate epithelial cell proliferation in mouse and human gastric corpus." American Journal of Physiology-Gastrointestinal and Liver Physiology 312, no. 2 (February 1, 2017): G133—G144. http://dx.doi.org/10.1152/ajpgi.00325.2016.
Full textPancewicz, J., and P. L. Bernatowicz. "Differential Notch1 and Notch2 expression in non-small cell lung cancer." Progress in Health Sciences 1 (June 11, 2019): 8–12. http://dx.doi.org/10.5604/01.3001.0013.3687.
Full textShi, Jianjun, Mohammad Fallahi, Jun-Li Luo, and Howard T. Petrie. "Nonoverlapping functions for Notch1 and Notch3 during murine steady-state thymic lymphopoiesis." Blood 118, no. 9 (September 1, 2011): 2511–19. http://dx.doi.org/10.1182/blood-2011-04-346726.
Full textWatanabe, Kazuhide, Tadahiro Nagaoka, Joseph M. Lee, Caterina Bianco, Monica Gonzales, Nadia P. Castro, Maria Cristina Rangel, et al. "Enhancement of Notch receptor maturation and signaling sensitivity by Cripto-1." Journal of Cell Biology 187, no. 3 (November 2, 2009): 343–53. http://dx.doi.org/10.1083/jcb.200905105.
Full textDissertations / Theses on the topic "Notch1 Receptor"
Correia, Martins Vera Sofia. "Notch1 and Lymphotoxin beta receptor in thymopoiesis." [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:25-opus-56010.
Full textLiu, Zhaoli. "KLF4 regulates notch1 expression and signaling during epithelial transformation." Thesis, Birmingham, Ala. : University of Alabama at Birmingham, 2006. https://www.mhsl.uab.edu/dt/2008r/liu.pdf.
Full textCullion, Kathleen J. "Mechanisms of NOTCH1 Mediated Leukemogenesis: A Dissertation." eScholarship@UMMS, 2009. https://escholarship.umassmed.edu/gsbs_diss/537.
Full textChau, Dinh Le Mary. "Role of Notch1 in Cardiac Cell Differentiation and Migration: A Dissertation." eScholarship@UMMS, 2007. https://escholarship.umassmed.edu/gsbs_diss/338.
Full textTesell, Jessica M. "The Notch1-c-Myc Pathway Mediates Leukemia-Initiating Cell Activity in Mouse T-ALL Models: A Dissertation." eScholarship@UMMS, 2013. http://escholarship.umassmed.edu/gsbs_diss/671.
Full textGómez, Martínez Valentí. "Noves funcions de Flotillin-1 en la regulació del procés de mitosi i la via de senyalització del receptor Notch1." Doctoral thesis, Universitat de Barcelona, 2009. http://hdl.handle.net/10803/1024.
Full textD'una banda demostrem que Flotillin-1 és un factor regulador de la cinasa Aurora B, una proteïna que intervé en el control de la mitosi i més concretament en el anaphase checkpoint. El knock-down de Flotillin-1 provoca events mitòtics aberrants, acompanyats del descens tant en l'expressió d'Aurora B com de la seva activitat mesurada com els nivells de fosforilació de la histona H3. Flotillin-1 interacciona amb Aurora B i evita la seva degradació per la via del proteasoma.
D'altra banda, Flotillin-1 interacciona amb el receptor transmembrana Notch1, implicat en nombrosos processos de regulació de proliferació, diferenciació, apoptosi, etc. Flotillin-1 regula la localització subcel·lular de Notch1 així com la seva capacitat com activador transcripcional. La depleció o mutació de Flotillin-1 dificulta l'entrada de Notch1 a nucli i l'expressió dels gens diana de les famílies Hes/Hrt.
En conjunt, es presenta a Flotillin-1 com una proteïna capaç d'actuar a diferents nivells i regular processos i vies de senyalització cel·lular que li confereixen un paper com a regulador de la proliferació cel·lular.
Flotillin-1 is a protein associated to plasma membrane involved in vesicle trafficking, cyotskeleton reorganization and signal transduction. Previous findings in our laboratory has shown that Flotillin-1 is able to translocate the nucleus under mitogenic stimulus and increase proliferation rates of several cell lines. The mechanisms of action are unknown and object of the present study.
First, we show that Flotillin-1 is a regulator factor of the mitotic kinase Aurora B, a protein involved in control of mitosis and, specifically, in the anaphase checkpoint. The knock-down of Flotillin-1 causes aberrant mitotic events, decrease in Aurora B levels and its activity, measured as protein levels of phosporilated histone H3. Flotillin-1 interacts with Aurora B and avoid its degradation by the proteasome pathway.
In addition, Flotillin-1 interacts with the transmembrane receptor Notch1, involved in many regulatory processes of proliferation, differentiation, apoptosis, etc. Flotillin-1 regulates the subcellular localization of Notch1 and its activity as transcriptional activator. The mutation or depletion of Flotillin-1 difficult the entry of Notch1 in the nucleus and the expression of its target genes Hes/ HRT.
Overall, Flotillin-1 is a protein capable of acting at different levels, processes and signaling pathways in order to be a regulator of cell proliferation.
Jotta, Patricia Yoshioka 1985. "Mutações de PTEN nas leucemias linfóides agudas T." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/316892.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-21T05:50:44Z (GMT). No. of bitstreams: 1 Jotta_PatriciaYoshioka_D.pdf: 8922035 bytes, checksum: 3734371a320410ba431d6e6ce6579e55 (MD5) Previous issue date: 2012
Resumo: A leucemia linfóide aguda (LLA) é o câncer mais frequente na infância, e destas, 15% são do tipo T (LLA-T). A hiperativação da via PI3K/Akt tem sido amplamente descrita em tumores e em linhagens celulares de LLA-T. PTEN é o principal regulador negativo dessa via e frequentemente encontra-se inativado em cânceres humanos. Com frequência, pacientes com LLA-T apresentam mutações ativadoras de NOTCH1. NOTCH1 pode regular transcricionalmente PTEN, contudo ainda não está claro como as mutações ativadoras de NOTCH1 influenciariam a expressão de PTEN nas LLA-T. Nós encontramos uma ocorrência de 11 (17,7%) mutações no éxon 7 do PTEN em 62 casos de LLA-T estudados consecutivamente. Contudo, nenhuma mutação foi encontrada na análise de 71 casos de LLA-B derivada. A maioria das mutações de PTEN apresentavam inserções/deleções de mais de 3 nucleotídeos. Não encontramos associação entre mutações em PTEN e o gênero, a idade e a contagem de glóbulos brancos ao diagnóstico. Pacientes com alterações no PTEN apresentaram uma tendência a pior sobrevida global (OS, p=0.07). Dentre os pacientes de LLA-T classificados como alto risco (n=56), aqueles possuindo anormalidades no PTEN mostraram-se associados significativamente a menor OS (p=0.019) e sobrevida livre de leucemia (LFS 47% vs 76%; p=0.045). As curvas de LFS foram significativamente diferentes (p=0.003), mesmo considerando apenas pacientes que atingiram a remissão no dia 28 do tratamento para a análise. Nosso estudo também mostrou que pacientes com mutações em NOTCH1 apresentavam aumento na transcrição de MYC e menor expressão de PTEN mRNA comparados a pacientes com NOTCH1 selvagem. Nós recentemente demonstramos que células de LLA-T apresentavam fosforilação de PTEN mediada por CK2, resultando na estabilização e consequentemente inativação da proteína PTEN. Corroborando ao estudo anterior, os casos de LLA-T analisados, independente do status de mutação em NOTCH1, expressam níveis significativamente mais altos de proteína PTEN do que controles normais. Para avaliar o impacto da regulação transcricional de NOTCH e a inativação postranscricional por CK2 de PTEN, nós tratamos as células de LLA-T com inibidores de gamma-secretase (DAPT e de CK2 (DRB/TBB). Nosso estudo enfatiza a relevância biológica e clínica da regulação do PTEN em LLA-T. E sugerimos o uso combinado de inibidores de gamma-secretase e CK2 devem possuir potencial terapêutico nas LLA-T
Abstract: T-cell acute lymphoblastic leukemia (T-ALL) accounts for approximately 15% of pediatric ALL. Patients with T-ALL are at increased risk of relapse compared with children treated for B-cell precursor ALL. Mutations in the phosphatase and tensin homolog (PTEN) gene leading to PTEN protein deletion and subsequent activation of the PI3K/Akt signaling pathway are common in cancer. PTEN is the main negative regulator of the PI3K/Akt survival pathway. T-ALL patients frequently display NOTCH1 activating mutations and Notch can transcriptionally down-regulate the tumor suppressor PTEN. However, it is not clear whether NOTCH1 mutations associate with decreased PTEN expression in primary T-ALL. We report that PTEN exon 7 mutations occurred in 11 (17.7%) out of 62 consecutive pediatric T-cell acute lymphoblastic leukemia (T-ALL) but in none of 71 precursor B-ALL patients. Most PTEN mutations were insertions/deletions of more than 3 nucleotides. No associations were found between PTEN mutation and age, gender, WBC at diagnosis, early response to therapy and remission rate. Patients with PTEN mutation (n=11) had a tendency toward worse overall survival (OS, p=0.07). Remarkably, PTEN mutations were significantly associated with lower OS (p=0.019) and leukemia-free survival (LFS 47% vs 76%, p=0.045) within patients classified in the high risk group (n=56). LFS curves were significantly different (p=0.003) even if only patients who reached remission on day 28 were considered for analysis. We compared patients with or without NOTCH1mutations and report that the former presented higher MYC transcript levels and decreased PTEN mRNA expression. We recently showed that T-ALL cells frequently display CK2-mediated PTEN phosphorylation, resulting in PTEN protein stabilization and concomitant functional inactivation. Accordingly, the T-ALL samples analyzed, irrespectively of their NOTCH1 mutational status, expressed significantly higher PTEN protein levels than normal controls. To evaluate the integrated functional impact of NOTCH transcriptional and CK2 post-translational inactivation of PTEN, we treated TALL cells with both the gamma-secretase inhibitor DAPT and the CK2 inhibitors DRB/TBB. Our data suggest that combined use of gamma-secretase and CK2 inhibitors may have therapeutic potential in T-ALL. And emphasize the biological and clinical relevance of PTEN regulation in pediatric T-ALL
Doutorado
Genetica Animal e Evolução
Doutor em Genetica e Biologia Molecular
Baeten, Jeremy T. "The Roles of the Notch2 and Notch3 Receptors in Vascular Smooth Muscle Cells." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480513055823902.
Full textLee, Connie Wing-Ching. "Notch-1 and IGF-1 as Survivin Regulatory Pathways in Cancer: A Dissertation." eScholarship@UMMS, 2008. https://escholarship.umassmed.edu/gsbs_diss/377.
Full textKarlström, Helena. "Notch receptor processing and CNS disease /." Stockholm : [Karolinska institutets bibl.], 2002. http://diss.kib.ki.se/2002/91-7349-300-7/.
Full textBooks on the topic "Notch1 Receptor"
Singh, Nita. The expression of the Notch receptors, Notch ligands, and the Fringe genes in hematopoiesis. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.
Find full textKawakami, Toshiyuki. Cell differentiation of neoplastic cells originating in the oral and craniofacial regions. New York: Nova Science, 2008.
Find full textLeow, Ching Ching. Genetic analysis of Notch receptor activation in mammary gland development. 2002.
Find full textCretegny, Kira. Expression of Notch receptors and ligands in lymphoid tissues. 2005.
Find full textBook chapters on the topic "Notch1 Receptor"
González-García, Sara, Marina García-Peydró, Juan Alcain, and María L. Toribio. "Notch1 and IL-7 Receptor Signalling in Early T-cell Development and Leukaemia." In Current Topics in Microbiology and Immunology, 47–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/82_2012_231.
Full textSchnute, Björn, Tobias Troost, and Thomas Klein. "Endocytic Trafficking of the Notch Receptor." In Advances in Experimental Medicine and Biology, 99–122. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89512-3_6.
Full textHandford, Penny A., Boguslawa Korona, Richard Suckling, Christina Redfield, and Susan M. Lea. "Structural Insights into Notch Receptor-Ligand Interactions." In Advances in Experimental Medicine and Biology, 33–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89512-3_2.
Full textBellavia, Diana, Saula Checquolo, Rocco Palermo, and Isabella Screpanti. "The Notch3 Receptor and Its Intracellular Signaling-Dependent Oncogenic Mechanisms." In Advances in Experimental Medicine and Biology, 205–22. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89512-3_10.
Full textEgan, S. E., B. St-Pierre, and C. C. Leow. "Notch Receptors, Partners and Regulators: From Conserved Domains to Powerful Functions." In Protein Modules in Signal Transduction, 273–324. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-80481-6_11.
Full textShah, Divya K., and Juan Carlos Zúñiga-Pflücker. "Notch Receptor-Ligand Interactions During T Cell Development, a Ligand Endocytosis-Driven Mechanism." In Current Topics in Microbiology and Immunology, 19–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/82_2012_225.
Full textWhiteman, Pat, Christina Redfield, and Penny A. Handford. "Bacterial Expression and In Vitro Refolding of Limited Fragments of the Notch Receptor and Its Ligands." In Methods in Molecular Biology, 193–208. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1139-4_15.
Full text"Other Transmembrane Receptor Classes: Signaling by TGF-β Receptors, TNF Receptors, Toll Receptors, and Notch." In Biochemistry of Signal Transduction and Regulation, 631–60. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527667475.ch14.
Full textAhmed, Jessica. "Development of Specific Gamma Secretase Inhibitors." In Handbook of Research on Systems Biology Applications in Medicine, 423–37. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-60566-076-9.ch025.
Full textSivaprakasam, Prathibha, Sureshkumar Anandasadagopan, Tamilselvi Alagumuthu, and Ashok Kumar Pandurangan. "Current Update on Natural Agents Against Triple Negative Breast Cancer." In Advanced Pharmacological Uses of Medicinal Plants and Natural Products, 91–113. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2094-9.ch005.
Full textConference papers on the topic "Notch1 Receptor"
Monticone, Giulia, Fokhrul M. Hossain, Deniz A. Ucar, Samarpan Majumder, Claudia Sorrentino, Paulo C. Rodriguez, Rosa A. Sierra, et al. "Abstract 4517: Targeting Notch1 via adenosine A2A receptor to modulate tumor immunity." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-4517.
Full textPohlmann, Elliot, Susan Murphy, Debbie Kelly, and Zhi Sheng. "Abstract 3862: Isolation and nanoscale visualization of glioblastoma stem-like cells utilizing the Notch1 receptor." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3862.
Full textOlayinka, Abidemi, Eoin Corcoran, Brendan O’Connor, and Paul A. Cahill. "11 The role of N-glycosylation of the NOTCH1 receptor in jagged1-stimulated myogenic differentiation in vitro." In The Scottish Cardiovascular Forum 2018, 3rd February 2018, Trinity Biomedical Science Institute, Trinity College Dublin Ireland. BMJ Publishing Group Ltd and British Cardiovascular Society, 2018. http://dx.doi.org/10.1136/heartjnl-2018-scf.21.
Full textPsyrri, Amanda, Eirini Pectasides, M. Avgeris, Apostolos Klinakis, Andreas Scorilas, Clarence Sasaki, George Fountzilas, and Theodoros Rampias. "Abstract A183: Identification of an exon 31-deletion variant of Notch1 receptor with frequent expression in head and neck cancer." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Oct 19-23, 2013; Boston, MA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1535-7163.targ-13-a183.
Full textZehender, H., E. C. Witte, K. Stegemeier, and A. Patscheke. "IRREVERSIBLE BLOCKADE OF THE THROMBOXANE A2/PROSTAGLANDIN H2 RECEPTOR OF HUMAN PLATELETS BY AZIDO-BSP." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643755.
Full textWallace, Breanna, Min Wang, Chris Muriel, Jennifer Cain, Belinda Cancilla, Jalpa Shah, Jie Wei, et al. "Abstract 213: Novel NOTCH3 activating mutations identified in tumors sensitive to OMP-59R5, a monoclonal antibody targeting the Notch2 and Notch3 receptors." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-213.
Full textCancilla, Belinda, Wan-Ching Yen, Chun Zhang, Marcus M. Fischer, May Ji, Tracy Tang, Yu-Wang Liu, et al. "Abstract 910: NOTCH3 expression is predictive of efficacy in pancreas tumor models treated with OMP-59R5, a monoclonal antibody targeting the NOTCH2 and NOTCH3 receptors." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-910.
Full textBell, Alisa, Heidi Okamura, David Keane, Samantha Perino, Jeanine Lorusso, Jeno Gyuris, and Ronan O'Hagan. "Abstract A73: Understanding specificity in Notch receptor signaling." In Abstracts: First AACR International Conference on Frontiers in Basic Cancer Research--Oct 8–11, 2009; Boston MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/0008-5472.fbcr09-a73.
Full textGeles, Kenneth G., Yijie Gao, Latha Sridharan, Andreas Giannakou, Ting-Ting Yamin, Jonathan Golas, Judy Lucas, et al. "Abstract 1697: Therapeutic targeting the NOTCH3 receptor with antibody drug conjugates." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-1697.
Full textOkamura, Heidi, Jeanine Lorusso, Alisa Bell, Samantha Perino, David Keane, Joelle Brodeur, Adrian Cooper, et al. "Abstract 5170: Monoclonal antibodies to Notch receptors inhibit tumor maintenance." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-5170.
Full textReports on the topic "Notch1 Receptor"
Kitajewski, Jan K. Role of Notch/VEGF-Receptor 3 in Breast Tumor Angiogenesis and Lymphangiogenesis. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada446379.
Full textKitajewski, Jan K. Role of Notch/VEGF-Receptor 3 in Breast Tumor Angiogenesis and Lymphangiogenesis. Fort Belvoir, VA: Defense Technical Information Center, May 2007. http://dx.doi.org/10.21236/ada475616.
Full text