Journal articles on the topic 'Nozzle guide vane'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nozzle guide vane.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Plante, Robert D. "The Nozzle Guide Vane Problem." Operations Research 36, no. 1 (February 1988): 18–33. http://dx.doi.org/10.1287/opre.36.1.18.
Full textYang, Dengfeng, Ce Yang, Dazhong Lao, and Tao Zeng. "A detailed investigation of a variable nozzle turbine with novel forepart rotation guide vane." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233, no. 4 (February 25, 2018): 994–1007. http://dx.doi.org/10.1177/0954407018757244.
Full textShaikh, Faisal, and Budimir Rosic. "Unsteady phenomena at the combustor-turbine interface." Journal of the Global Power and Propulsion Society 5 (November 23, 2021): 202–15. http://dx.doi.org/10.33737/jgpps/143042.
Full textYang, Dengfeng, Kai Wang, Huaiyu Wang, Qian Zhang, Xinguo Lei, and Leon Hu. "An Investigation of the Performance and Internal Flow of Variable Nozzle Turbines with Split Sliding Guide Vanes." Machines 10, no. 11 (November 16, 2022): 1084. http://dx.doi.org/10.3390/machines10111084.
Full textBalakrishnan, Anantaram, Robert Plante, and Richard Wong. "The nozzle guide vane problem: Partitioning a heterogeneous inventory." European Journal of Operational Research 35, no. 3 (June 1988): 328–38. http://dx.doi.org/10.1016/0377-2217(88)90223-8.
Full textPujari, Arun Kumar, B. V. S. S. S. Prasad, and Nekkanti Sitaram. "Conjugate Heat Transfer Analysis on the Interior Surface of Nozzle Guide Vane with Combined Impingement and Film Cooling." International Journal of Turbo & Jet-Engines 37, no. 4 (November 18, 2020): 327–42. http://dx.doi.org/10.1515/tjj-2017-0026.
Full textSargison, J. E., S. M. Guo, M. L. G. Oldfield, G. D. Lock, and A. J. Rawlinson. "A Converging Slot-Hole Film-Cooling Geometry—Part 2: Transonic Nozzle Guide Vane Heat Transfer and Loss." Journal of Turbomachinery 124, no. 3 (July 1, 2002): 461–71. http://dx.doi.org/10.1115/1.1459736.
Full textKrishnamoorthy, V., B. R. Pai, and S. P. Sukhatme. "Influence of Upstream Flow Conditions on the Heat Transfer to Nozzle Guide Vanes." Journal of Turbomachinery 110, no. 3 (July 1, 1988): 412–16. http://dx.doi.org/10.1115/1.3262212.
Full textFlaszynski, Pawel, Michal Piotrowicz, and Tommaso Bacci. "Clocking and Potential Effects in Combustor–Turbine Stator Interactions." Aerospace 8, no. 10 (October 2, 2021): 285. http://dx.doi.org/10.3390/aerospace8100285.
Full textBaines, N. C., M. L. G. Oldfield, J. P. Simons, and J. M. Wright. "The Aerodynamic Development of a Highly Loaded Nozzle Guide Vane." Journal of Turbomachinery 108, no. 2 (October 1, 1986): 261–68. http://dx.doi.org/10.1115/1.3262046.
Full textBarringer, M. D., O. T. Richard, J. P. Walter, S. M. Stitzel, and K. A. Thole. "Flow Field Simulations of a Gas Turbine Combustor." Journal of Turbomachinery 124, no. 3 (July 1, 2002): 508–16. http://dx.doi.org/10.1115/1.1475742.
Full textHarasgama, S. P., and E. T. Wedlake. "Heat Transfer and Aerodynamics of a High Rim Speed Turbine Nozzle Guide Vane Tested in the RAE Isentropic Light Piston Cascade (ILPC)." Journal of Turbomachinery 113, no. 3 (July 1, 1991): 384–91. http://dx.doi.org/10.1115/1.2927887.
Full textJenkins, Sean, Krishnakumar Varadarajan, and David G. Bogard. "The Effects of High Mainstream Turbulence and Turbine Vane Film Cooling on the Dispersion of a Simulated Hot Streak." Journal of Turbomachinery 126, no. 1 (January 1, 2004): 203–11. http://dx.doi.org/10.1115/1.1643911.
Full textBoletis, E. "Effects of Tip Endwall Contouring on the Three-Dimensional Flow Field in an Annular Turbine Nozzle Guide Vane: Part 1—Experimental Investigation." Journal of Engineering for Gas Turbines and Power 107, no. 4 (October 1, 1985): 983–90. http://dx.doi.org/10.1115/1.3239845.
Full textSato, K., and L. He. "Numerical investigation into the effects of a radial gap on hydraulic turbine performance." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 215, no. 1 (February 1, 2001): 99–107. http://dx.doi.org/10.1243/0957650011536462.
Full textSznajder, Janusz. "Simulations of Hot-Gas Flow in Internally Cooled Cascade of Turbine Vanes." Journal of KONES 26, no. 2 (June 1, 2019): 151–58. http://dx.doi.org/10.2478/kones-2019-0044.
Full textSanaye, Sepehr, and Salahadin Hosseini. "Off-design performance improvement of twin-shaft gas turbine by variable geometry turbine and compressor besides fuel control." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 234, no. 7 (December 3, 2019): 957–80. http://dx.doi.org/10.1177/0957650919887888.
Full textDuan, Franklin Li, Ziyi Xie, Zhonglin Ji, and Haotian Weng. "Robust Thin-Film Temperature Sensors Embedded on Nozzle Guide Vane Surface." AIAA Journal 58, no. 4 (April 2020): 1441–45. http://dx.doi.org/10.2514/1.j058854.
Full textZheng, Xin-qian, Tao Du, and Yang-jun Zhang. "Prediction of thermal fatigue life of a turbine nozzle guide vane." Journal of Zhejiang University-SCIENCE A 12, no. 3 (March 2011): 214–22. http://dx.doi.org/10.1631/jzus.a1000233.
Full textWedlake, E. T., A. J. Brooks, and S. P. Harasgama. "Aerodynamic and Heat Transfer Measurements on a Transonic Nozzle Guide Vane." Journal of Turbomachinery 111, no. 1 (January 1, 1989): 36–42. http://dx.doi.org/10.1115/1.3262234.
Full textHarvey, N. W., M. G. Rose, J. Coupland, and T. V. Jones. "Measurement and Calculation of Nozzle Guide Vane End Wall Heat Transfer." Journal of Turbomachinery 121, no. 2 (April 1, 1999): 184–90. http://dx.doi.org/10.1115/1.2841300.
Full textYavari, Hadi, Ali Khavari, Mohammad Alizadeh, Behrad Kashfi, and Hiwa Khaledi. "Aero-thermal redesign of a high pressure turbine nozzle guide vane." Propulsion and Power Research 8, no. 4 (December 2019): 310–19. http://dx.doi.org/10.1016/j.jppr.2019.01.012.
Full textWang, Wei, Jianmin Gao, Xiaojun Shi, and Liang Xu. "Cooling performance analysis of steam cooled gas turbine nozzle guide vane." International Journal of Heat and Mass Transfer 62 (July 2013): 668–79. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.02.080.
Full textRobak, R., M. Szczepanik, and S. Rulik. "Frequency optimization of nozzle guide vane in the low-pressure turbine system." IOP Conference Series: Materials Science and Engineering 1235, no. 1 (March 1, 2022): 012046. http://dx.doi.org/10.1088/1757-899x/1235/1/012046.
Full textReddy Kukutla, Pol, and BVSSS Prasad. "Network analysis of a coolant flow performance for the combined impingement and film cooled first-stage of high pressure gas turbine nozzle guide vane." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 6 (April 16, 2018): 1977–89. http://dx.doi.org/10.1177/0954410018767290.
Full textMustafa, Alaaeldin H. "Failure Analysis of Heavy Industrial Gas Turbine Engine First Stage Nozzel Guide Vane." Advanced Materials Research 445 (January 2012): 1047–52. http://dx.doi.org/10.4028/www.scientific.net/amr.445.1047.
Full textZaidi, Sohail H., and Robin L. Elder. "Flow Studies using Laser Anemometry Technique in a Small Power Unit Radial Inflow Turbine." International Journal of Rotating Machinery 3, no. 2 (1997): 107–15. http://dx.doi.org/10.1155/s1023621x97000110.
Full textFroissart, Marcin, and Tomasz Ochrymiuk. "Thermal-Fluid–Solid Coupling—Parametrical Numerical Analysis of Hot Turbine Nozzle Guide Vane." Materials 14, no. 23 (November 29, 2021): 7313. http://dx.doi.org/10.3390/ma14237313.
Full textAmes, F. E., M. Argenziano, and C. Wang. "Measurement and Prediction of Heat Transfer Distributions on an Aft-Loaded Vane Subjected to the Influence of Catalytic and Dry Low NOx Combustor Turbulence." Journal of Turbomachinery 126, no. 1 (January 1, 2004): 139–49. http://dx.doi.org/10.1115/1.1645867.
Full textHe, H. B., F. F. Duan, and G. C. Li. "Experimental Study on Overall Cooling Effectiveness of Turbine Nozzle Guide Vane with Impingement-Cutback Structure." Journal of Applied Fluid Mechanics 16, no. 2 (February 1, 2023): 223–31. http://dx.doi.org/10.47176/jafm.16.02.1259.
Full textGaur, Ritesh, S. Ganesan, and B. V. S. S. S. Prasad. "Comparative Performance of New Surface Roughness Element and Pin fin in Converging Channel for Gas Turbine Application." Defence Science Journal 71, no. 4 (July 1, 2021): 429–35. http://dx.doi.org/10.14429/dsj.71.15394.
Full textLiu, Zhi Gang, Xiang Jun Fang, Si Yong Liu, Ping Wang, and Zhao Yin. "Research of Aerodynamic Performance of HP-Turbine with Coolant Injections for Variable Cycle Engine." Applied Mechanics and Materials 110-116 (October 2011): 1047–53. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.1047.
Full textQiang, Wang, Guo Zhaoyuan, Zhou Chi, Feng Guotai, and Wang Zhongqi. "Coupled Heat Transfer Simulation of a High-pressure Turbine Nozzle Guide Vane." Chinese Journal of Aeronautics 22, no. 3 (June 2009): 230–36. http://dx.doi.org/10.1016/s1000-9361(08)60092-8.
Full textPiotrowicz, Michal, Pawel Flaszynski, and Piotr Doerffer. "Effect of Hot Spot Location on Flow Structure in Nozzle Guide Vane." Journal of Physics: Conference Series 1101 (October 2018): 012025. http://dx.doi.org/10.1088/1742-6596/1101/1/012025.
Full textAmes, Forrest E., Chao Wang, and Pierre A. Barbot. "Measurement and Prediction of the Influence of Catalytic and Dry Low NOx Combustor Turbulence on Vane Surface Heat Transfer." Journal of Turbomachinery 125, no. 2 (April 1, 2003): 221–31. http://dx.doi.org/10.1115/1.1559898.
Full textZhang, Yi, Zhu Ma Yu, Xiao Dong Zheng, and Xuan Du. "Optimization Design on Variable Cycle Engine Performance Based on Genetic Algorithm." Advanced Materials Research 940 (June 2014): 120–23. http://dx.doi.org/10.4028/www.scientific.net/amr.940.120.
Full textJenkins, Sean C., and David G. Bogard. "Scaling of Guide Vane Coolant Profiles and the Reduction of a Simulated Hot Streak." Journal of Turbomachinery 129, no. 3 (August 8, 2006): 619–27. http://dx.doi.org/10.1115/1.2447803.
Full textYang, Dengfeng, Ce Yang, Leon Hu, J. James Yi, Eric Curtis, and Margaret S. Wooldridge. "Numerical investigation of the split sliding guide vane for a variable nozzle turbine." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233, no. 8 (April 23, 2018): 2074–84. http://dx.doi.org/10.1177/0954407018768663.
Full textJiang, Leiyong, Xijia Wu, and Zhong Zhang. "Conjugate Heat Transfer of an Internally Air-Cooled Nozzle Guide Vane and Shrouds." Advances in Mechanical Engineering 6 (January 1, 2014): 146523. http://dx.doi.org/10.1155/2014/146523.
Full textRobak, Rafał, Mirosław Szczepanik, and Sebastian Rulik. "Parametric Optimization of Nozzle Turbine Vane Modal Characteristics by Means of Artificial System." Applied Sciences 12, no. 19 (September 27, 2022): 9724. http://dx.doi.org/10.3390/app12199724.
Full textPovey, T., K. S. Chana, and T. V. Jones. "Heat transfer measurements on an intermediate-pressure nozzle guide vane tested in a rotating annular turbine facility, and the modifying effects of a non-uniform inlet temperature profile." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 217, no. 4 (January 1, 2003): 421–31. http://dx.doi.org/10.1243/095765003322315487.
Full textRowbury, D. A., M. L. G. Oldfield, and G. D. Lock. "A Method for Correlating the Influence of External Crossflow on the Discharge Coefficients of Film Cooling Holes." Journal of Turbomachinery 123, no. 2 (February 1, 2000): 258–65. http://dx.doi.org/10.1115/1.1354137.
Full textWang, Zhihui, Chaochen Ma, Zhi Huang, Liyong Huang, Xiang Liu, and Zhihong Wang. "A novel variable geometry turbine achieved by elastically restrained nozzle guide vanes." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 234, no. 9 (April 8, 2020): 2312–29. http://dx.doi.org/10.1177/0954407020909662.
Full textWatt, R. M., J. L. Allen, N. C. Baines, J. P. Simons, and M. George. "A Study of the Effects of Thermal Barrier Coating Surface Roughness on the Boundary Layer Characteristics of Gas Turbine Aerofoils." Journal of Turbomachinery 110, no. 1 (January 1, 1988): 88–93. http://dx.doi.org/10.1115/1.3262172.
Full textDossena, V., A. Perdichizzi, and M. Savini. "The Influence of Endwall Contouring on the Performance of a Turbine Nozzle Guide Vane." Journal of Turbomachinery 121, no. 2 (April 1, 1999): 200–208. http://dx.doi.org/10.1115/1.2841302.
Full textCeci, Alessandro, Romain Gojon, and Mihai Mihaescu. "Large Eddy Simulations for Indirect Combustion Noise Assessment in a Nozzle Guide Vane Passage." Flow, Turbulence and Combustion 102, no. 2 (August 21, 2018): 299–311. http://dx.doi.org/10.1007/s10494-018-9964-9.
Full textZess, G. A., and K. A. Thole. "Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane." Journal of Turbomachinery 124, no. 2 (April 1, 2002): 167–75. http://dx.doi.org/10.1115/1.1460914.
Full textWang, Zhihui, Chaochen Ma, Hang Zhang, and Fei Zhu. "A novel pulse-adaption flow control method for a turbocharger turbine: Elastically restrained guide vane." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, no. 13 (March 2, 2020): 2581–94. http://dx.doi.org/10.1177/0954406220908623.
Full text,, Rendi, and Budi Hartadi. "PENGARUH PENAMBAHAN NOZZLE GUIDE VANE PADA ROTOR SAVONIUS MODIFIKASI UNTUK TURBIN AIR." AL-JAZARI JURNAL ILMIAH TEKNIK MESIN 3, no. 1 (August 18, 2018). http://dx.doi.org/10.31602/al-jazari.v3i1.1396.
Full textBojdo, Nicholas, Matthew Ellis, Antonio Filippone, Merren Jones, and Alison Pawley. "Particle-Vane Interaction Probability in Gas Turbine Engines." Journal of Turbomachinery 141, no. 9 (June 18, 2019). http://dx.doi.org/10.1115/1.4043953.
Full text