Academic literature on the topic 'Nozzle flow characteristics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nozzle flow characteristics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nozzle flow characteristics"
Srinivasarao, T., P. Lovaraju, and E. Rathakrishnan. "Characteristics of Underexpanded Co-Flow Jets." Applied Mechanics and Materials 575 (June 2014): 507–11. http://dx.doi.org/10.4028/www.scientific.net/amm.575.507.
Full textHao, Zong Rui, and Zhong Hai Zhou. "Experimental Studies on the Effects of Nozzle Structures on Characteristics of Submerged Gas Jet Noise." Applied Mechanics and Materials 204-208 (October 2012): 4620–23. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.4620.
Full textNarayanan, V., J. Seyed-Yagoobi, and R. H. Page. "Heat Transfer Characteristics of a Slot Jet Reattachment Nozzle." Journal of Heat Transfer 120, no. 2 (May 1, 1998): 348–56. http://dx.doi.org/10.1115/1.2824255.
Full textKOLARIČ, Dušan, and Marko KOLARIČ. "Example of flow modelling characteristics in diesel engine nozzle." Scientific Journal of Silesian University of Technology. Series Transport 90 (March 1, 2016): 123–35. http://dx.doi.org/10.20858/sjsutst.2016.90.11.
Full textToshihiko, SHAKOUCHI, IRIYAMA Shota, KAWASHIMA Yuki, TSUJIMOTO Koichi, and ANDO Toshitake. "1012 FLOW CHARACTERISTICS OF SUBMERGED FREE JET FLOW FROM PETAL-SHAPED NOZZLE." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2013.4 (2013): _1012–1_—_1012–6_. http://dx.doi.org/10.1299/jsmeicjwsf.2013.4._1012-1_.
Full textKumar, Bholu, Suresh Kant Verma, and Shantanu Srivastava. "Mixing Characteristics of Supersonic Jet from Bevelled Nozzles." International Journal of Heat and Technology 39, no. 2 (April 30, 2021): 559–72. http://dx.doi.org/10.18280/ijht.390226.
Full textRuan, Hong Yan, Hui Xia Liu, S. Y. Ding, K. Yang, Xiao Wang, and Lan Cai. "Numerical Simulation of Liquid-Solid Two-Phase Flows on Internal and Outside Flow Field in High Pressure Abrasive Water Jet Cutting Nozzle." Key Engineering Materials 392-394 (October 2008): 565–69. http://dx.doi.org/10.4028/www.scientific.net/kem.392-394.565.
Full textZhai, Chang Yuan, Xiu Wang, Da Yin Liu, Wei Ma, and Yi Jin Mao. "Nozzle Flow Model of High Pressure Variable-Rate Spraying Based on PWM Technology." Advanced Materials Research 422 (December 2011): 208–17. http://dx.doi.org/10.4028/www.scientific.net/amr.422.208.
Full textSalvador, Francisco J., Joaquin de la Morena, Marcos Carreres, and David Jaramillo. "Numerical analysis of flow characteristics in diesel injector nozzles with convergent-divergent orifices." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 231, no. 14 (February 1, 2017): 1935–44. http://dx.doi.org/10.1177/0954407017692220.
Full textLi, Bing, Xue Song Hu, Xiao Feng Cao, Gui Qi Jia, Fang Xi Xie, and Wei Hong. "Study on Influence of Nozzle Structure on Flow in Diesel Nozzle Orifice." Applied Mechanics and Materials 246-247 (December 2012): 127–30. http://dx.doi.org/10.4028/www.scientific.net/amm.246-247.127.
Full textDissertations / Theses on the topic "Nozzle flow characteristics"
Madamadakala, Ganapathi Reddy. "Heat transfer and flow characteristics of sonic nozzle." Thesis, Kansas State University, 2013. http://hdl.handle.net/2097/15911.
Full textDepartment of Mechanical and Nuclear Engineering
Steven Eckels
The current research presents the experimental investigation of heat transfer and flow characteristics of sonic multiphase flow in a converging-diverging nozzle. R134a and R123 are used in this study. Four different nozzle assemblies with two different throat sizes (2.43mm and 1.5 mm with 1° growth angle with the centerline of the nozzle in the diverging section) and two different heater lengths (200 mm and 125 mm) were tested. Each test section was an assembly of aluminum nozzle sections. The experimental facility design allowed controlling three variables: throat velocity, inlet temperature, back pressure saturation temperature. The analysis used to find the average heat transfer of the fluid to each nozzle section. This was achieved by measuring the nozzle wall temperature and fluid pressure in a steady state condition. Two methods for finding the average heat flux in sonic nozzle were included in the data analysis: infinite contact resistance and zero contact resistance between nozzle sections. The input variables ranges were 25 °C and 30 °C for inlet temperature and back pressure saturation temperatures, 1100-60,000 kg/m[superscript]2s for mass flux, and 1.4-700 kW/m[superscript]2 heat flux. The effect of the mass flux and heat flux on the average two-phase heat transfer coefficients was investigated. The flow quality, Mach number(M), and Nusselt number ratio ([phi]) were also calculated for each section of the nozzle. As the fluid flowed through the nozzle, the pressure of the liquid dropped below the inlet saturation pressure of the liquid due to sonic expansion in the nozzle. This temperature drop was significantly lower in the case of R134a than R123. The results showed that the two-phase heat transfer coefficients were above of 30000 W/m^2 K in the first 75 mm of the nozzle, and they decreased along the nozzle. The Mach number profile appeared similar to the temperature profile, and the fluid was in the sonic region as long as temperature of the fluid dropped in the nozzle. Nusselt number ratios were compared with the Mach numbers and showed that the Nusselt number ratio were increased in the sonic region. The results showed that the length of the sonic region was larger for R123 than for R134a, and the Mach numbers were higher for R123. The Nusselt ratios of R123 were low compared to the R134a cases, and the trend in the Nusselt ratios was notably different as well.
Cresci, Irene. "High pressure nozzle guide vane cooling system flow characteristics." Thesis, University of Oxford, 2016. http://ora.ox.ac.uk/objects/uuid:b8826eb5-f4ad-4fe8-8730-9134fd9fd183.
Full textKumar, A. "Investigation of in-nozzle flow characteristics of fuel injectors of IC engines." Thesis, City, University of London, 2017. http://openaccess.city.ac.uk/17583/.
Full textMaxted, Katsuo J. "Experimental Investigation on Acoustic Characteristics of Convergent Orifices in Bias Flow." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439304400.
Full textMA, ZHANHUA. "INVESTIGATION ON THE INTERNAL FLOW CHARACTERISTICS OF PRESSURE-SWIRL ATOMIZERS." University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1016634882.
Full textRejent, Andrew. "Experimental Study of the Flow and Acoustic Characteristics of a High-Bypass Coaxial Nozzle with Pylon Bifurcations." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1250272655.
Full textHallenbeck, Kyle. "LOW REYNOLDS NUMBER WATER FLOW CHARACTERISTICS THROUGH RECTANGULAR MICRO DIFFUSERS/NOZZLES WITH A PRIMARY FOCUS ON MAJOR/MINOR P." Master's thesis, University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3406.
Full textM.S.
Department of Mechanical, Materials and Aerospace Engineering
Engineering and Computer Science
Mechanical Engineering MSME
Glaspell, Aspen W. "Heat Transfer and Fluid Flow Characteristics of Two-Phase Jet Impingement at LowNozzle-to-Plate Spacing." Youngstown State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1534357333244428.
Full textNyantekyi-Kwakye, Baafour. "Experimental investigation on the flow characteristics of three-dimensional turbulent offset jets." Taylor and Francis Group, 2015. http://hdl.handle.net/1993/31626.
Full textOctober 2016
Viera, Sotillo Juan Pablo. "Experimental study of the effect of nozzle geometry on the performance of direct-injection diesel sprays for three different fuels." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/81857.
Full textEn esta tesis se estudia la influencia del flujo interno sobre un amplio espectro de condiciones y diagnósticos experimentales. Se realizaron experimentos para dos geometrías de tobera---toberas cilíndrica y cónica de un único orificio---y tres combustibles. Dos de los combustibles son puros---n-heptano y n-dodecano--- mientras el tercero es un combustible sustituto que consiste en una mezcla de tres componentes que busca representar mejor las propiedades físicas y químicas del diesel. Las medidas incluyen una caracterización hidráulica completa, compuesta por tasa de inyección y cantidad de movimiento instantáneas; una visualización de alta velocidad del chorro líquido isotermo; una visualización de alta velocidad del chorro inerte evaporativo, con captura simultánea de las fases líquida y vapor y, finalmente, una visualización del chorro reactivo a alta temperatura, con captura de la fase vapor y la quimioluminiscencia del radical OH* para cada evento de inyección. Todos los diagnósticos en condiciones de alta temperatura fueron realizados en una maqueta de alta presión y temperatura de flujo constante que permite controlar con precisión un rango amplio de condiciones termodinámicas (hasta 1000 K y 15 MPa). Los resultados experimentales y la gran base de datos obtenida en este trabajo (disponible en: http://www.cmt.upv.es/DD01.aspx), podrían ser utilizados para validar modelos CFD detallados que podrían ayudar a la comunidad científica a entender mejor los mecanismos fundamentales que producen los resultados observados.
Aquesta tesi estudia la influència del flux intern sobre un gran espectre de condicions i diagnòstics experimentals. Es van realitzar experiments per a dos geometries de tovera---toveres ci¿líndrica i cónica amb un únic orifici---i tres combustibles. Dos dels combustibles són purs---n-heptà i n-dodecà--- mentre el tercer combustible consisteix en una mescla de tres components que formen un combustible substitut que busca representar millor les propietats físiques i químiques del dièsel. Les mesures inclouen una caracterització hidràulica completa, composta per taxa d'injecció i quantitat de moviment instantanis; visualització d'alta velocitat del doll líquid isoterme; visualització d'alta velocitat del doll inert evaporatiu, capturant simultàniament les fases líquid i vapor i, finalment, una visualització del doll reactiu a alta temperatura, capturant la fase vapor i la quimioluminiscència del radical OH per a cada esdeveniment d'injecció. Tots els diagnòstics en condicions d'alta temperatura van ser realitzats en una insta¿lació d'alta pressió i temperatura amb flux constant que permet controlar amb precisió un ampli rang de condicions termodinàmiques (fins a 1000 K i 15 MPa). Els resultats experimentals i la gran base de dades obtinguda en aquest treball (disponible a la web en: http://www.cmt.upv.es/dd01.aspx), podrien ser utilitzats per tal de validar models CFD detallats que podrien ajudar a la comunitat científica a entendre millor els mecanismes fonamentals que produeixen aquestes observacions.
Viera Sotillo, JP. (2017). Experimental study of the effect of nozzle geometry on the performance of direct-injection diesel sprays for three different fuels [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/81857
TESIS
Books on the topic "Nozzle flow characteristics"
Schneider, Steven P. Supersonic quiet-tunnel development for laminar-turbulent transition research: Final report for NASA Langley grant NAG-1-1607. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textGlahn, U. Von. Plume characteristics of single-stream and dual-flow conventional and inverted-profile nozzles at equal thrust. [Washington, DC]: National Aeronautics and Space Administration, 1986.
Find full textB, Lakshminarayana, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., eds. Three dimensional viscous flow field in an axial flow turbine nozzle passage. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1997.
Find full textUnited States. National Aeronautics and Space Administration., ed. Spreading characteristics and thrust of jets from asymmetric nozzles. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Find full textA, Yoder Dennis, DeBonis James R, and NASA Glenn Research Center, eds. A comparison of three Navier-Stokes solvers for exhaust nozzle flowfields. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Find full textUnited States. National Aeronautics and Space Administration., ed. Supersonic quiet-tunnel development for laminar-turbulent transition research: Final report for NASA Langley grant NAG-1-1607. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textUnited States. National Aeronautics and Space Administration., ed. Supersonic quiet-tunnel development for laminar-turbulent transition research: Final report for NASA Langley grant NAG-1-1607. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textH, Goodykoontz Jack, Wasserbauer Charles A, and Lewis Research Center, eds. Velocity and temperature decay characteristics of inverted-profile jets. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1986.
Find full textS, Ukeiley Lawrence, Lee Sang W, and Langley Research Center, eds. Aeroacoustic data for a high Reynolds number axisymmetric subsonic jet. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Find full textBook chapters on the topic "Nozzle flow characteristics"
Gavaises, M., C. Arcoumanis, H. Roth, Y. S. Choi, and A. Theodorakakos. "Nozzle Flow and Spray Characteristics from VCO Diesel Injector Nozzles." In Thermo- and Fluid Dynamic Processes in Diesel Engines 2, 31–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10502-3_3.
Full textGénin, Chloé, Dirk Schneider, and Ralf Stark. "Dual-Bell Nozzle Design." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 395–406. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_25.
Full textHuang, Weidi, Zhijun Wu, Ya Gao, Huifeng Gong, Zongjie Hu, Liguang Li, and Furu Zhuang. "The Influence of Diesel Nozzle Structure on Internal Flow Characteristics." In Lecture Notes in Electrical Engineering, 421–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33841-0_31.
Full textTeramoto, Hiroshi, and Takahiro Kiwata. "Flow Characteristics of Multiple Round Jets Issuing from In-line Nozzle Arrangement." In Fluid-Structure-Sound Interactions and Control, 161–67. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7542-1_25.
Full textPanigrahi, S., P. S. Maity, Gyan Sagar Sinha, D. Dangi, and Atal Bihari Harichandan. "Modified Method of Characteristics for Analysing Cold Flow in Bell-Type Rocket Nozzle." In Lecture Notes in Mechanical Engineering, 157–64. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7831-1_15.
Full textRaju, Martin, V. V. Ijas Muhammed, Abhilash Suryan, and Heuy Dong Kim. "Computational Study on the Flow Characteristics in a Film Cooled Dual-Bell Nozzle." In Lecture Notes in Mechanical Engineering, 225–32. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-5183-3_24.
Full textGong, Chao, and R. Baar. "Study of the influence of low needle lifts process on the internal flow and spray characteristics in Diesel injection nozzle." In 17. Internationales Stuttgarter Symposium, 989–1011. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-16988-6_77.
Full textLoosen, Simon, Matthias Meinke, and Wolfgang Schröder. "Numerical Analysis of the Turbulent Wake for a Generic Space Launcher with a Dual-Bell Nozzle." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 163–77. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_10.
Full textKumar, Kiran, Abhilash Suryan, V. Lijo, and Heuy Dong Kim. "Numerical Investigation on Flow Separation Characteristics of Truncated Ideal Contour Nozzles." In Lecture Notes in Mechanical Engineering, 365–77. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1892-8_29.
Full textLong, Xinping, and Qi Liu. "Numerical Analysis of the Liquid-Gas-Solid Three Phase Flow Inside AWJ Nozzle." In Abrasive Technology - Characteristics and Applications. InTech, 2018. http://dx.doi.org/10.5772/intechopen.75938.
Full textConference papers on the topic "Nozzle flow characteristics"
Mulemane, Aditya, and Ming-Chia Lai. "Predicting Diesel Injector Nozzle Flow Characteristics." In SIAT 2004. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2004. http://dx.doi.org/10.4271/2004-28-0014.
Full textHwang, Joonsik, Choongsik Bae, Chetankumar Patel, Avinash Kumar Agarwal, and Tarun Gupta. "Near Nozzle Flow and Atomization Characteristics of Biodiesel Fuels." In International Powertrains, Fuels & Lubricants Meeting. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2017. http://dx.doi.org/10.4271/2017-01-2327.
Full textSengupta, Soumyo, Lionel Agostini, and Datta V. Gaitonde. "Effect of Asymmetric Nozzle Configuration on Jet Flow Characteristics." In 46th AIAA Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-4095.
Full textTomita, Takeo, Mamoru Takahashi, Masaki Sasaki, and Hiroshi Tamura. "Investigation on Characteristics of Conventional-Nozzle-Based Altitude Compensating Nozzles by Cold-Flow Tests." In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-4375.
Full textTeramoto, Hiroshi, Takahiro Kiwata, and Kako Yajima. "Influence of Nozzle Aspect Ratio and Orientation on Flow Characteristics of Multiple Elliptic Jets." In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-5255.
Full textChoi, Young-Do, Jea-Ik Lim, You-Taek Kim, and Young-Ho Lee. "Internal Flow Characteristics of Cross-Flow Hydraulic Turbine With the Variation of Nozzle Shape." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37541.
Full textSom, Sibendu, and Douglas E. Longman. "Nozzle Flow Characteristics of Alternate Fuels for Compression Ignition Engine Applications." In ASME 2012 Internal Combustion Engine Division Spring Technical Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ices2012-81078.
Full textTomita, Takeo, Mamoru Takahashi, and Masaki Sasaki. "Investigation on Characteristics of Conventional-Nozzle-Based Altitude Compensating Nozzles by Cold-Flow Tests (II) Side-Load Characteristics During Transition." In 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-5472.
Full textOrakwe, P. A., D. A. Johnson, and E. J. Weckman. "Examination of Welding Nozzle Jet Flow at Cold Flow Conditions." In ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31375.
Full textUmeda, S., S. Manmoto, and K. Horii. "Characteristics of Ambivalent Flows in Diamond-Shaped Cylinder Bundles With Slit Flow." In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77410.
Full textReports on the topic "Nozzle flow characteristics"
Duignan, M. R., and C. P. May. Final data report: Plenum-Nozzle Flow Characteristics Experiment. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10107051.
Full textGrossir, Guillaume. On the design of quiet hypersonic wind tunnels. Von Karman Institute for Fluid Dynamics, December 2020. http://dx.doi.org/10.35294/tm57.
Full text