Academic literature on the topic 'Novel eye disease genes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Novel eye disease genes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Novel eye disease genes"
Mihelec, Marija, Luke St Heaps, Maree Flaherty, Frank Billson, Christina Rudduck, Patrick P. L. Tam, John R. Grigg, Greg B. Peters, and Robyn V. Jamieson. "Chromosomal Rearrangements and Novel Genes in Disorders of Eye Development, Cataract and Glaucoma." Twin Research and Human Genetics 11, no. 4 (August 1, 2008): 412–21. http://dx.doi.org/10.1375/twin.11.4.412.
Full textHarding and Moosajee. "The Molecular Basis of Human Anophthalmia and Microphthalmia." Journal of Developmental Biology 7, no. 3 (August 14, 2019): 16. http://dx.doi.org/10.3390/jdb7030016.
Full textSheng, Minjie, Haiying Cai, Ming Cheng, Jing Li, Jian Zhang, and Lihua Liu. "Identification of Novel Choroidal Neovascularization-Related Genes Using Laplacian Heat Diffusion Algorithm." BioMed Research International 2021 (September 6, 2021): 1–10. http://dx.doi.org/10.1155/2021/2295412.
Full textWang, Likun, Jinlu Zhang, Ningning Chen, Lei Wang, Fengsheng Zhang, Zhizhong Ma, Genlin Li, and Liping Yang. "Application of Whole Exome and Targeted Panel Sequencing in the Clinical Molecular Diagnosis of 319 Chinese Families with Inherited Retinal Dystrophy and Comparison Study." Genes 9, no. 7 (July 19, 2018): 360. http://dx.doi.org/10.3390/genes9070360.
Full textLee, Bradford W., Virender B. Kumar, Pooja Biswas, Audrey C. Ko, Ramzi M. Alameddine, David B. Granet, Radha Ayyagari, Don O. Kikkawa, and Bobby S. Korn. "Transcriptome Analysis of Orbital Adipose Tissue in Active Thyroid Eye Disease Using Next Generation RNA Sequencing Technology." Open Ophthalmology Journal 12, no. 1 (April 16, 2018): 41–52. http://dx.doi.org/10.2174/1874364101812010041.
Full textViolanti, Sara Silvia, Ilaria Bononi, Carla Enrica Gallenga, Fernanda Martini, Mauro Tognon, and Paolo Perri. "New Insights into Molecular Oncogenesis and Therapy of Uveal Melanoma." Cancers 11, no. 5 (May 19, 2019): 694. http://dx.doi.org/10.3390/cancers11050694.
Full textReis, Linda M., Huban Atilla, Peter Kannu, Adele Schneider, Samuel Thompson, Tanya Bardakjian, and Elena V. Semina. "Distinct Roles of Histone Lysine Demethylases and Methyltransferases in Developmental Eye Disease." Genes 14, no. 1 (January 14, 2023): 216. http://dx.doi.org/10.3390/genes14010216.
Full textChoy, K. W., C. C. Wang, A. Ogura, T. K. Lau, M. S. Rogers, K. Ikeo, T. Gojobori, D. S. C. Lam, and C. P. Pang. "Genomic annotation of 15,809 ESTs identified from pooled early gestation human eyes." Physiological Genomics 25, no. 1 (March 13, 2006): 9–15. http://dx.doi.org/10.1152/physiolgenomics.00121.2005.
Full textLin, Ting-Yi, Yun-Chia Chang, Yu-Jer Hsiao, Yueh Chien, Ying-Chun Jheng, Jing-Rong Wu, Lo-Jei Ching, et al. "Identification of Novel Genomic-Variant Patterns of OR56A5, OR52L1, and CTSD in Retinitis Pigmentosa Patients by Whole-Exome Sequencing." International Journal of Molecular Sciences 22, no. 11 (May 25, 2021): 5594. http://dx.doi.org/10.3390/ijms22115594.
Full textYang, Xue, Vafa Bayat, Nataliya DiDonato, Yang Zhao, Brian Zarnegar, Zurab Siprashvili, Vanessa Lopez-Pajares, et al. "Genetic and genomic studies of pathogenic EXOSC2 mutations in the newly described disease SHRF implicate the autophagy pathway in disease pathogenesis." Human Molecular Genetics 29, no. 4 (October 19, 2019): 541–53. http://dx.doi.org/10.1093/hmg/ddz251.
Full textDissertations / Theses on the topic "Novel eye disease genes"
Hardcastle, Alison Jane. "The isolation of novel genes expressed in the retina." Thesis, University of Newcastle Upon Tyne, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335124.
Full textPatel, Sapna P. "An in silico approach to identify novel genes preferentially expressed in the eye." Thesis, University of Edinburgh, 2004. http://hdl.handle.net/1842/25059.
Full textZávodszky, Eszter. "The role of novel neurodegenerative disease genes in autophagy regulation." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708679.
Full textArchacki, Stephen R. "MOLECULAR IDENTIFICATION OF NOVEL GENES ASSOCIATED WITH ATHEROSCLEROSIS." Cleveland State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=csu1310652996.
Full textLefebvre, Valerie. "Identification of Novel Parkinson’s Disease Genes Involved in Parkin Mediated Mitophagy." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/30222.
Full textWatson, Nicola Sophia Alexandra. "Identification of novel genes involved in Paget's disease by Differential Display PCR." Thesis, University of Aberdeen, 1999. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU535579.
Full textKriegsman, Barry. "Elucidating the Roles of Novel Genes in MHC-I Presentation." eScholarship@UMMS, 2019. https://escholarship.umassmed.edu/gsbs_diss/1018.
Full textHsieh, Shie-Liang. "Characterisation of novel genes and mapping of polymorphic markers in the human major histocompatibility complex." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315942.
Full textFernandes, Caroline. "Genome-wide screen for novel regulators of Parkinson's disease genes in «Drosophila melanogaster»." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103725.
Full textIntroduction : L'altération de la fonction mitochondriale entraîne la dégénérescence de certains neurones chez les personnes atteintes de maladies neurodégénératives dont la maladie de Parkinson. Les cellules saines sont dotées d'un système de contrôle leur permettant de faire face et de réparer les dysfonctionnements des mitochondries et ainsi de préserver leur intégrité. Des études récentes ont révélé l'implication de deux gènes à l'origine de syndromes parkinsoniens autosomiques récessifs, Pink1 et Parkin, dans une voie de signalisation commune contrôlant le maintien de la fonction mitochondriale. Pink1 et Parkin interviennent ensemble dans l'isolation et la dégradation des mitochondries défectueuses. Cependant, à l'heure actuelle, les mécanismes moléculaires contrôlant ce processus restent à élucider. Méthodes : Le but de notre étude a été d'identifier de nouveaux régulateurs de la voie de signalisation Pink1/Parkin par crible génétique dans un modèle drosophile de la maladie de Parkinson. Pour cela, nous avons criblé une collection de lignées de drosophiles déficientes sur les chromosomes deux et trois pour leur capacité à modifier (augmenter ou diminuer) le phénotype de posture de l'aile caractéristique de la mutation de Pink1/Parkin. Résultats: Nous avons identifié plusieurs régions cytologiques qui interagissent fortement avec Parkin et/ou Pink1. Quatre de ces régions ont été disséquées de façon à révéler cinq gènes. Parmi eux, opa1 et drp1 avaient déjà été impliques dans la voie de signalisation Pink1/Parkin. Les trois autres gènes p60, β4galNacTA et debra représentent de nouveaux régulateurs de la fonction de Pink1 et Parkin. Conclusion/implications : D'une part, l'identification non biaisée de gènes déjà connus comme interagissant avec Pink1/Parkin démontre la validité de cette approche. D'autre part, la découverte de nouveaux gènes candidats de la voie Pink1/Parkin pour le maintien de l'intégrité mitochondriale permettra de mieux comprendre les mécanismes moléculaires contrôlant ce processus et aidera à l'élaboration de traitements.
Puli, Oorvashi Roy G. "Defective proventriculus (Dve), a Novel Role in Dorsal-Ventral Patterning of the Drosophila Eye." University of Dayton / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1406732166.
Full textBooks on the topic "Novel eye disease genes"
Joram, Piatigorsky, Shinohara Toshimichi, Zelenka Peggy S, National Eye Institute, and University of California, Los Angeles., eds. Molecular biology of the eye: Genes, vision, and ocular disease : proceedings of a National Eye Institute-UCLA symposium held at Santa Fe, New Mexico, February 6-12, 1988. New York: Liss, 1988.
Find full textMansoor, Quratulain. Novel Approach for Autonomous Detection of Glaucoma Eye Disease Using Deep Learning. Independently Published, 2019.
Find full textMayes, Caryl Ann. A screen for novel genes involved in drosphila compound eye development and the cloning and characterisation of rasputin, a homologue of G3BP. 2000.
Find full textMayes, Caryl Ann. A screen for novel genes involved in drosophila compound eye development and the cloning and characterisation of rasputin, a homologue of G3BP. 2000.
Find full textBanerjee, Amitava, and Kaleab Asrress. Risk factors for cardiovascular disease. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0086.
Full textBrown, Matthew. Genetics of spondyloarthropathies. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0041.
Full textBrown, Matthew. Genetics of spondyloarthropathies. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199642489.003.0041_update_003.
Full textLewis, Myles, and Tim Vyse. Genetics of connective tissue diseases. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0042.
Full textPezzini, Alessandro. Genetics. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198722366.003.0011.
Full textBarton, Anne. Basics of genetics. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0037.
Full textBook chapters on the topic "Novel eye disease genes"
Onouchi, Yoshihiro. "Identification of Novel Kawasaki Disease Susceptibility Genes by Genome-Wide Association Studies." In Kawasaki Disease, 23–29. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56039-5_4.
Full textRemaley, Alan T., U. Kurt Schumacher, H. Bryan Brewer, and Jeffrey M. Hoeg. "Isolation of Novel Genes Regulated by Dietary Cholesterol by a Pcr-Based Subtraction Library." In Cardiovascular Disease 2, 327–32. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1959-1_41.
Full textZanzoni, Andreas. "A Computational Network Biology Approach to Uncover Novel Genes Related to Alzheimer’s Disease." In Systems Biology of Alzheimer's Disease, 435–46. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2627-5_26.
Full textYuan, Fang, Ruichun Wang, Mingxiang Guan, and Guorong He. "A Novel Computational Method for Predicting Disease Genes Based on Functional Similarity." In Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, 42–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14932-0_6.
Full textFang, Yuan, and Hui Wang. "DCGene: A Novel Predicting Approach of the Disease Related Genes on Functional Annotation." In Emerging Intelligent Computing Technology and Applications, 956–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04070-2_101.
Full textPapas, T. S., D. K. Watson, N. Sacchi, S. J. O’Brien, and R. Ascione. "The Mammalian ETS Genes: Two Unique Chromosomal Locations in Cat, Mice and Man and Novel Translocated Position in Human Leukemias." In Minimal Residual Disease in Acute Leukemia 1986, 23–42. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4273-8_3.
Full textSt. George-Hyslop, P. H. "Genetic Evidence for a Novel Familial Alzheimer’s Disease Locus on Chromosome 14: Analysis of Candidate Genes." In Etiopathogenesis, 3–18. Boston, MA: Birkhäuser Boston, 1994. http://dx.doi.org/10.1007/978-1-4684-9203-3_1.
Full textGaranto, Alejandro. "Delivery of Antisense Oligonucleotides to the Mouse Retina." In Methods in Molecular Biology, 321–32. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2010-6_22.
Full textPort, Fillip, and Michael Boutros. "Tissue-Specific CRISPR-Cas9 Screening in Drosophila." In Methods in Molecular Biology, 157–76. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2541-5_7.
Full textDas, Priyanka, Rajeev N. Bahuguna, Rohit Joshi, Sneh Lata Singla-Pareek, and Ashwani Pareek. "In search of mutants for gene discovery and functional genomics for multiple stress tolerance in rice." In Mutation breeding, genetic diversity and crop adaptation to climate change, 444–50. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789249095.0045.
Full textConference papers on the topic "Novel eye disease genes"
Hashemi, Mahshad, and Eghbal Mansoori. "Identifying novel disease genes based on protein complexes and biological features." In 2021 11th International Conference on Computer Engineering and Knowledge (ICCKE). IEEE, 2021. http://dx.doi.org/10.1109/iccke54056.2021.9721466.
Full textPerera, Shehan, Kaveesha Hewage, Chamara Gunarathne, Rajitha Navarathna, Damayanthi Herath, and Roshan G. Ragel. "Detection of Novel Biomarker Genes of Alzheimer’s Disease Using Gene Expression Data." In 2020 Moratuwa Engineering Research Conference (MERCon). IEEE, 2020. http://dx.doi.org/10.1109/mercon50084.2020.9185336.
Full textTang, Xiwei, Bihai Zhao, and Xiao Qiu. "A Novel Algorithm for Prioritizing Disease Candidate Genes from the Weighted PPI Network." In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2019. http://dx.doi.org/10.1109/bibm47256.2019.8982984.
Full textShen, Xianjun, Yang Yi, Yan Wang, Xiaohui Chen, Jincai Yang, and Tingting He. "A novel approach to breast cancer-related disease genes discovered through variation of density modularity." In 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2014. http://dx.doi.org/10.1109/bibm.2014.6999277.
Full textYalamanchili, Hari Krishna, Hyun-Hwan Jeong, and Zhandong Liu. "Decoding TDP-43 Dependent Cryptic Splicing in Amyotrophic Lateral Sclerosis and Identifying Novel Disease-causing Genes." In BCB '18: 9th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3233547.3233698.
Full textAshraf, Faisal Bin, Rasif Ajwad, and M. A. Mottalib. "A novel gene-tree based approach to infer relations among disease-genes across different cancer types." In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE). IEEE, 2019. http://dx.doi.org/10.1109/ecace.2019.8678921.
Full textSCHULZ, SIMONE, ARMIN HUBER, PHILIPP SANDER, and REINHARD PAULSEN. "ISOLATION OF NOVEL EYE-SPECIFICALLY EXPRESSED GENES BY DIFFERENTIAL HYBRIDIZATION OF A RETINAL cDNA LIBRARY OF CALLIPHORA VICINA." In Proceedings of the International School of Biophysics. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799975_0009.
Full textCambraia, Amanda, Mario Campos Junior, Fernanda Gubert, Juliana Ferreira Vasques, Marli Pernes da Silva Loureiro, Claudio Heitor Gress, José Mauro Bráz de Lima, Rosalia Mendez Otero, and Verônica Marques Zembrzuski. "A novel mutation in the RRM2 domain of TDP-43 in a Brazilian sporadic ALS patient." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.486.
Full textSudakov, A. I., E. P. Kulikov, S. A. Mertsalov, A. A. Nikiforov, and V. A. Grigorenko. "GENETIC POLYMORPHISM AND COLORECTAL CANCER." In NOVEL TECHNOLOGIES IN MEDICINE, BIOLOGY, PHARMACOLOGY AND ECOLOGY. Institute of information technology, 2022. http://dx.doi.org/10.47501/978-5-6044060-2-1.105-109.
Full textJackson, Peter K. "Abstract SY14-02: From disease genetics to diagnostics to functional biology: High-throughput proteomics and protein interaction network building guides discovery of novel disease genes in ciliopathies, cystic disease, and cancer." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-sy14-02.
Full textReports on the topic "Novel eye disease genes"
Sessa, Guido, and Gregory Martin. Role of GRAS Transcription Factors in Tomato Disease Resistance and Basal Defense. United States Department of Agriculture, 2005. http://dx.doi.org/10.32747/2005.7696520.bard.
Full textZhao, Bingyu, Saul Burdman, Ronald Walcott, and Gregory E. Welbaum. Control of Bacterial Fruit Blotch of Cucurbits Using the Maize Non-Host Disease Resistance Gene Rxo1. United States Department of Agriculture, September 2013. http://dx.doi.org/10.32747/2013.7699843.bard.
Full textReisch, Bruce, Avichai Perl, Julie Kikkert, Ruth Ben-Arie, and Rachel Gollop. Use of Anti-Fungal Gene Synergisms for Improved Foliar and Fruit Disease Tolerance in Transgenic Grapes. United States Department of Agriculture, August 2002. http://dx.doi.org/10.32747/2002.7575292.bard.
Full textBreiman, Adina, Jan Dvorak, Abraham Korol, and Eduard Akhunov. Population Genomics and Association Mapping of Disease Resistance Genes in Israeli Populations of Wild Relatives of Wheat, Triticum dicoccoides and Aegilops speltoides. United States Department of Agriculture, December 2011. http://dx.doi.org/10.32747/2011.7697121.bard.
Full textShpigel, Nahum, Raul Barletta, Ilan Rosenshine, and Marcelo Chaffer. Identification and characterization of Mycobacterium paratuberculosis virulence genes expressed in vivo by negative selection. United States Department of Agriculture, January 2004. http://dx.doi.org/10.32747/2004.7696510.bard.
Full textSessa, Guido, and Gregory B. Martin. molecular link from PAMP perception to a MAPK cascade associated with tomato disease resistance. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7597918.bard.
Full textLindow, Steven, Isaac Barash, and Shulamit Manulis. Relationship of Genes Conferring Epiphytic Fitness and Internal Multiplication in Plants in Erwinia herbicola. United States Department of Agriculture, July 2000. http://dx.doi.org/10.32747/2000.7573065.bard.
Full textPrusky, Dov B., Tesfaye Mengiste, and Robert Fluhr. Mechanisms activated by fungal-based host pH modulators during quiescent infections and active postharvest disease development. United States Department of Agriculture, 2011. http://dx.doi.org/10.32747/2011.7597911.bard.
Full textWhitham, Steven A., Amit Gal-On, and Victor Gaba. Post-transcriptional Regulation of Host Genes Involved with Symptom Expression in Potyviral Infections. United States Department of Agriculture, June 2012. http://dx.doi.org/10.32747/2012.7593391.bard.
Full textFahima, Tzion, and Jorge Dubcovsky. Map-based cloning of the novel stripe rust resistance gene YrG303 and its use to engineer 1B chromosome with multiple beneficial traits. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598147.bard.
Full text