To see the other types of publications on this topic, follow the link: Nrf2-mediated antioxidant response.

Journal articles on the topic 'Nrf2-mediated antioxidant response'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nrf2-mediated antioxidant response.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Li, Wenge, and Ah-Ng Kong. "Molecular mechanisms of Nrf2-mediated antioxidant response." Molecular Carcinogenesis 48, no. 2 (2009): 91–104. http://dx.doi.org/10.1002/mc.20465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sun, Zheng, Y. Eugene Chin, and Donna D. Zhang. "Acetylation of Nrf2 by p300/CBP Augments Promoter-Specific DNA Binding of Nrf2 during the Antioxidant Response." Molecular and Cellular Biology 29, no. 10 (2009): 2658–72. http://dx.doi.org/10.1128/mcb.01639-08.

Full text
Abstract:
ABSTRACT To maintain intracellular redox homeostasis, genes encoding many antioxidants and detoxification enzymes are transcriptionally upregulated upon deleterious oxidative stress through the cis antioxidant responsive elements (AREs) in their promoter regions. Nrf2 is the critical transcription factor responsible for ARE-dependent transcription. We and others have previously demonstrated that Nrf2 is targeted for ubiquitin-mediated degradation by Keap1 in a redox-sensitive manner through modifications of distinct cysteine residues of Keap1. Here, we report that p300/CBP directly acetylates Nrf2 in response to arsenite-induced stress. We have identified multiple acetylated lysine residues within the Nrf2 Neh1 DNA-binding domain. Combined lysine-to-arginine mutations on the acetylation sites, with no effects on Nrf2 protein stability, compromised the DNA-binding activity of Nrf2 in a promoter-specific manner. These findings demonstrated that acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 and established acetylation as a novel regulatory mechanism that functions in concert with Keap1-mediated ubiquitination in modulating the Nrf2-dependent antioxidant response.
APA, Harvard, Vancouver, ISO, and other styles
3

Chhunchha, Bhavana, Eri Kubo, and Dhirendra P. Singh. "Obligatory Role of AMPK Activation and Antioxidant Defense Pathway in the Regulatory Effects of Metformin on Cellular Protection and Prevention of Lens Opacity." Cells 11, no. 19 (2022): 3021. http://dx.doi.org/10.3390/cells11193021.

Full text
Abstract:
Increasing levels of oxidative-stress due to deterioration of the Nrf2 (NFE2-related factor)/ARE (antioxidant response element) pathway is found to be a primary cause of aging pathobiology. Metformin having anti-aging effects can delay/halt aging-related diseases. Herein, using lens epithelial cell lines (LECs) of human (h) or mouse (m) and aging h/m primary LECs along with lenses as model systems, we demonstrated that Metformin could correct deteriorated Bmal1/Nrf2/ARE pathway by reviving AMPK-activation, and transcriptional activities of Bmal1/Nrf2, resulting in increased antioxidants enzymatic activity and expression of Phase II enzymes. This ensued reactive oxygen species (ROS) mitigation with cytoprotection and prevention of lens opacity in response to aging/oxidative stress. It was intriguing to observe that Metformin internalized lens/LECs and upregulated OCTs (Organic Cation Transporters). Mechanistically, we found that Metformin evoked AMPK activation-dependent increase of Bmal1, Nrf2, and antioxidants transcription by promoting direct E-Box and ARE binding of Bmal1 and Nrf2 to the promoters. Loss-of-function and disruption of E-Box/ARE identified that Metformin acted by increasing Bmal1/Nrf2-mediated antioxidant expression. Data showed that AMPK-activation was a requisite for Bmal1/Nrf2-antioxidants-mediated defense, as pharmacologically inactivating AMPK impeded the Metformin’s effect. Collectively, the results for the first-time shed light on the hitherto incompletely uncovered crosstalk between the AMPK and Bmal1/Nrf2/antioxidants mediated by Metformin for blunting oxidative/aging-linked pathobiology.
APA, Harvard, Vancouver, ISO, and other styles
4

Banerjee, Nivedita, Hui Wang, Gangduo Wang, and M. Firoze Khan. "Enhancing the Nrf2 Antioxidant Signaling Provides Protection Against Trichloroethene-mediated Inflammation and Autoimmune Response." Toxicological Sciences 175, no. 1 (2020): 64–74. http://dx.doi.org/10.1093/toxsci/kfaa022.

Full text
Abstract:
Abstract Trichloroethene (trichloroethylene, TCE) and one of its reactive metabolites dichloroacetyl chloride (DCAC) are associated with the induction of autoimmunity in MRL+/+ mice. Although oxidative stress plays a major role in TCE-/DCAC-mediated autoimmunity, the underlying molecular mechanisms still need to be delineated. Nuclear factor (erythroid-derived 2)-like2 (Nrf2) is an oxidative stress-responsive transcription factor that binds to antioxidant responsive element (ARE) and provides protection by regulating cytoprotective and antioxidant gene expression. However, the potential of Nrf2 in the regulation of TCE-/DCAC-mediated autoimmunity is not known. This study thus focused on establishing the role of Nrf2 and consequent inflammatory responses in TCE-/DCAC-mediated autoimmunity. To achieve this, we pretreated Kupffer cells (KCs) or T cells with/without tert-butylhydroquinone (tBHQ) followed by treatment with DCAC. In both KCs and T cells, DCAC treatment significantly downregulated Nrf2 and HO-1 expression along with induction of Keap-1 and caspase-3, NF-κB (p65), TNF-α, and iNOS, whereas pretreatment of these cells with tBHQ attenuated these responses. The in vitro findings were further verified in vivo by treating female MRL+/+ mice with TCE along with/without sulforaphane. TCE exposure in mice also led to reduction in Nrf2 and HO-1 but increased phospho-NF-κB (p-p65) and iNOS along with increased anti-dsDNA antibodies. Interestingly, sulforaphane treatment led to amelioration of TCE-mediated effects, resulting in Nrf2 activation and reduction in inflammatory and autoimmune responses. Our results show that TCE/DCAC mediates an impairment in Nrf2 regulation. Attenuation of TCE-mediated autoimmunity via activation of Nrf2 supports that antioxidants sulforaphane/tBHQ could be potential therapeutic agents for autoimmune diseases.
APA, Harvard, Vancouver, ISO, and other styles
5

Kasai, Shuya, Sunao Shimizu, Yota Tatara, Junsei Mimura, and Ken Itoh. "Regulation of Nrf2 by Mitochondrial Reactive Oxygen Species in Physiology and Pathology." Biomolecules 10, no. 2 (2020): 320. http://dx.doi.org/10.3390/biom10020320.

Full text
Abstract:
Reactive oxygen species (ROS) are byproducts of aerobic respiration and signaling molecules that control various cellular functions. Nrf2 governs the gene expression of endogenous antioxidant synthesis and ROS-eliminating enzymes in response to various electrophilic compounds that inactivate the negative regulator Keap1. Accumulating evidence has shown that mitochondrial ROS (mtROS) activate Nrf2, often mediated by certain protein kinases, and induce the expression of antioxidant genes and genes involved in mitochondrial quality/quantity control. Mild physiological stress, such as caloric restriction and exercise, elicits beneficial effects through a process known as “mitohormesis”. Exercise induces NOX4 expression in the heart, which activates Nrf2 and increases endurance capacity. Mice transiently depleted of SOD2 or overexpressing skeletal muscle-specific UCP1 exhibit Nrf2-mediated antioxidant gene expression and PGC1α-mediated mitochondrial biogenesis. ATF4 activation may induce a transcriptional program that enhances NADPH synthesis in the mitochondria and might cooperate with the Nrf2 antioxidant system. In response to severe oxidative stress, Nrf2 induces Klf9 expression, which represses mtROS-eliminating enzymes to enhance cell death. Nrf2 is inactivated in certain pathological conditions, such as diabetes, but Keap1 down-regulation or mtROS elimination rescues Nrf2 expression and improves the pathology. These reports aid us in understanding the roles of Nrf2 in pathophysiological alterations involving mtROS.
APA, Harvard, Vancouver, ISO, and other styles
6

Fan, Xian, Bashar S. Staitieh, J. Spencer Jensen, et al. "Activating the Nrf2-mediated antioxidant response element restores barrier function in the alveolar epithelium of HIV-1 transgenic rats." American Journal of Physiology-Lung Cellular and Molecular Physiology 305, no. 3 (2013): L267—L277. http://dx.doi.org/10.1152/ajplung.00288.2012.

Full text
Abstract:
The master transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates the expression of antioxidant and phase II-metabolizing enzymes by activating the antioxidant response element (ARE) and thereby protects cells and tissues from oxidative stress. Pulmonary complications remain the leading cause of death in human immunodeficiency virus (HIV)-1-infected individuals, who display systemic oxidative stress and glutathione deficiency that can be modeled in transgenic rats where HIV-1-related viral proteins decrease glutathione levels and cause epithelial barrier dysfunction within the alveolar space by as yet unknown mechanisms. We hypothesized that HIV-1-related proteins inhibit Nrf2-mediated antioxidant defenses and thereby disrupt the normally tight alveolar epithelial barrier. Nrf2 RNA silencing dampened Nrf2/ARE activity, decreased the expression of the tight junction proteins zonula occludens-1, occludin, and claudin-18, increased paracellular permeability of alveolar epithelial monolayers derived from wild-type rats, and therefore reproduced the effects of HIV-1 transgene expression on the epithelial barrier that we had previously described. In contrast, upregulating Nrf2 activity, either by plasmid-mediated overexpression or treatment with the Nrf2 activator sulforaphane, increased the expression of ARE-dependent antioxidants, including NAD(P)H dehydrogenase, quinone 1 and glutathione, improved the expression of tight junction proteins, and restored the ability to form tight barriers in alveolar epithelial cells from HIV-1 transgenic rats. Taken together, these new findings argue that HIV-1-related proteins downregulate Nrf2 expression and/or activity within the alveolar epithelium, which in turn impairs antioxidant defenses and barrier function, thereby rendering the lung susceptible to oxidative stress and injury. Furthermore, this study suggests that activating the Nrf2/ARE pathway with the dietary supplement sulforaphane could augment antioxidant defenses and lung health in HIV-1-infected individuals.
APA, Harvard, Vancouver, ISO, and other styles
7

Alam, Md Morshedul, Keito Okazaki, Linh Thi Thao Nguyen, et al. "Glucocorticoid receptor signaling represses the antioxidant response by inhibiting histone acetylation mediated by the transcriptional activator NRF2." Journal of Biological Chemistry 292, no. 18 (2017): 7519–30. http://dx.doi.org/10.1074/jbc.m116.773960.

Full text
Abstract:
NRF2 (nuclear factor erythroid 2-related factor 2) is a key transcriptional activator that mediates the inducible expression of antioxidant genes. NRF2 is normally ubiquitinated by KEAP1 (Kelch-like ECH-associated protein 1) and subsequently degraded by proteasomes. Inactivation of KEAP1 by oxidative stress or electrophilic chemicals allows NRF2 to activate transcription through binding to antioxidant response elements (AREs) and recruiting histone acetyltransferase CBP (CREB-binding protein). Whereas KEAP1-dependent regulation is a major determinant of NRF2 activity, NRF2-mediated transcriptional activation varies from context to context, suggesting that other intracellular signaling cascades may impact NRF2 function. To identify a signaling pathway that modifies NRF2 activity, we immunoprecipitated endogenous NRF2 and its interacting proteins from mouse liver and identified glucocorticoid receptor (GR) as a novel NRF2-binding partner. We found that glucocorticoids, dexamethasone and betamethasone, antagonize diethyl maleate-induced activation of NRF2 target genes in a GR-dependent manner. Dexamethasone treatment enhanced GR recruitment to AREs without affecting chromatin binding of NRF2, resulting in the inhibition of CBP recruitment and histone acetylation at AREs. This repressive effect was canceled by the addition of histone deacetylase inhibitors. Thus, GR signaling decreases NRF2 transcriptional activation through reducing the NRF2-dependent histone acetylation. Consistent with these observations, GR signaling blocked NRF2-mediated cytoprotection from oxidative stress. This study suggests that an impaired antioxidant response by NRF2 and a resulting decrease in cellular antioxidant capacity account for the side effects of glucocorticoids, providing a novel viewpoint for the pathogenesis of hypercorticosteroidism.
APA, Harvard, Vancouver, ISO, and other styles
8

Garzón-Castaño, Sandra C., Iván A. Lopera-Castrillón, Francisco J. Jiménez-González, Fernando Siller-López, Luz A. Veloza, and Juan Carlos Sepúlveda-Arias. "Nrf2-Mediated Antioxidant Activity of the inner bark extracts obtained from Tabebuia rosea (Bertol) DC and Tabebuia chrysantha (JACQ) G. Nicholson." F1000Research 7 (December 16, 2018): 1937. http://dx.doi.org/10.12688/f1000research.17165.1.

Full text
Abstract:
Background: Several ethnobotanical and ethnopharmacological studies have shown the therapeutic potential of plants from the genus Tabebuia, which have long been used in traditional medicine in rural areas of South America, for the treatment of several human diseases. This study aimed to evaluate the Nrf2-mediated antioxidant activity of the inner bark extracts obtained from Tabebuia rosea and Tabebuia chrysantha. Methods: The antioxidant activity of extracts obtained from the inner bark of T. rosea and T. chrysantha was evaluated using the Oxygen radical absorbance capacity (ORAC) technique. The effect of extracts on the viability of HepG2 cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method. The translocation of Nrf2 to the nucleus after exposure of HepG2 cells to the extracts and controls (α-lipoic acid, curcumin and hydrogen peroxide) was evaluated using the Nrf2 transcription factor kit. Induction of the Nrf2-mediated antioxidant response gene (NQO1) was evaluated by real-time PCR. Results: The ethyl acetate extract obtained from both species displayed the highest ORAC activity (12,523 and 6,325 µmoles Eq Trolox/g extract, respectively). In addition, the extracts had the ability to activate and to translocate Nrf2 to the nucleus, as well as to induce the expression of NQO1. Conclusion: These results indicate that the ethyl acetate extracts obtained from the inner bark of T. chrysantha and T. rosea have an important antioxidant effect mediated by Nrf2 activation, and could be used as a new source of natural antioxidants.
APA, Harvard, Vancouver, ISO, and other styles
9

Garzón-Castaño, Sandra C., Iván A. Lopera-Castrillón, Francisco J. Jiménez-González, Fernando Siller-López, Luz A. Veloza, and Juan Carlos Sepúlveda-Arias. "Nrf2-Mediated Antioxidant Activity of the inner bark extracts obtained from Tabebuia rosea (Bertol) DC and Tabebuia chrysantha (JACQ) G. Nicholson." F1000Research 7 (February 12, 2019): 1937. http://dx.doi.org/10.12688/f1000research.17165.2.

Full text
Abstract:
Background: Several ethnobotanical and ethnopharmacological studies have shown the therapeutic potential of plants from the genus Tabebuia, which have long been used in traditional medicine in rural areas of South America, for the treatment of several human diseases. This study aimed to evaluate the Nrf2-mediated antioxidant activity of the inner bark extracts obtained from Tabebuia rosea and Tabebuia chrysantha. Methods: The antioxidant activity of extracts obtained from the inner bark of T. rosea and T. chrysantha was evaluated using the Oxygen radical absorbance capacity (ORAC) technique. The effect of extracts on the viability of HepG2 cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method. The translocation of Nrf2 to the nucleus after exposure of HepG2 cells to the extracts and controls (α-lipoic acid, curcumin and hydrogen peroxide) was evaluated using the Nrf2 transcription factor kit. Induction of the Nrf2-mediated antioxidant response gene (NQO1) was evaluated by real-time PCR. Results: The ethyl acetate extract obtained from both species displayed the highest ORAC activity (12,523 and 6,325 µmoles Eq Trolox/g extract). In addition, the extracts had the ability to activate and to translocate Nrf2 to the nucleus, as well as to induce the expression of NQO1. Conclusion: These results indicate that the ethyl acetate extracts obtained from the inner bark of T. chrysantha and T. rosea have an important antioxidant effect mediated by Nrf2 activation, and could be used as a new source of natural antioxidants.
APA, Harvard, Vancouver, ISO, and other styles
10

Xue, Peng, Xiangxiang Hu, Emily Chang, et al. "Deficiency of optineurin enhances osteoclast differentiation by attenuating the NRF2-mediated antioxidant response." Experimental & Molecular Medicine 53, no. 4 (2021): 667–80. http://dx.doi.org/10.1038/s12276-021-00596-w.

Full text
Abstract:
AbstractAbnormally increased resorption contributes to bone degenerative diseases such as Paget’s disease of bone (PDB) through unclear mechanisms. Recently, the optineurin (OPTN) gene has been implicated in PDB, and global OPTN knockout mice (Optn−/−) were shown to exhibit increased formation of osteoclasts (osteoclastogenesis). Growing evidence, including our own, has demonstrated that intracellular reactive oxygen species (ROS) stimulated by receptor activator of nuclear factor kappa-B ligand (RANKL) can act as signaling molecules to promote osteoclastogenesis. Here, we report that OPTN interacts with nuclear factor erythroid-derived factor 2-related factor 2 (NRF2), the master regulator of the antioxidant response, defining a pathway through which RANKL-induced ROS could be regulated for osteoclastogenesis. In this study, monocytes from Optn−/− and wild-type (Optn+/+) mice were utilized to differentiate into osteoclasts, and both qRT-PCR and tartrate-resistant acid phosphatase (TRAP) staining showed that the Optn−/− monocytes exhibited enhanced osteoclastogenesis compared to the Optn+/+ cells. CellROX® staining, qRT-PCR, and Western blotting indicated that OPTN deficiency reduced the basal expression of Nrf2, inhibited the expression of NRF2-responsive antioxidants, and increased basal and RANKL-induced intracellular ROS levels, leading to enhanced osteoclastogenesis. Coimmunoprecipitation (co-IP) showed direct interaction, and immunofluorescence staining showed perinuclear colocalization of the OPTN-NRF2 granular structures during differentiation. Finally, curcumin and the other NRF2 activators attenuated the hyperactive osteoclastogenesis induced by OPTN deficiency. Collectively, our findings reveal a novel OPTN-mediated mechanism for regulating the NRF2-mediated antioxidant response in osteoclasts and extend the therapeutic potential of OPTN in the aging process resulting from ROS-triggered oxidative stress, which is associated with PDB and many other degenerative diseases.
APA, Harvard, Vancouver, ISO, and other styles
11

McIntosh, Deneshia J., Treniqka S. Walters, Ifeanyi J. Arinze, and Jamaine Davis. "Arkadia (RING Finger Protein 111) Mediates Sumoylation-Dependent Stabilization of Nrf2 Through K48-Linked Ubiquitination." Cellular Physiology and Biochemistry 46, no. 1 (2018): 418–30. http://dx.doi.org/10.1159/000488475.

Full text
Abstract:
Background/Aims: The transcription factor Nrf2 is a master regulator of the antioxidant defense system, protecting cells from oxidative damage. We previously reported that the SUMO-targeted E3 ubiquitin ligase (STUbL), RING finger protein 4 (RNF4) accelerated the degradation rate of Nrf2 in promyelocytic leukemia-nuclear body (PML-NB)-enriched fractions and decreased Nrf2-mediated gene transcription. The mechanisms that regulate Nrf2 nuclear levels are poorly understood. In this study, we aim to explore the role of the second mammalian STUbL, Arkadia/RNF111 on Nrf2. Methods: Arkadia mediated ubiquitination was detected using co-immunoprecipitation assays in which whole cell lysates were immunoprecipated with anti-Nrf2 antibody and Western blotted with anti-hemagglutinin (HA) antibody or anti-Lys-48 ubiquitin-specific antibody. The half-life of Nrf2 was detected in whole cell lysates and promyelocytic leukemia-nuclear body enriched fractions by cycloheximide-chase. Reporter gene assays were performed using the antioxidant response element (ARE)-containing promoter Heme oxygenase-1 (HO-1). Results: We show that Arkadia/RNF111 is able to ubiquitinate Nrf2 resulting in the stabilization of Nrf2. This stabilization was mediated through Lys-48 ubiquitin chains, contrary to traditionally degradative role of Lys-48 ubiquitination, suggesting that Lys-48 ubiquitination of Nrf2 protects Nrf2 from degradation thereby allowing Nrf2-dependent gene transcription. Conclusion: Collectively, these findings highlight a novel mechanism to positively regulate nuclear Nrf2 levels in response to oxidative stress through Arkadia-mediated K48-linked ubiquitination of Nrf2.
APA, Harvard, Vancouver, ISO, and other styles
12

Zhao, Hailin, Shiori Eguchi, Azeem Alam, and Daqing Ma. "The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury." American Journal of Physiology-Lung Cellular and Molecular Physiology 312, no. 2 (2017): L155—L162. http://dx.doi.org/10.1152/ajplung.00449.2016.

Full text
Abstract:
Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a ubiquitous master transcription factor that upregulates antioxidant response elements (AREs)-mediated expression of antioxidant enzyme and cytoprotective proteins. Activation of Nrf2 has been shown to be protective against lung injury. In the lung, diverse stimuli including environmental oxidants, medicinal agents, and pathogens can activate Nrf2. Nrf2 translocates to the nucleus and binds to an ARE. Through transcriptional induction of ARE-bearing genes encoding antioxidant-detoxifying proteins, Nrf2 induces cellular rescue pathways against oxidative pulmonary injury, abnormal inflammatory and immune responses, and apoptosis. The Nrf2-antioxidant pathway has been shown to be important in the protection against various lung injuries including acute lung injury/acute respiratory distress syndrome and bronchopulmonary dysplasia, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, asthma, and allergy and was widely examined for new therapeutic targets. The present review explores the protective role of Nrf-2 against lung injury and the therapeutic potential in targeting Nrf-2.
APA, Harvard, Vancouver, ISO, and other styles
13

De Plano, Laura Maria, Giovanna Calabrese, Maria Giovanna Rizzo, Salvatore Oddo, and Antonella Caccamo. "The Role of the Transcription Factor Nrf2 in Alzheimer’s Disease: Therapeutic Opportunities." Biomolecules 13, no. 3 (2023): 549. http://dx.doi.org/10.3390/biom13030549.

Full text
Abstract:
Alzheimer’s disease (AD) is a common neurodegenerative disorder that affects the elderly. One of the key features of AD is the accumulation of reactive oxygen species (ROS), which leads to an overall increase in oxidative damage. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a master regulator of the antioxidant response in cells. Under low ROS levels, Nrf2 is kept in the cytoplasm. However, an increase in ROS production leads to a translocation of Nrf2 into the nucleus, where it activates the transcription of several genes involved in the cells’ antioxidant response. Additionally, Nrf2 activation increases autophagy function. However, in AD, the accumulation of Aβ and tau reduces Nrf2 levels, decreasing the antioxidant response. The reduced Nrf2 levels contribute to the further accumulation of Aβ and tau by impairing their autophagy-mediated turnover. In this review, we discuss the overwhelming evidence indicating that genetic or pharmacological activation of Nrf2 is as a potential approach to mitigate AD pathology.
APA, Harvard, Vancouver, ISO, and other styles
14

Zhang, Qiang, Jingbo Pi, Courtney G. Woods, and Melvin E. Andersen. "A systems biology perspective on Nrf2-mediated antioxidant response." Toxicology and Applied Pharmacology 244, no. 1 (2010): 84–97. http://dx.doi.org/10.1016/j.taap.2009.08.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Campbell, Michelle R., Mehmet Karaca, Kelly N. Adamski, Brian N. Chorley, Xuting Wang, and Douglas A. Bell. "Novel Hematopoietic Target Genes in the NRF2-Mediated Transcriptional Pathway." Oxidative Medicine and Cellular Longevity 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/120305.

Full text
Abstract:
Nuclear factor- (erythroid-derived 2) like 2 (NFE2L2, NRF2) is a key transcriptional activator of the antioxidant response pathway and is closely related to erythroid transcription factorNFE2. Under oxidative stress, NRF2 heterodimerizes with small Maf proteins and binds cis-acting enhancer sequences found near oxidative stress response genes. Using the dietary isothiocyanate sulforaphane (SFN) to activate NRF2, chromatin immunoprecipitation sequencing (ChIP-seq) identified several hundred novel NRF2-mediated targets beyond its role in oxidative stress. Activated NRF2 bound the antioxidant response element (ARE) in promoters of several known and novel target genes involved in iron homeostasis and heme metabolism, including known targetsFTLandFTH1, as well as novel binding in the globin locus control region. Five novel NRF2 target genes were chosen for followup:AMBP, ABCB6, FECH, HRG-1 (SLC48A1), andTBXAS1. SFN-induced gene expression in erythroid K562 and lymphoid cells were compared for each target gene. NRF2 silencing showed reduced expression in lymphoid, lung, and hepatic cells. Furthermore, stable knockdown of NRF2 negative regulator KEAP1 in K562 cells resulted in increasedNQO1, AMBP, andTBXAS1expression. NFE2 binding sites in K562 cells revealed similar binding profiles as lymphoid NRF2 sites in all potential NRF2 candidates supporting a role forNRF2in heme metabolism and erythropoiesis.
APA, Harvard, Vancouver, ISO, and other styles
16

Rangasamy, Tirumalai, Jia Guo, Wayne A. Mitzner, et al. "Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice." Journal of Experimental Medicine 202, no. 1 (2005): 47–59. http://dx.doi.org/10.1084/jem.20050538.

Full text
Abstract:
Oxidative stress has been postulated to play an important role in the pathogenesis of asthma; although a defect in antioxidant responses has been speculated to exacerbate asthma severity, this has been difficult to demonstrate with certainty. Nuclear erythroid 2 p45-related factor 2 (Nrf2) is a redox-sensitive basic leucine zipper transcription factor that is involved in the transcriptional regulation of many antioxidant genes. We show that disruption of the Nrf2 gene leads to severe allergen-driven airway inflammation and hyperresponsiveness in mice. Enhanced asthmatic response as a result of ovalbumin sensitization and challenge in Nrf2-disrupted mice was associated with more pronounced mucus cell hyperplasia and infiltration of eosinophils into the lungs than seen in wild-type littermates. Nrf2 disruption resulted in an increased expression of the T helper type 2 cytokines interleukin (IL)-4 and IL-13 in bronchoalveolar lavage fluid and in splenocytes after allergen challenge. The enhanced severity of the asthmatic response from disruption of the Nrf2 pathway was a result of a lowered antioxidant status of the lungs caused by lower basal expression, as well as marked attenuation, of the transcriptional induction of multiple antioxidant genes. Our studies suggest that the responsiveness of Nrf2-directed antioxidant pathways may act as a major determinant of susceptibility to allergen-mediated asthma.
APA, Harvard, Vancouver, ISO, and other styles
17

Zhu, Xingguo, Caixia Xi, Bobby Thomas, and Betty S. Pace. "Loss of NRF2 function exacerbates the pathophysiology of sickle cell disease in a transgenic mouse model." Blood 131, no. 5 (2018): 558–62. http://dx.doi.org/10.1182/blood-2017-10-810531.

Full text
Abstract:
Key Points NRF2 knockout inhibits fetal hemoglobin expression during gestational erythropoiesis in SCD mice. Loss of the cellular antioxidant response mediated by NRF2 exacerbates spleen damage, inflammation, and oxidative stress in SCD mice.
APA, Harvard, Vancouver, ISO, and other styles
18

Kim, Eun Kyung, Ji Hoon Kim, Soyeon Jeong, et al. "Pachypodol, a Methoxyflavonoid Isolated from Pogostemon cablin Bentham Exerts Antioxidant and Cytoprotective Effects in HepG2 Cells: Possible Role of ERK-Dependent Nrf2 Activation." International Journal of Molecular Sciences 20, no. 17 (2019): 4082. http://dx.doi.org/10.3390/ijms20174082.

Full text
Abstract:
Oxidative stress has been implicated in the pathogenesis of many diseases including chronic liver diseases. Nrf2 is a master transcriptional factor regulating the induction of cellular antioxidant defense systems. Here, the Nrf2-activating effect of the crude methanol extract of dried leaves of Pogostemon cablin Bentham was demonstrated by measuring the antioxidant response element (ARE)-driven luciferase activity and pachypodol, 4′,5-dihydroxy-3,3′,7-trimethoxyflavone, was isolated by bioactivity-guided fractionation and further separation using chromatographic techniques. To our knowledge, this is the first study to evaluate the antioxidant and cytoprotective effects of pachypodol in HepG2 cells as well as the underlying molecular mechanisms. Indeed, pachypodol protected HepG2 cells from cell death caused by tert-butylhydroperoxide-induced oxidative stress and also attenuated ROS production. The ability of pachypodol to activate Nrf2/ARE pathway was further confirmed by observing Nrf2 expression in nuclear fraction, mRNA levels of Nrf2 target antioxidants, and cellular glutathione content in HepG2 cells. Extracellular signal-regulated kinase (ERK) is one of the important kinases involved in Nrf2 activation. Pachypodol increased ERK phosphorylation and ERK inhibition by PD98059 totally abrogated the increase in ARE luciferase activity, nuclear Nrf2 accumulation and mRNA levels of antioxidant enzymes by pachypodol. In conclusion, pachypodol isolated from P. cablin can protect hepatocytes from oxidative injury, possibly mediated by enhancing endogenous antioxidant defense system through ERK-dependent Nrf2 activation.
APA, Harvard, Vancouver, ISO, and other styles
19

Vargas-Mendoza, Nancy, Ángel Morales-González, Eduardo Osiris Madrigal-Santillán, et al. "Antioxidant and Adaptative Response Mediated by Nrf2 during Physical Exercise." Antioxidants 8, no. 6 (2019): 196. http://dx.doi.org/10.3390/antiox8060196.

Full text
Abstract:
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a powerful nuclear transcription factor that coordinates an antioxidant cytoprotector system complex stimulated by the increase in inoxidative stress (OS). In the present manuscript, we conduct a review on the evidence that shows the effect different modalities of physical exercise exert on the antioxidant metabolic response directed by Nrf2. During physical exercise, the reactive oxygen species (ROS) are increased; therefore, if the endogenous and exogenous antioxidant defenses are unable to control the elevation of ROS, the resulting OS triggers the activation of the transcriptional factor Nrf2 to induce the antioxidant response. On a molecular basis related to physical exercise, hormesis maintenance (exercise preconditioning) and adaptative changes in training are supported by a growing body of evidence, which is important for detailing the health benefits that involve greater resistance to environmental aggressions, better tolerance to constant changes, and increasing the regenerative capacity of the cells in such a way that it may be used as a tool to support the prevention or treatment of diseases. This may have clinical implications for future investigations regarding physical exercise in terms of understanding adaptations in high-performance athletes but also as a therapeutic model in several diseases.
APA, Harvard, Vancouver, ISO, and other styles
20

Baiskhanova, Dinara, and Heiner Schäfer. "The Role of Nrf2 in the Regulation of Mitochondrial Function and Ferroptosis in Pancreatic Cancer." Antioxidants 13, no. 6 (2024): 696. http://dx.doi.org/10.3390/antiox13060696.

Full text
Abstract:
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) represents the master regulator of the cellular antioxidant response and plays a critical role in tumorigenesis. This includes a preventive effect of Nrf2 on cell death through ferroptosis, which represents an essential mechanism of therapy resistance in malignant tumors, such as pancreatic ductal adenocarcinoma (PDAC) as one of the most aggressive and still incurable tumors. Addressing this issue, we provide an overview on Nrf2 mediated antioxidant response with particular emphasis on its effect on mitochondria as the organelle responsible for the execution of ferroptosis. We further outline how deregulated Nrf2 adds to the progression and therapy resistance of PDAC, especially with respect to the role of ferroptosis in anti-cancer drug mediated cell killing and how this is impaired by Nrf2 as an essential mechanism of drug resistance. Our review further discusses recent approaches for Nrf2 inhibition by natural and synthetic compounds to overcome drug resistance based on enhanced ferroptosis. Finally, we provide an outlook on therapeutic strategies based on Nrf2 inhibition combined with ferroptosis inducing drugs.
APA, Harvard, Vancouver, ISO, and other styles
21

Chen, Weimin, Zheng Sun, Xiao-Jun Wang, et al. "Direct Interaction between Nrf2 and p21Cip1/WAF1 Upregulates the Nrf2-Mediated Antioxidant Response." Molecular Cell 34, no. 6 (2009): 663–73. http://dx.doi.org/10.1016/j.molcel.2009.04.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ma, Anyun, Lie Gao, Ahmed M. Wafi, et al. "Overexpression of Central ACE2 (Angiotensin-Converting Enzyme 2) Attenuates the Pressor Response to Chronic Central Infusion of Ang II (Angiotensin II)." Hypertension 76, no. 5 (2020): 1514–25. http://dx.doi.org/10.1161/hypertensionaha.120.15681.

Full text
Abstract:
We investigated the mechanism by which ACE2 (angiotensin-converting enzyme 2) overexpression alters neurohumoral outflow and central oxidative stress. Nrf2 (nuclear factor [erythroid-derived 2]-like 2) is a master antioxidant transcription factor that regulates cytoprotective and antioxidant genes. We hypothesized that upregulation of central ACE2 inhibits the pressor response to Ang II (angiotensin II) by reducing reactive oxygen species through a Nrf2/antioxidant enzyme–mediated mechanism in the rostral ventrolateral medulla. Synapsin human Angiotensin Converting Enzyme 2 positive (SynhACE2 +/+ ) mice and their littermate controls synhACE2 −/− were used to evaluate the consequence of intracerebroventricular infusion of Ang II. In control mice, Ang II infusion evoked a significant increase in blood pressure and norepinephrine excretion, along with polydipsia and polyuria. The pressor effect of central Ang II was completely blocked in synhACE2 +/+ mice. Polydipsia, norepinephrine excretion, and markers of oxidative stress in response to central Ang II were also reduced in synhACE2 +/+ mice. The MasR (Mas receptor) agonist Ang 1–7 and blocker A779 had no effects on blood pressure. synhACE2 +/+ mice showed enhanced expression of Nrf2 in the rostral ventrolateral medulla which was blunted following Ang II infusion. Ang II evoked nuclear translocation of Nrf2 in cultured Neuro 2A (N2A) cells. In synhACE2 −/− mice, the central Ang II pressor response was attenuated by simultaneous intracerebroventricular infusion of the Nrf2 activator sulforaphane; blood pressure was enhanced by knockdown of Nrf2 in the rostral ventrolateral medulla in Nrf2 floxed (Nrf2 f/f ) mice. These data suggest that the hypertensive effects of intracerebroventricular Ang II are attenuated by selective overexpression of brain synhACE2 and may be mediated by Nrf2-upregulated antioxidant enzymes in the rostral ventrolateral medulla.
APA, Harvard, Vancouver, ISO, and other styles
23

Sarcinelli, Carmen, Helena Dragic, Marie Piecyk, et al. "ATF4-Dependent NRF2 Transcriptional Regulation Promotes Antioxidant Protection during Endoplasmic Reticulum Stress." Cancers 12, no. 3 (2020): 569. http://dx.doi.org/10.3390/cancers12030569.

Full text
Abstract:
Endoplasmic reticulum (ER) stress generates reactive oxygen species (ROS) that induce apoptosis if left unabated. To limit oxidative insults, the ER stress PKR-like endoplasmic reticulum Kinase (PERK) has been reported to phosphorylate and activate nuclear factor erythroid 2-related factor 2 (NRF2). Here, we uncover an alternative mechanism for PERK-mediated NRF2 regulation in human cells that does not require direct phosphorylation. We show that the activation of the PERK pathway rapidly stimulates the expression of NRF2 through activating transcription factor 4 (ATF4). In addition, NRF2 activation is late and largely driven by reactive oxygen species (ROS) generated during late protein synthesis recovery, contributing to protecting against cell death. Thus, PERK-mediated NRF2 activation encompasses a PERK-ATF4-dependent control of NRF2 expression that contributes to the NRF2 protective response engaged during ER stress-induced ROS production.
APA, Harvard, Vancouver, ISO, and other styles
24

Shiraiwa, Mariko, Tomoya Kitakaze, Yoko Yamashita, Yuichi Ukawa, Katsuyuki Mukai, and Hitoshi Ashida. "Pectolinarigenin Induces Antioxidant Enzymes through Nrf2/ARE Pathway in HepG2 Cells." Antioxidants 11, no. 4 (2022): 675. http://dx.doi.org/10.3390/antiox11040675.

Full text
Abstract:
Pectolinarigenin (PG) and its glycoside pectolinarin (PN) were reported to have various health beneficial functions such as anti-inflammatory and anti-carcinogenic activities. It has also been reported that PG and PN have radical scavenging ability as direct antioxidant activity. However, the indirect antioxidant activity of PG and PN by inducing antioxidant enzymes in hepatocytes is not fully understood yet. In this study, we investigated whether PG and PN increase expression of antioxidant enzymes through the nuclear factor-erythroid-2-related factor 2 (Nrf2)-mediated pathway in human hepatoma HepG2 cells and the liver of male ICR mice. PG, but not PN, induced antioxidant enzymes, namely heme oxigenase-1, NAD(P)H:quinone oxidoreductase 1, and aldo-keto reductase family 1 member B10, in HepG2 cells. As for the induction mechanism of these enzymes, PG-induced nuclear accumulation of Nrf2 increased antioxidant response element (ARE)-mediated transcriptional activity and suppressed degradation of Nrf2 through modification of Kelch-like EXH-associated protein 1. Oral administration of PG also induced nuclear accumulation Nrf2 and expression of antioxidant enzymes in the liver of mice. Therefore, PG, but not PN, exhibits the indirect antioxidant activity by inducing antioxidant enzymes through the Nrf2/ARE pathway and may protect liver from oxidative stress.
APA, Harvard, Vancouver, ISO, and other styles
25

Surya, Reggie, Nurlinah Amalia, William Ben Gunawan, et al. "Tempe as superior functional antioxidant food: From biomechanism to future development of soybean-based functional food." Pharmacia 71, no. () (2024): 1–7. https://doi.org/10.3897/pharmacia.71.e116748.

Full text
Abstract:
Foods that have nutritional value along with additional health advantages are referred to as functional foods. Fruits, vegetables, and spices are rich sources of antioxidants, which can help prevent damage from free radicals and environmental stress. It has been demonstrated that consuming foods high in antioxidants lowers the risk of degenerative diseases such as cancer, emphysema, immunological deficiencies, respiratory disorders, heart disease, and stroke. It also lowers the risk of Parkinson's disease and other inflammatory conditions. Traditional Indonesian fermented soybean-based food products, or soybeans and known as "tempe", have been associated with a host of health benefits, including a lower risk of cardiovascular disease, a lower risk of cancer, improved bone health, and enhanced immunological function. This article investigates tempe's potential as a meal with antioxidant properties and suggests a mechanism via which it can trigger the Nrf2-mediated antioxidant response. The study offers insights into the potential applications, development, and potentiation of tempe by synthesizing potential biomolecular pathways for its antioxidant actions at the cellular level.
APA, Harvard, Vancouver, ISO, and other styles
26

Chen, Xi-Lin, Geraldine Dodd, Suzanne Thomas, et al. "Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression." American Journal of Physiology-Heart and Circulatory Physiology 290, no. 5 (2006): H1862—H1870. http://dx.doi.org/10.1152/ajpheart.00651.2005.

Full text
Abstract:
The antioxidant response element (ARE) is a transcriptional control element that mediates expression of a set of antioxidant proteins. NF-E2-related factor 2 (Nrf2) is a transcription factor that activates ARE-containing genes. In endothelial cells, the ARE-mediated genes are upregulated by atheroprotective laminar flow through a Nrf2-dependent mechanism. We tested the hypothesis that activation of ARE-regulated genes via adenovirus-mediated expression of Nrf2 may suppress redox-sensitive inflammatory gene expression. Expression of Nrf2 in human aortic endothelial cells (HAECs) resulted in a marked increase in ARE-driven transcriptional activity and protected HAECs from H2O2-mediated cytotoxicity. Nrf2 suppressed TNF-α-induced monocyte chemoattractant protein (MCP)-1 and VCAM-1 mRNA and protein expression in a dose-dependent manner and inhibited TNF-α-induced monocytic U937 cell adhesion to HAECs. Nrf2 also inhibited IL-1β-induced MCP-1 gene expression in human mesangial cells. Expression of Nrf2 inhibited TNF-α-induced activation of p38 MAP kinase. Furthermore, expression of a constitutively active form of MKK6 (an upstream kinase for p38 MAP kinase) partially reversed Nrf2-mediated inhibition of VCAM-1 expression, suggesting that p38 MAP kinase, at least in part, mediates Nrf2's anti-inflammatory action. In contrast, Nrf2 did not inhibit TNF-α-induced NF-κB activation. These data identify the Nrf2/ARE pathway as an endogenous atheroprotective system for antioxidant protection and suppression of redox-sensitive inflammatory genes, suggesting that targeting the Nrf2/ARE pathway may represent a novel therapeutic approach for the treatment of inflammatory diseases such as atherosclerosis.
APA, Harvard, Vancouver, ISO, and other styles
27

Sun, Zheng, Shirley Zhang, Jefferson Y. Chan, and Donna D. Zhang. "Keap1 Controls Postinduction Repression of the Nrf2-Mediated Antioxidant Response by Escorting Nuclear Export of Nrf2." Molecular and Cellular Biology 27, no. 18 (2007): 6334–49. http://dx.doi.org/10.1128/mcb.00630-07.

Full text
Abstract:
ABSTRACT The transcription factor Nrf2 regulates cellular redox homeostasis. Under basal conditions, Keap1 recruits Nrf2 into the Cul3-containing E3 ubiquitin ligase complex for ubiquitin conjugation and subsequent proteasomal degradation. Oxidative stress triggers activation of Nrf2 through inhibition of E3 ubiquitin ligase activity, resulting in increased levels of Nrf2 and transcriptional activation of Nrf2-dependent genes. In this study, we identify Keap1 as a key postinduction repressor of Nrf2 and demonstrate that a nuclear export sequence (NES) in Keap1 is required for termination of Nrf2-antioxidant response element (ARE) signaling by escorting nuclear export of Nrf2. We provide evidence that ubiquitination of Nrf2 is carried out in the cytosol. Furthermore, we show that Keap1 nuclear translocation is independent of Nrf2 and the Nrf2-Keap1 complex does not bind the ARE. Collectively, our results suggest the following mechanism of postinduction repression: upon recovery of cellular redox homeostasis, Keap1 translocates into the nucleus to dissociate Nrf2 from the ARE. The Nrf2-Keap1 complex is then transported out of the nucleus by the NES in Keap1. Once in the cytoplasm, the Keap1-Nrf2 complex associates with the E3 ubiquitin ligase, resulting in degradation of Nrf2 and termination of the Nrf2 signaling pathway. Hence, postinduction repression of the Nrf2-mediated antioxidant response is controlled by the nuclear export function of Keap1 in alliance with the cytoplasmic ubiquitination and degradation machinery.
APA, Harvard, Vancouver, ISO, and other styles
28

Khadrawy, Omar, Samuel Gebremedhn, Dessie Salilew-Wondim, et al. "Endogenous and Exogenous Modulation of Nrf2 Mediated Oxidative Stress Response in Bovine Granulosa Cells: Potential Implication for Ovarian Function." International Journal of Molecular Sciences 20, no. 7 (2019): 1635. http://dx.doi.org/10.3390/ijms20071635.

Full text
Abstract:
Nrf2 is a redox sensitive transcription factor regulating the expression of antioxidant genes as defense mechanism against various stressors. The aim of this study is to investigate the potential role of noncoding miRNAs as endogenous and quercetin as exogenous regulators of Nrf2 pathway in bovine granulosa cells. For this cultured granulosa cells were used for modulation of miRNAs (miR-28, 153 and miR-708) targeting the bovine Nrf2 and supplementation of quercentin to investigate the regulatory mechanisms of the Nrf2 antioxidant system. Moreover, cultured cells were treated with hydrogen peroxide to induce oxidative stress in those cells. Our results showed that, oxidative stress activated the expression of Nrf2 as a defense mechanism, while suppressing the expression of those miRNAs. Overexpression of those miRNAs resulted in downregulation of Nrf2 expression resulted in higher ROS accumulation, reduced mitochondrial activity and cellular proliferation. Quercetin supplementation showed its protective role against oxidative stress induced by H2O2 by inducing the expression of antioxidant enzymes. In conclusion, this study highlighted the involvement of miR-153, miR-28 and miR-708 in regulatory network of Nrf2 mediated antioxidant system in bovine granulosa cells function. Furthermore, quercetin at a low dose played a protective role in bovine granulosa cells against oxidative stress damage.
APA, Harvard, Vancouver, ISO, and other styles
29

Dassano, Alice, Mariateresa Mancuso, Paola Giardullo, et al. "N6-isopentenyladenosine and analogs activate the NRF2-mediated antioxidant response." Redox Biology 2 (2014): 580–89. http://dx.doi.org/10.1016/j.redox.2014.03.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Drolet, Jennifer, Brodie Buchner-Duby, Morgan G. Stykel, et al. "Docosahexanoic acid signals through the Nrf2–Nqo1 pathway to maintain redox balance and promote neurite outgrowth." Molecular Biology of the Cell 32, no. 7 (2021): 511–20. http://dx.doi.org/10.1091/mbc.e20-09-0599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Barrera, Giuseppina, Marie Angele Cucci, Margherita Grattarola, Chiara Dianzani, Giuliana Muzio, and Stefania Pizzimenti. "Control of Oxidative Stress in Cancer Chemoresistance: Spotlight on Nrf2 Role." Antioxidants 10, no. 4 (2021): 510. http://dx.doi.org/10.3390/antiox10040510.

Full text
Abstract:
Chemoresistance represents the main obstacle to cancer treatment with both conventional and targeted therapy. Beyond specific molecular alterations, which can lead to targeted therapy, metabolic remodeling, including the control of redox status, plays an important role in cancer cell survival following therapy. Although cancer cells generally have a high basal reactive oxygen species (ROS) level, which makes them more susceptible than normal cells to a further increase of ROS, chemoresistant cancer cells become highly adapted to intrinsic or drug-induced oxidative stress by upregulating their antioxidant systems. The antioxidant response is principally mediated by the transcription factor Nrf2, which has been considered the master regulator of antioxidant and cytoprotective genes. Nrf2 expression is often increased in several types of chemoresistant cancer cells, and its expression is mediated by diverse mechanisms. In addition to Nrf2, other transcription factors and transcriptional coactivators can participate to maintain the high antioxidant levels in chemo and radio-resistant cancer cells. The control of expression and function of these molecules has been recently deepened to identify which of these could be used as a new therapeutic target in the treatment of tumors resistant to conventional therapy. In this review, we report the more recent advances in the study of Nrf2 regulation in chemoresistant cancers and the role played by other transcription factors and transcriptional coactivators in the control of antioxidant responses in chemoresistant cancer cells.
APA, Harvard, Vancouver, ISO, and other styles
32

Chhunchha, Bhavana, Eri Kubo, and Dhirendra P. Singh. "Clock Protein Bmal1 and Nrf2 Cooperatively Control Aging or Oxidative Response and Redox Homeostasis by Regulating Rhythmic Expression of Prdx6." Cells 9, no. 8 (2020): 1861. http://dx.doi.org/10.3390/cells9081861.

Full text
Abstract:
Many disorders of aging, including blinding-diseases, are associated with deficiency of brain and muscle arnt-like protein 1 (Bmal1) and, thereby, dysregulation of antioxidant-defense pathway. However, knowledge is limited regarding the role of Bmal1 regulation of antioxidant-pathway in the eye lens/lens epithelial cells (LECs) at the molecular level. We found that, in aging human (h)LECs, a progressive decline of nuclear factor erythroid 2-related factor 2 (Nrf2)/ARE (antioxidant response element)-mediated antioxidant genes was connected to Bmal1-deficiency, leading to accumulation of reactive oxygen species (ROS) and cell-death. Bmal1-depletion disrupted Nrf2 and expression of its target antioxidant genes, like Peroxiredoxin 6 (Prdx6). DNA binding and transcription assays showed that Bmal1 controlled expression by direct binding to E-Box in Prdx6 promoter to regulate its transcription. Mutation at E-Box or ARE reduced promoter activity, while disruption of both sites diminished the activity, suggesting that both sites were required for peak Prdx6-transcription. As in aging hLECs, ROS accumulation was increased in Bmal1-deficient cells and the cells were vulnerable to death. Intriguingly, Bmal1/Nrf2/Prdx6 and PhaseII antioxidants showed rhythmic expression in mouse lenses in vivo and were reciprocally linked to ROS levels. We propose that Bmal1 is pivotal for regulating oxidative responses. Findings also reveal a circadian control of antioxidant-pathway, which is important in combating lens/LECs damage induced by aging or oxidative stress.
APA, Harvard, Vancouver, ISO, and other styles
33

Sorrentino, Leonardo, Walter Toscanelli, Matteo Fracella, et al. "NRF2 Antioxidant Response and Interferon-Stimulated Genes Are Differentially Expressed in Respiratory-Syncytial-Virus- and Rhinovirus-Infected Hospitalized Children." Pathogens 12, no. 4 (2023): 577. http://dx.doi.org/10.3390/pathogens12040577.

Full text
Abstract:
Respiratory diseases caused by respiratory syncytial virus (RSV) and human rhinovirus (HRV) are frequent causes of the hospitalization of children; nonetheless, RSV is responsible for the most severe and life-threatening illnesses. Viral infection triggers an inflammatory response, activating interferon (IFN)-mediated responses, including IFN-stimulated genes (ISG) expression with antiviral and immunomodulatory activities. In parallel, the reactive oxygen species (ROS) production activates nuclear factor erythroid 2-related factor 2 (NRF2), whose antioxidant activity can reduce inflammation by interacting with the NF-kB pathway and the IFN response. To clarify how the interplay of IFN and NRF2 may impact on clinical severity, we enrolled children hospitalized for bronchiolitis and pneumonia, and measured gene expression of type-I and III IFNs, of several ISGs, of NRF2 and antioxidant-related genes, i.e., glucose-6-phosphate dehydrogenase (G6PD), heme oxygenase 1 (HO1), and NAD(P)H dehydrogenase [Quinone] 1 (NQO1) in RSV- (RSV-A N = 33 and RSV-B N = 30) and HRV (N = 22)-positive respiratory samples. NRF2 and HO1 expression is significantly elevated in children with HRV infection compared to RSV (p = 0.012 and p = 0.007, respectively), whereas ISG15 and ISG56 expression is higher in RSV-infected children (p = 0.016 and p = 0.049, respectively). Children admitted to a pediatric intensive care unit (PICU) had reduced NRF2 expression (p = 0.002). These data suggest, for the first time, that lower activation of the NRF2 antioxidant response in RSV-infected infants may contribute to bronchiolitis severity.
APA, Harvard, Vancouver, ISO, and other styles
34

Jyrkkänen, Henna-Kaisa, Suvi Kuosmanen, Merja Heinäniemi, et al. "Novel insights into the regulation of antioxidant-response-elementmediated gene expression by electrophiles: induction of the transcriptional repressor BACH1 by Nrf2." Biochemical Journal 440, no. 2 (2011): 167–74. http://dx.doi.org/10.1042/bj20110526.

Full text
Abstract:
A central mechanism in cellular defence against oxidative or electrophilic stress is mediated by transcriptional induction of genes via the ARE (antioxidant-response element), a cis-acting sequence present in the regulatory regions of genes involved in the detoxification and elimination of reactive oxidants and electrophiles. The ARE binds different bZIP (basic-region leucine zipper) transcription factors, most notably Nrf2 (nuclear factor-erythroid 2-related factor 2) that functions as a transcriptional activator via heterodimerization with small Maf proteins. Although ARE activation by Nrf2 is relatively well understood, the mechanisms by which ARE-mediated signalling is down-regulated are poorly known. Transcription factor BACH1 [BTB (broad-complex, tramtrack and bric-a-brac) and CNC (cap'n'collar protein) homology 1] binds to ARE-like sequences, functioning as a transcriptional repressor in a subset of ARE-regulated genes, thus antagonizing the activator function of Nrf2. In the present study, we have demonstrated that BACH1 itself is regulated by Nrf2 as it is induced by Nrf2 overexpression and by Nrf2-activating agents in an Nrf2-dependent manner. Furthermore, a functional ARE site was identified at +1411 from the transcription start site of transcript variant 2 of BACH1. We conclude that BACH1 is a bona fide Nrf2 target gene and that induction of BACH1 by Nrf2 may serve as a feedback-inhibitory mechanism for ARE-mediated gene regulation.
APA, Harvard, Vancouver, ISO, and other styles
35

Miller, William P., Siddharth Sunilkumar, Joseph F. Giordano, Allyson L. Toro, Alistair J. Barber, and Michael D. Dennis. "The stress response protein REDD1 promotes diabetes-induced oxidative stress in the retina by Keap1-independent Nrf2 degradation." Journal of Biological Chemistry 295, no. 21 (2020): 7350–61. http://dx.doi.org/10.1074/jbc.ra120.013093.

Full text
Abstract:
The transcription factor nuclear factor erythroid-2–related factor 2 (Nrf2) plays a critical role in reducing oxidative stress by promoting the expression of antioxidant genes. Both individuals with diabetes and preclinical diabetes models exhibit evidence of a defect in retinal Nrf2 activation. We recently demonstrated that increased expression of the stress response protein regulated in development and DNA damage 1 (REDD1) is necessary for the development of oxidative stress in the retina of streptozotocin-induced diabetic mice. In the present study, we tested the hypothesis that REDD1 suppresses the retinal antioxidant response to diabetes by repressing Nrf2 function. We found that REDD1 ablation enhances Nrf2 DNA-binding activity in the retina and that the suppressive effect of diabetes on Nrf2 activity is absent in the retina of REDD1-deficient mice compared with WT. In human MIO-M1 Müller cell cultures, REDD1 deletion prevented oxidative stress in response to hyperglycemic conditions, and this protective effect required Nrf2. REDD1 suppressed Nrf2 stability by promoting its proteasomal degradation independently of Nrf2's interaction with Kelch-like ECH-associated protein 1 (Keap1), but REDD1-mediated Nrf2 degradation required glycogen synthase kinase 3 (GSK3) activity and Ser-351/Ser-356 of Nrf2. Diabetes diminished inhibitory phosphorylation of glycogen synthase kinase 3β (GSK3β) at Ser-9 in the retina of WT mice but not in REDD1-deficient mice. Pharmacological inhibition of GSK3 enhanced Nrf2 activity and prevented oxidative stress in the retina of diabetic mice. The findings support a model wherein hyperglycemia-induced REDD1 blunts the Nrf2 antioxidant response to diabetes by activating GSK3, which, in turn, phosphorylates Nrf2 to promote its degradation.
APA, Harvard, Vancouver, ISO, and other styles
36

Seol, Song-I., In Soon Kang, Ji Seok Lee, Ja-Kyeong Lee, and Chaekyun Kim. "Taurine Chloramine-Mediated Nrf2 Activation and HO-1 Induction Confer Protective Effects in Astrocytes." Antioxidants 13, no. 2 (2024): 169. http://dx.doi.org/10.3390/antiox13020169.

Full text
Abstract:
Taurine is ubiquitously distributed in mammalian tissues, with the highest levels in the brain, heart, and leukocytes. Taurine reacts with hypochlorous acid (HOCl) to produce taurine chloramine (Tau-Cl) via the myeloperoxidase (MPO) system. In this study, we elucidated the antioxidative and protective effects of Tau-Cl in astrocytes. Tau-Cl increased the expression and nuclear translocation of nuclear factor E2-related factor (Nrf2) and the expression of Nrf2-regulated antioxidant genes, including heme oxygenase 1 (HO-1). Nrf2 activity is negatively regulated by Kelch-like ECH-associated protein 1 (Keap1). Tau-Cl decreased the level of the reduced thiol groups of Keap1, resulting in the disruption of the Keap1-Nrf2 complex. Consequently, Tau-Cl rescued the H2O2-induced cell death by enhancing HO-1 expression and suppressing reactive oxygen species. In conclusion, Tau-Cl confers protective effects in astrocytes by disrupting the Keap1-Nrf2 complex, thereby promoting Nrf2 translocation to the nucleus, wherein it binds to the antioxidant response element (ARE) and accelerates the transcription of antioxidant genes. Therefore, in astrocytes, the activation of the Keap1-Nrf2-ARE pathway by Tau-Cl may increase antioxidants and anti-inflammatory mediators as well as other cytoprotective proteins, conferring protection against brain infection and injury.
APA, Harvard, Vancouver, ISO, and other styles
37

Zhang, Jianyong, Tsutomu Ohta, Atsushi Maruyama, et al. "BRG1 Interacts with Nrf2 To Selectively Mediate HO-1 Induction in Response to Oxidative Stress." Molecular and Cellular Biology 26, no. 21 (2006): 7942–52. http://dx.doi.org/10.1128/mcb.00700-06.

Full text
Abstract:
ABSTRACT NF-E2-related factor 2 (Nrf2) regulates antioxidant-responsive element-mediated induction of cytoprotective genes in response to oxidative stress. The purpose of this study was to determine the role of BRG1, a catalytic subunit of SWI2/SNF2-like chromatin-remodeling complexes, in Nrf2-mediated gene expression. Small interfering RNA knockdown of BRG1 in SW480 cells selectively decreased inducible expression of the heme oxygenase 1 (HO-1) gene after diethylmaleate treatment but did not affect other Nrf2 target genes, such as the gene encoding NADPH:quinone oxidoreductase 1 (NQO1). Chromatin immunoprecipitation analysis revealed that Nrf2 recruits BRG1 to both HO-1 and NQO1 regulatory regions. However, BRG1 knockdown selectively decreased the recruitment of RNA polymerase II to the HO-1 promoter but not to the NQO1 promoter. HO-1, but not other Nrf2-regulated genes, harbors a sequence of TG repeats capable of forming Z-DNA with BRG1 assistance. Similarly, replacement of the TG repeats with an alternative Z-DNA-forming sequence led to BRG1-mediated activation of HO-1. These results thus demonstrate that BRG1, through the facilitation of Z-DNA formation and subsequent recruitment of RNA polymerase II, is critical in Nrf2-mediated inducible expression of HO-1.
APA, Harvard, Vancouver, ISO, and other styles
38

Cartaya, Ana E., Halle Lutz, Sophie Maiocchi, Morgan Nalesnik, and Edward M. Bahnson. "Delivery of Cinnamic Aldehyde Antioxidant Response Activating nanoParticles (ARAPas) for Vascular Applications." Antioxidants 10, no. 5 (2021): 709. http://dx.doi.org/10.3390/antiox10050709.

Full text
Abstract:
Selective delivery of nuclear factor erythroid 2-related factor 2 (Nrf2) activators to the injured vasculature at the time of vascular surgical intervention has the potential to attenuate oxidative stress and decrease vascular smooth muscle cell (VSMC) hyperproliferation and migration towards the inner vessel wall. To this end, we developed a nanoformulation of cinnamic aldehyde (CA), termed Antioxidant Response Activating nanoParticles (ARAPas), that can be readily loaded into macrophages ex vivo. The CA-ARAPas-macrophage system was used to study the effects of CA on VSMC in culture. CA was encapsulated into a pluronic micelle that was readily loaded into both murine and human macrophages. CA-ARAPas inhibits VSMC proliferation and migration, and activates Nrf2. Macrophage-mediated transfer of CA-ARAPas to VSMC is evident after 12 h, and Nrf2 activation is apparent after 24 h. This is the first report, to the best of our knowledge, of CA encapsulation in pluronic micelles for macrophage-mediated delivery studies. The results of this study highlight the feasibility of CA encapsulation and subsequent macrophage uptake for delivery of cargo into other pertinent cells, such as VSMC.
APA, Harvard, Vancouver, ISO, and other styles
39

Chhunchha, Bhavana, Eri Kubo, and Dhirendra P. Singh. "Sulforaphane-Induced Klf9/Prdx6 Axis Acts as a Molecular Switch to Control Redox Signaling and Determines Fate of Cells." Cells 8, no. 10 (2019): 1159. http://dx.doi.org/10.3390/cells8101159.

Full text
Abstract:
Sulforaphane (SFN), an activator of transcription factor Nrf2 (NFE2-related factor), modulates antioxidant defense by Nrf2-mediated regulation of antioxidant genes like Peroxiredoxin 6 (Prdx6) and affects cellular homeostasis. We previously observed that dose levels of SFN are crucial in determining life or death of lens epithelial cells (LECs). Herein, we demonstrated that higher doses of SFN (>6 μM) activated death signaling by overstimulation of Nrf2/ARE (antioxidant response element)-mediated Kruppel-like factor (Klf9) repression of Prdx6 expression, which increased reactive oxygen species (ROS) load and cell death. Mechanistically, Klf9 bound to its repressive Klf9 binding elements (RKBE; 5-CA/GCCC-3) in the Prdx6 promoter, and repressed Prdx6 transcription. Under the condition of higher dose of SFN, excessive Nrf2 abundance caused death signaling by enforcing Klf9 activation through ARE (5-RTGAYnnnGC-3) in Klf9 promoter that suppress antioxidant genes such as Prdx6 via a Klf9-dependent fashion. Klf9-depletion showed that Klf9 independently caused ROS reduction and subsequent cell survival, demonstrating that Klf9 upregulation caused cell death. Our work revealed the molecular mechanism of dose-dependent altered activity of SFN in LECs, and demonstrated that SFN activity was linked to levels of Nrf2/Klf9/Prdx6 axis. We proposed that in the development of therapeutic interventions for aging/oxidative disorders, combinations of Klf9-ShRNA and Nrf2 inducers may prove to be a promising strategy.
APA, Harvard, Vancouver, ISO, and other styles
40

Kathiria, Arwa S., Mackenzie A. Butcher, Jason M. Hansen, and Arianne L. Theiss. "Nrf2 is not required for epithelial prohibitin-dependent attenuation of experimental colitis." American Journal of Physiology-Gastrointestinal and Liver Physiology 304, no. 10 (2013): G885—G896. http://dx.doi.org/10.1152/ajpgi.00327.2012.

Full text
Abstract:
Inflammatory bowel disease is associated with increased reactive oxygen species (ROS) and decreased antioxidant response in the intestinal mucosa. Expression of the mitochondrial protein prohibitin (PHB) is also decreased during intestinal inflammation. Our previous study showed that genetic restoration of colonic epithelial PHB expression [villin-PHB transgenic (PHB Tg) mice] attenuated dextran sodium sulfate (DSS)-induced colitis/oxidative stress and sustained expression of colonic nuclear factor erythroid 2-related factor 2 (Nrf2), a cytoprotective transcription factor. This study investigated the role of Nrf2 in mediating PHB-induced protection against colitis and expression of the antioxidant response element (ARE)-regulated antioxidant genes heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 (NQO-1). PHB-transfected Caco-2-BBE human intestinal epithelial cells maintained increased ARE activation and decreased intracellular ROS levels compared with control vector-transfected cells during Nrf2 knockdown by small interfering RNA. Treatment with the ERK inhibitor PD-98059 decreased PHB-induced ARE activation, suggesting that ERK constitutes a significant portion of PHB-mediated ARE activation in Caco-2-BBE cells. PHB Tg, Nrf2−/−, and PHB Tg/Nrf2−/− mice were treated with DSS or 2,4,6-trinitrobenzene sulfonic acid (TNBS), and inflammation and expression of HO-1 and NQO-1 were assessed. PHB Tg/Nrf2−/− mice mimicked PHB Tg mice, with attenuated DSS- or TNBS-induced colitis and induction of colonic HO-1 and NQO-1 expression, despite deletion of Nrf2. PHB Tg/Nrf2−/− mice exhibited increased activation of ERK during colitis. Our results suggest that maintaining expression of intestinal epithelial cell PHB, which is decreased during colitis, reduces the severity of inflammation and increases colonic levels of the antioxidants HO-1 and NQO-1 via a mechanism independent of Nrf2.
APA, Harvard, Vancouver, ISO, and other styles
41

Joo, Min Sung, Won Dong Kim, Ki Young Lee, Ji Hyun Kim, Ja Hyun Koo, and Sang Geon Kim. "AMPK Facilitates Nuclear Accumulation of Nrf2 by Phosphorylating at Serine 550." Molecular and Cellular Biology 36, no. 14 (2016): 1931–42. http://dx.doi.org/10.1128/mcb.00118-16.

Full text
Abstract:
Nrf2 (nuclear factor erythroid 2-related factor 2) is an antioxidant transcription factor. AMP-activated protein kinase (AMPK) functions as a central regulator of cell survival in response to stressful stimuli. Nrf2 should be coordinated with the cell survival pathway controlled by AMPK, but so far the mechanistic connections remain undefined. This study investigated the role of AMPK in Nrf2 trafficking and its activity regulation. A subnetwork integrating neighbor molecules suggested direct interaction between AMPK and Nrf2. In cells, AMPK activation caused nuclear accumulation of Nrf2. In thein vitrokinase and peptide competition assays, AMPK phosphorylated Nrf2 at the Ser558 residue (Ser550 in mouse) located in the canonical nuclear export signal. Nrf2 with an S550A mutation failed to be accumulated in the nucleus after AMPK activation. Leptomycin B, a nuclear export inhibitor, did not enhance nuclear accumulation of wild-type Nrf2 (WT-Nrf2) activated by AMPK or a phospho-Ser550-mimetic Nrf2 mutant, corroborating the finding that AMPK facilitated nuclear accumulation of Nrf2, probably by inhibiting nuclear export. Activated glycogen synthase kinase 3β (GSK3β) diminished the basal nuclear level of Myc-S550A-Nrf2. Taking the data collectively, AMPK phosphorylates Nrf2 at the Ser550 residue, which, in conjunction with AMPK-mediated GSK3β inhibition, promotes nuclear accumulation of Nrf2 for antioxidant response element (ARE)-driven gene transactivation.
APA, Harvard, Vancouver, ISO, and other styles
42

Zhu, Yu-ping, Ze Zheng, Shaofan Hu, et al. "Unification of Opposites between Two Antioxidant Transcription Factors Nrf1 and Nrf2 in Mediating Distinct Cellular Responses to the Endoplasmic Reticulum Stressor Tunicamycin." Antioxidants 9, no. 1 (2019): 4. http://dx.doi.org/10.3390/antiox9010004.

Full text
Abstract:
The water-soluble Nrf2 (nuclear factor, erythroid 2-like 2, also called Nfe2l2) is accepted as a master regulator of antioxidant responses to cellular stress, and it was also identified as a direct target of the endoplasmic reticulum (ER)-anchored PERK (protein kinase RNA-like endoplasmic reticulum kinase). However, the membrane-bound Nrf1 (nuclear factor, erythroid 2-like 1, also called Nfe2l1) response to ER stress remains elusive. Herein, we report a unity of opposites between these two antioxidant transcription factors, Nrf1 and Nrf2, in coordinating distinct cellular responses to the ER stressor tunicamycin (TU). The TU-inducible transcription of Nrf1 and Nrf2, as well as GCLM (glutamate cysteine ligase modifier subunit) and HO-1 (heme oxygenase 1), was accompanied by activation of ER stress signaling networks. Notably, the unfolded protein response (UPR) mediated by ATF6 (activating transcription factor 6), IRE1 (inositol requiring enzyme 1) and PERK was significantly suppressed by Nrf1α-specific knockout, but hyper-expression of Nrf2 and its target genes GCLM and HO-1 has retained in Nrf1α−/− cells. By contrast, Nrf2−/−ΔTA cells with genomic deletion of its transactivation (TA) domain resulted in significant decreases of GCLM, HO-1 and Nrf1; this was accompanied by partial decreases of IRE1 and ATF6, rather than PERK, but with an increase of ATF4 (activating transcription factor 4). Interestingly, Nrf1 glycosylation and its trans-activity to mediate the transcriptional expression of the 26S proteasomal subunits, were repressed by TU. This inhibitory effect was enhanced by Nrf1α−/− and Nrf2−/−ΔTA, but not by a constitutive activator caNrf2ΔN (that increased abundances of the non-glycosylated and processed Nrf1). Furthermore, caNrf2ΔN also enhanced induction of PERK and IRE1 by TU, but reduced expression of ATF4 and HO-1. Thus, it is inferred that such distinct roles of Nrf1 and Nrf2 are unified to maintain cell homeostasis by a series of coordinated ER-to-nuclear signaling responses to TU. Nrf1α (i.e., a full-length form) acts in a cell-autonomous manner to determine the transcription of most of UPR-target genes, albeit Nrf2 is also partially involved in this process. Consistently, transactivation of ARE (antioxidant response element)-driven BIP (binding immunoglobulin protein)-, PERK- and XBP1 (X-box binding protein 1)-Luc reporter genes was mediated directly by Nrf1 and/or Nrf2. Interestingly, Nrf1α is more potent than Nrf2 at mediating the cytoprotective responses against the cytotoxicity of TU alone or plus tBHQ (tert-butylhydroquinone). This is also further supported by the evidence that the intracellular reactive oxygen species (ROS) levels are increased in Nrf1α−/− cells, but rather are, to our surprise, decreased in Nrf2−/−ΔTA cells.
APA, Harvard, Vancouver, ISO, and other styles
43

Wang, Hui, Xiufei Liu, Min Long, et al. "NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis." Science Translational Medicine 8, no. 334 (2016): 334ra51. http://dx.doi.org/10.1126/scitranslmed.aad6095.

Full text
Abstract:
Cancer is a common comorbidity of diabetic patients; however, little is known about the effects that antidiabetic drugs have on tumors. We discovered that common classes of drugs used in type 2 diabetes mellitus, the hypoglycemic dipeptidyl peptidase–4 inhibitors (DPP-4i) saxagliptin and sitagliptin, as well as the antineuropathic α-lipoic acid (ALA), do not increase tumor incidence but increase the risk of metastasis of existing tumors. Specifically, these drugs induce prolonged activation of the nuclear factor E2–related factor 2 (NRF2)–mediated antioxidant response through inhibition of KEAP1-C151–dependent ubiquitination and subsequent degradation of NRF2, resulting in up-regulated expression of metastasis-associated proteins, increased cancer cell migration, and promotion of metastasis in xenograft mouse models. Accordingly, knockdown ofNRF2attenuated naturally occurring and DPP-4i–induced tumor metastasis, whereas NRF2 activation accelerated metastasis. Furthermore, in human liver cancer tissue samples, increased NRF2 expression correlated with metastasis. Our findings suggest that antioxidants that activate NRF2 signaling may need to be administered with caution in cancer patients, such as diabetic patients with cancer. Moreover, NRF2 may be a potential biomarker and therapeutic target for tumor metastasis.
APA, Harvard, Vancouver, ISO, and other styles
44

Mbiandjeu, Serge Cedrick Toya, Angela Siciliano, Alessandro Mattè, et al. "Nrf2 Plays a Key Role in Erythropoiesis during Aging." Antioxidants 13, no. 4 (2024): 454. http://dx.doi.org/10.3390/antiox13040454.

Full text
Abstract:
Aging is characterized by increased oxidation and reduced efficiency of cytoprotective mechanisms. Nuclear factor erythroid-2-related factor (Nrf2) is a key transcription factor, controlling the expression of multiple antioxidant proteins. Here, we show that Nrf2−/− mice displayed an age-dependent anemia, due to the combined contributions of reduced red cell lifespan and ineffective erythropoiesis, suggesting a role of Nrf2 in erythroid biology during aging. Mechanistically, we found that the expression of antioxidants during aging is mediated by activation of Nrf2 function by peroxiredoxin-2. The absence of Nrf2 resulted in persistent oxidation and overactivation of adaptive systems such as the unfolded protein response (UPR) system and autophagy in Nrf2−/− mouse erythroblasts. As Nrf2 is involved in the expression of autophagy-related proteins such as autophagy-related protein (Atg) 4-5 and p62, we found impairment of late phase of autophagy in Nrf2−/− mouse erythroblasts. The overactivation of the UPR system and impaired autophagy drove apoptosis of Nrf2−/− mouse erythroblasts via caspase-3 activation. As a proof of concept for the role of oxidation, we treated Nrf2−/− mice with astaxanthin, an antioxidant, in the form of poly (lactic-co-glycolic acid) (PLGA)-loaded nanoparticles (ATS-NPs) to improve its bioavailability. ATS-NPs ameliorated the age-dependent anemia and decreased ineffective erythropoiesis in Nrf2−/− mice. In summary, we propose that Nrf2 plays a key role in limiting age-related oxidation, ensuring erythroid maturation and growth during aging.
APA, Harvard, Vancouver, ISO, and other styles
45

Qaisiya, Mohammed, Carlos Daniel Coda Zabetta, Cristina Bellarosa, and Claudio Tiribelli. "Bilirubin mediated oxidative stress involves antioxidant response activation via Nrf2 pathway." Cellular Signalling 26, no. 3 (2014): 512–20. http://dx.doi.org/10.1016/j.cellsig.2013.11.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Velichkova, Michaella, and Tama Hasson. "Keap1 Regulates the Oxidation-Sensitive Shuttling of Nrf2 into and out of the Nucleus via a Crm1-Dependent Nuclear Export Mechanism." Molecular and Cellular Biology 25, no. 11 (2005): 4501–13. http://dx.doi.org/10.1128/mcb.25.11.4501-4513.2005.

Full text
Abstract:
ABSTRACT Keap1 is a negative regulator of Nrf2, a transcription factor essential for antioxidant response element (ARE)-mediated gene expression. We find that Keap1 sequesters Nrf2 in the cytoplasm, not by docking it to the actin cytoskeleton but instead through an active Crm1/exportin-dependent nuclear export mechanism. Deletion and mutagenesis studies identified a nuclear export signal (NES) in the intervening region of Keap1 comprised of hydrophobic leucine and isoleucine residues in agreement with a traditional NES consensus sequence. Mutation of the hydrophobic amino acids resulted in nuclear accumulation of both Keap1 and Nrf2, as did treatment with the drug leptomycin B, which inactivates Crm1/exportin. ARE genes were partially activated under these conditions, suggesting that additional oxidation-sensitive elements are required for full activation of the antioxidant response. Based on these data, we propose a new model for regulation of Nrf2 by Keap1. Under normal conditions, Keap1 and Nrf2 are complexed in the cytoplasm where they are targeted for degradation. Oxidative stress inactivates Keap1's NES, allowing entry of both Keap1 and Nrf2 into the nucleus and transcriptional transactivation of ARE genes.
APA, Harvard, Vancouver, ISO, and other styles
47

Wang, Yan, Guanqin Ma, Xue-Feng Wang, et al. "Keap1 recognizes EIAV early accessory protein Rev to promote antiviral defense." PLOS Pathogens 18, no. 2 (2022): e1009986. http://dx.doi.org/10.1371/journal.ppat.1009986.

Full text
Abstract:
The Nrf2/Keap1 axis plays a complex role in viral susceptibility, virus-associated inflammation and immune regulation in host cells. However, whether or how the Nrf2/Keap1 axis is involved in the interactions between equine lentiviruses and their hosts remains unclear. Here, we demonstrate that the Nrf2/Keap1 axis was activated during EIAV infection. Mechanistically, EIAV-Rev competitively binds to Keap1 and releases Nrf2 from Keap1-mediated repression, leading to the accumulation of Nrf2 in the nucleus and promoting Nrf2 responsive genes transcription. Subsequently, we demonstrated that the Nrf2/Keap1 axis represses EIAV replication via two independent molecular mechanisms: directly increasing antioxidant enzymes to promote effective cellular resistance against EIAV infection, and repression of Rev-mediated RNA transport through direct interaction between Keap1 and Rev. Together, these data suggest that activation of the Nrf2/Keap1 axis mediates a passive defensive response to combat EIAV infection. The Nrf2/Keap1 axis could be a potential target for developing strategies for combating EIAV infection.
APA, Harvard, Vancouver, ISO, and other styles
48

Simon-Molas, Helga, Cristina Sánchez-de-Diego, Àurea Navarro-Sabaté, et al. "The Expression of TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) Can Be Controlled by the Antioxidant Orchestrator NRF2 in Human Carcinoma Cells." International Journal of Molecular Sciences 23, no. 3 (2022): 1905. http://dx.doi.org/10.3390/ijms23031905.

Full text
Abstract:
Hyperactivation of the KEAP1-NRF2 axis is a common molecular trait in carcinomas from different origin. The transcriptional program induced by NRF2 involves antioxidant and metabolic genes that render cancer cells more capable of dealing with oxidative stress. The TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) is an important regulator of glycolysis and the pentose phosphate pathway that was described as a p53 response gene, yet TIGAR expression is detected in p53-null tumors. In this study we investigated the role of NRF2 in the regulation of TIGAR in human carcinoma cell lines. Exposure of carcinoma cells to electrophilic molecules or overexpression of NRF2 significantly increased expression of TIGAR, in parallel to the known NRF2 target genes NQO1 and G6PD. The same was observed in TP53KO cells, indicating that NRF2-mediated regulation of TIGAR is p53-independent. Accordingly, downregulation of NRF2 decreased the expression of TIGAR in carcinoma cell lines from different origin. As NRF2 is essential in the bone, we used mouse primary osteoblasts to corroborate our findings. The antioxidant response elements for NRF2 binding to the promoter of human and mouse TIGAR were described. This study provides the first evidence that NRF2 controls the expression of TIGAR at the transcriptional level.
APA, Harvard, Vancouver, ISO, and other styles
49

Ryu, Yea Seong, Pincha Devage Sameera Madushan Fernando, Kyoung Ah Kang, et al. "Marine Compound 3-bromo-4,5-dihydroxybenzaldehyde Protects Skin Cells against Oxidative Damage via the Nrf2/HO-1 Pathway." Marine Drugs 17, no. 4 (2019): 234. http://dx.doi.org/10.3390/md17040234.

Full text
Abstract:
In this study, we aimed to illustrate the potential bio-effects of 3-bromo-4,5-dihydroxybenzaldehyde (3-BDB) on the antioxidant/cytoprotective enzyme heme oxygenase-1 (HO-1) in keratinocytes. The antioxidant effects of 3-BDB were examined via reverse transcription PCR, Western blotting, HO-1 activity assay, and immunocytochemistry. Chromatin immunoprecipitation analysis was performed to test for nuclear factor erythroid 2-related factor 2 (Nrf2) binding to the antioxidant response element of the HO-1 promoter. Furthermore, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the cytoprotective effects of 3-BDB were mediated by the activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB, Akt) signaling. Moreover, 3-BDB induced the phosphorylation of ERK and Akt, while inhibitors of ERK and Akt abrogated the 3-BDB-enhanced levels of HO-1 and Nrf2. Finally, 3-BDB protected cells from H2O2- and UVB-induced oxidative damage. This 3-BDB-mediated cytoprotection was suppressed by inhibitors of HO-1, ERK, and Akt. The present results indicate that 3-BDB activated Nrf2 signaling cascades in keratinocytes, which was mediated by ERK and Akt, upregulated HO-1, and induced cytoprotective effects against oxidative stress.
APA, Harvard, Vancouver, ISO, and other styles
50

Li, Guo-Hui, Yan-Ru Li, Ping Jiao, et al. "Therapeutic Potential of Salviae Miltiorrhizae Radix et Rhizoma against Human Diseases Based on Activation of Nrf2-Mediated Antioxidant Defense System: Bioactive Constituents and Mechanism of Action." Oxidative Medicine and Cellular Longevity 2018 (June 27, 2018): 1–13. http://dx.doi.org/10.1155/2018/7309073.

Full text
Abstract:
Oxidative stress plays a central role in the pathogenesis of many human diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor regulating the intracellular antioxidant response and is an emerging target for the prevention and therapy of oxidative stress-related diseases. Salviae Miltiorrhizae Radix et Rhizoma (SMRR) is a traditional Chinese medicine (TCM) and is commonly used for the therapy of cardiac cerebral diseases. Cumulative evidences indicated that the extract of SMRR and its constituents, represented by lipophilic diterpenoid quinones and hydrophilic phenolic acids, were capable of activating Nrf2 and inhibiting oxidative stress. These bioactive constituents demonstrated a therapeutic potential against human diseases, exemplified by cardiovascular diseases, neurodegenerative diseases, diabetes, nephropathy, and inflammation, based on the induction of Nrf2-mediated antioxidant response and the inhibition of oxidative stress. In the present review, we introduced the SMRR and Nrf2 signaling pathway, summarized the constituents with an Nrf2-inducing effect isolated from SMRR, and discussed the molecular mechanism and pharmacological functions of the SMRR extract and its constituents.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!