Journal articles on the topic 'Nrf2-mediated antioxidant response'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nrf2-mediated antioxidant response.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Li, Wenge, and Ah-Ng Kong. "Molecular mechanisms of Nrf2-mediated antioxidant response." Molecular Carcinogenesis 48, no. 2 (2009): 91–104. http://dx.doi.org/10.1002/mc.20465.
Full textSun, Zheng, Y. Eugene Chin, and Donna D. Zhang. "Acetylation of Nrf2 by p300/CBP Augments Promoter-Specific DNA Binding of Nrf2 during the Antioxidant Response." Molecular and Cellular Biology 29, no. 10 (2009): 2658–72. http://dx.doi.org/10.1128/mcb.01639-08.
Full textChhunchha, Bhavana, Eri Kubo, and Dhirendra P. Singh. "Obligatory Role of AMPK Activation and Antioxidant Defense Pathway in the Regulatory Effects of Metformin on Cellular Protection and Prevention of Lens Opacity." Cells 11, no. 19 (2022): 3021. http://dx.doi.org/10.3390/cells11193021.
Full textBanerjee, Nivedita, Hui Wang, Gangduo Wang, and M. Firoze Khan. "Enhancing the Nrf2 Antioxidant Signaling Provides Protection Against Trichloroethene-mediated Inflammation and Autoimmune Response." Toxicological Sciences 175, no. 1 (2020): 64–74. http://dx.doi.org/10.1093/toxsci/kfaa022.
Full textKasai, Shuya, Sunao Shimizu, Yota Tatara, Junsei Mimura, and Ken Itoh. "Regulation of Nrf2 by Mitochondrial Reactive Oxygen Species in Physiology and Pathology." Biomolecules 10, no. 2 (2020): 320. http://dx.doi.org/10.3390/biom10020320.
Full textFan, Xian, Bashar S. Staitieh, J. Spencer Jensen, et al. "Activating the Nrf2-mediated antioxidant response element restores barrier function in the alveolar epithelium of HIV-1 transgenic rats." American Journal of Physiology-Lung Cellular and Molecular Physiology 305, no. 3 (2013): L267—L277. http://dx.doi.org/10.1152/ajplung.00288.2012.
Full textAlam, Md Morshedul, Keito Okazaki, Linh Thi Thao Nguyen, et al. "Glucocorticoid receptor signaling represses the antioxidant response by inhibiting histone acetylation mediated by the transcriptional activator NRF2." Journal of Biological Chemistry 292, no. 18 (2017): 7519–30. http://dx.doi.org/10.1074/jbc.m116.773960.
Full textGarzón-Castaño, Sandra C., Iván A. Lopera-Castrillón, Francisco J. Jiménez-González, Fernando Siller-López, Luz A. Veloza, and Juan Carlos Sepúlveda-Arias. "Nrf2-Mediated Antioxidant Activity of the inner bark extracts obtained from Tabebuia rosea (Bertol) DC and Tabebuia chrysantha (JACQ) G. Nicholson." F1000Research 7 (December 16, 2018): 1937. http://dx.doi.org/10.12688/f1000research.17165.1.
Full textGarzón-Castaño, Sandra C., Iván A. Lopera-Castrillón, Francisco J. Jiménez-González, Fernando Siller-López, Luz A. Veloza, and Juan Carlos Sepúlveda-Arias. "Nrf2-Mediated Antioxidant Activity of the inner bark extracts obtained from Tabebuia rosea (Bertol) DC and Tabebuia chrysantha (JACQ) G. Nicholson." F1000Research 7 (February 12, 2019): 1937. http://dx.doi.org/10.12688/f1000research.17165.2.
Full textXue, Peng, Xiangxiang Hu, Emily Chang, et al. "Deficiency of optineurin enhances osteoclast differentiation by attenuating the NRF2-mediated antioxidant response." Experimental & Molecular Medicine 53, no. 4 (2021): 667–80. http://dx.doi.org/10.1038/s12276-021-00596-w.
Full textMcIntosh, Deneshia J., Treniqka S. Walters, Ifeanyi J. Arinze, and Jamaine Davis. "Arkadia (RING Finger Protein 111) Mediates Sumoylation-Dependent Stabilization of Nrf2 Through K48-Linked Ubiquitination." Cellular Physiology and Biochemistry 46, no. 1 (2018): 418–30. http://dx.doi.org/10.1159/000488475.
Full textZhao, Hailin, Shiori Eguchi, Azeem Alam, and Daqing Ma. "The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury." American Journal of Physiology-Lung Cellular and Molecular Physiology 312, no. 2 (2017): L155—L162. http://dx.doi.org/10.1152/ajplung.00449.2016.
Full textDe Plano, Laura Maria, Giovanna Calabrese, Maria Giovanna Rizzo, Salvatore Oddo, and Antonella Caccamo. "The Role of the Transcription Factor Nrf2 in Alzheimer’s Disease: Therapeutic Opportunities." Biomolecules 13, no. 3 (2023): 549. http://dx.doi.org/10.3390/biom13030549.
Full textZhang, Qiang, Jingbo Pi, Courtney G. Woods, and Melvin E. Andersen. "A systems biology perspective on Nrf2-mediated antioxidant response." Toxicology and Applied Pharmacology 244, no. 1 (2010): 84–97. http://dx.doi.org/10.1016/j.taap.2009.08.018.
Full textCampbell, Michelle R., Mehmet Karaca, Kelly N. Adamski, Brian N. Chorley, Xuting Wang, and Douglas A. Bell. "Novel Hematopoietic Target Genes in the NRF2-Mediated Transcriptional Pathway." Oxidative Medicine and Cellular Longevity 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/120305.
Full textRangasamy, Tirumalai, Jia Guo, Wayne A. Mitzner, et al. "Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice." Journal of Experimental Medicine 202, no. 1 (2005): 47–59. http://dx.doi.org/10.1084/jem.20050538.
Full textZhu, Xingguo, Caixia Xi, Bobby Thomas, and Betty S. Pace. "Loss of NRF2 function exacerbates the pathophysiology of sickle cell disease in a transgenic mouse model." Blood 131, no. 5 (2018): 558–62. http://dx.doi.org/10.1182/blood-2017-10-810531.
Full textKim, Eun Kyung, Ji Hoon Kim, Soyeon Jeong, et al. "Pachypodol, a Methoxyflavonoid Isolated from Pogostemon cablin Bentham Exerts Antioxidant and Cytoprotective Effects in HepG2 Cells: Possible Role of ERK-Dependent Nrf2 Activation." International Journal of Molecular Sciences 20, no. 17 (2019): 4082. http://dx.doi.org/10.3390/ijms20174082.
Full textVargas-Mendoza, Nancy, Ángel Morales-González, Eduardo Osiris Madrigal-Santillán, et al. "Antioxidant and Adaptative Response Mediated by Nrf2 during Physical Exercise." Antioxidants 8, no. 6 (2019): 196. http://dx.doi.org/10.3390/antiox8060196.
Full textBaiskhanova, Dinara, and Heiner Schäfer. "The Role of Nrf2 in the Regulation of Mitochondrial Function and Ferroptosis in Pancreatic Cancer." Antioxidants 13, no. 6 (2024): 696. http://dx.doi.org/10.3390/antiox13060696.
Full textChen, Weimin, Zheng Sun, Xiao-Jun Wang, et al. "Direct Interaction between Nrf2 and p21Cip1/WAF1 Upregulates the Nrf2-Mediated Antioxidant Response." Molecular Cell 34, no. 6 (2009): 663–73. http://dx.doi.org/10.1016/j.molcel.2009.04.029.
Full textMa, Anyun, Lie Gao, Ahmed M. Wafi, et al. "Overexpression of Central ACE2 (Angiotensin-Converting Enzyme 2) Attenuates the Pressor Response to Chronic Central Infusion of Ang II (Angiotensin II)." Hypertension 76, no. 5 (2020): 1514–25. http://dx.doi.org/10.1161/hypertensionaha.120.15681.
Full textSarcinelli, Carmen, Helena Dragic, Marie Piecyk, et al. "ATF4-Dependent NRF2 Transcriptional Regulation Promotes Antioxidant Protection during Endoplasmic Reticulum Stress." Cancers 12, no. 3 (2020): 569. http://dx.doi.org/10.3390/cancers12030569.
Full textShiraiwa, Mariko, Tomoya Kitakaze, Yoko Yamashita, Yuichi Ukawa, Katsuyuki Mukai, and Hitoshi Ashida. "Pectolinarigenin Induces Antioxidant Enzymes through Nrf2/ARE Pathway in HepG2 Cells." Antioxidants 11, no. 4 (2022): 675. http://dx.doi.org/10.3390/antiox11040675.
Full textSurya, Reggie, Nurlinah Amalia, William Ben Gunawan, et al. "Tempe as superior functional antioxidant food: From biomechanism to future development of soybean-based functional food." Pharmacia 71, no. () (2024): 1–7. https://doi.org/10.3897/pharmacia.71.e116748.
Full textChen, Xi-Lin, Geraldine Dodd, Suzanne Thomas, et al. "Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression." American Journal of Physiology-Heart and Circulatory Physiology 290, no. 5 (2006): H1862—H1870. http://dx.doi.org/10.1152/ajpheart.00651.2005.
Full textSun, Zheng, Shirley Zhang, Jefferson Y. Chan, and Donna D. Zhang. "Keap1 Controls Postinduction Repression of the Nrf2-Mediated Antioxidant Response by Escorting Nuclear Export of Nrf2." Molecular and Cellular Biology 27, no. 18 (2007): 6334–49. http://dx.doi.org/10.1128/mcb.00630-07.
Full textKhadrawy, Omar, Samuel Gebremedhn, Dessie Salilew-Wondim, et al. "Endogenous and Exogenous Modulation of Nrf2 Mediated Oxidative Stress Response in Bovine Granulosa Cells: Potential Implication for Ovarian Function." International Journal of Molecular Sciences 20, no. 7 (2019): 1635. http://dx.doi.org/10.3390/ijms20071635.
Full textDassano, Alice, Mariateresa Mancuso, Paola Giardullo, et al. "N6-isopentenyladenosine and analogs activate the NRF2-mediated antioxidant response." Redox Biology 2 (2014): 580–89. http://dx.doi.org/10.1016/j.redox.2014.03.001.
Full textDrolet, Jennifer, Brodie Buchner-Duby, Morgan G. Stykel, et al. "Docosahexanoic acid signals through the Nrf2–Nqo1 pathway to maintain redox balance and promote neurite outgrowth." Molecular Biology of the Cell 32, no. 7 (2021): 511–20. http://dx.doi.org/10.1091/mbc.e20-09-0599.
Full textBarrera, Giuseppina, Marie Angele Cucci, Margherita Grattarola, Chiara Dianzani, Giuliana Muzio, and Stefania Pizzimenti. "Control of Oxidative Stress in Cancer Chemoresistance: Spotlight on Nrf2 Role." Antioxidants 10, no. 4 (2021): 510. http://dx.doi.org/10.3390/antiox10040510.
Full textChhunchha, Bhavana, Eri Kubo, and Dhirendra P. Singh. "Clock Protein Bmal1 and Nrf2 Cooperatively Control Aging or Oxidative Response and Redox Homeostasis by Regulating Rhythmic Expression of Prdx6." Cells 9, no. 8 (2020): 1861. http://dx.doi.org/10.3390/cells9081861.
Full textSorrentino, Leonardo, Walter Toscanelli, Matteo Fracella, et al. "NRF2 Antioxidant Response and Interferon-Stimulated Genes Are Differentially Expressed in Respiratory-Syncytial-Virus- and Rhinovirus-Infected Hospitalized Children." Pathogens 12, no. 4 (2023): 577. http://dx.doi.org/10.3390/pathogens12040577.
Full textJyrkkänen, Henna-Kaisa, Suvi Kuosmanen, Merja Heinäniemi, et al. "Novel insights into the regulation of antioxidant-response-elementmediated gene expression by electrophiles: induction of the transcriptional repressor BACH1 by Nrf2." Biochemical Journal 440, no. 2 (2011): 167–74. http://dx.doi.org/10.1042/bj20110526.
Full textMiller, William P., Siddharth Sunilkumar, Joseph F. Giordano, Allyson L. Toro, Alistair J. Barber, and Michael D. Dennis. "The stress response protein REDD1 promotes diabetes-induced oxidative stress in the retina by Keap1-independent Nrf2 degradation." Journal of Biological Chemistry 295, no. 21 (2020): 7350–61. http://dx.doi.org/10.1074/jbc.ra120.013093.
Full textSeol, Song-I., In Soon Kang, Ji Seok Lee, Ja-Kyeong Lee, and Chaekyun Kim. "Taurine Chloramine-Mediated Nrf2 Activation and HO-1 Induction Confer Protective Effects in Astrocytes." Antioxidants 13, no. 2 (2024): 169. http://dx.doi.org/10.3390/antiox13020169.
Full textZhang, Jianyong, Tsutomu Ohta, Atsushi Maruyama, et al. "BRG1 Interacts with Nrf2 To Selectively Mediate HO-1 Induction in Response to Oxidative Stress." Molecular and Cellular Biology 26, no. 21 (2006): 7942–52. http://dx.doi.org/10.1128/mcb.00700-06.
Full textCartaya, Ana E., Halle Lutz, Sophie Maiocchi, Morgan Nalesnik, and Edward M. Bahnson. "Delivery of Cinnamic Aldehyde Antioxidant Response Activating nanoParticles (ARAPas) for Vascular Applications." Antioxidants 10, no. 5 (2021): 709. http://dx.doi.org/10.3390/antiox10050709.
Full textChhunchha, Bhavana, Eri Kubo, and Dhirendra P. Singh. "Sulforaphane-Induced Klf9/Prdx6 Axis Acts as a Molecular Switch to Control Redox Signaling and Determines Fate of Cells." Cells 8, no. 10 (2019): 1159. http://dx.doi.org/10.3390/cells8101159.
Full textKathiria, Arwa S., Mackenzie A. Butcher, Jason M. Hansen, and Arianne L. Theiss. "Nrf2 is not required for epithelial prohibitin-dependent attenuation of experimental colitis." American Journal of Physiology-Gastrointestinal and Liver Physiology 304, no. 10 (2013): G885—G896. http://dx.doi.org/10.1152/ajpgi.00327.2012.
Full textJoo, Min Sung, Won Dong Kim, Ki Young Lee, Ji Hyun Kim, Ja Hyun Koo, and Sang Geon Kim. "AMPK Facilitates Nuclear Accumulation of Nrf2 by Phosphorylating at Serine 550." Molecular and Cellular Biology 36, no. 14 (2016): 1931–42. http://dx.doi.org/10.1128/mcb.00118-16.
Full textZhu, Yu-ping, Ze Zheng, Shaofan Hu, et al. "Unification of Opposites between Two Antioxidant Transcription Factors Nrf1 and Nrf2 in Mediating Distinct Cellular Responses to the Endoplasmic Reticulum Stressor Tunicamycin." Antioxidants 9, no. 1 (2019): 4. http://dx.doi.org/10.3390/antiox9010004.
Full textWang, Hui, Xiufei Liu, Min Long, et al. "NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis." Science Translational Medicine 8, no. 334 (2016): 334ra51. http://dx.doi.org/10.1126/scitranslmed.aad6095.
Full textMbiandjeu, Serge Cedrick Toya, Angela Siciliano, Alessandro Mattè, et al. "Nrf2 Plays a Key Role in Erythropoiesis during Aging." Antioxidants 13, no. 4 (2024): 454. http://dx.doi.org/10.3390/antiox13040454.
Full textQaisiya, Mohammed, Carlos Daniel Coda Zabetta, Cristina Bellarosa, and Claudio Tiribelli. "Bilirubin mediated oxidative stress involves antioxidant response activation via Nrf2 pathway." Cellular Signalling 26, no. 3 (2014): 512–20. http://dx.doi.org/10.1016/j.cellsig.2013.11.029.
Full textVelichkova, Michaella, and Tama Hasson. "Keap1 Regulates the Oxidation-Sensitive Shuttling of Nrf2 into and out of the Nucleus via a Crm1-Dependent Nuclear Export Mechanism." Molecular and Cellular Biology 25, no. 11 (2005): 4501–13. http://dx.doi.org/10.1128/mcb.25.11.4501-4513.2005.
Full textWang, Yan, Guanqin Ma, Xue-Feng Wang, et al. "Keap1 recognizes EIAV early accessory protein Rev to promote antiviral defense." PLOS Pathogens 18, no. 2 (2022): e1009986. http://dx.doi.org/10.1371/journal.ppat.1009986.
Full textSimon-Molas, Helga, Cristina Sánchez-de-Diego, Àurea Navarro-Sabaté, et al. "The Expression of TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) Can Be Controlled by the Antioxidant Orchestrator NRF2 in Human Carcinoma Cells." International Journal of Molecular Sciences 23, no. 3 (2022): 1905. http://dx.doi.org/10.3390/ijms23031905.
Full textRyu, Yea Seong, Pincha Devage Sameera Madushan Fernando, Kyoung Ah Kang, et al. "Marine Compound 3-bromo-4,5-dihydroxybenzaldehyde Protects Skin Cells against Oxidative Damage via the Nrf2/HO-1 Pathway." Marine Drugs 17, no. 4 (2019): 234. http://dx.doi.org/10.3390/md17040234.
Full textLi, Guo-Hui, Yan-Ru Li, Ping Jiao, et al. "Therapeutic Potential of Salviae Miltiorrhizae Radix et Rhizoma against Human Diseases Based on Activation of Nrf2-Mediated Antioxidant Defense System: Bioactive Constituents and Mechanism of Action." Oxidative Medicine and Cellular Longevity 2018 (June 27, 2018): 1–13. http://dx.doi.org/10.1155/2018/7309073.
Full text