Journal articles on the topic 'Nuclear fuel surrogate material'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nuclear fuel surrogate material.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Park, Seunghoon, Sungyeop Joung, and Jerry Park. "Nuclear Fuel Assay through analysis of Uranium L-shell by Hybrid L-edge/XRF Densitometer using a Surrogate Material." EPJ Web of Conferences 170 (2018): 07009. http://dx.doi.org/10.1051/epjconf/201817007009.
Full textPark, Seunghoon, Sungyeop Joung, and Jerry Park. "Nuclear Fuel Assay through analysis of Uranium L-shell by Hybrid L-edge/XRF Densitometer using a Surrogate Material." EPJ Web of Conferences 170 (2018): 08007. http://dx.doi.org/10.1051/epjconf/201817008007.
Full textDevanathan, Ram. "Molecular Dynamics Simulation of Fission Fragment Damage in Nuclear Fuel and Surrogate Material." MRS Advances 2, no. 21-22 (2017): 1225–30. http://dx.doi.org/10.1557/adv.2017.9.
Full textLi, Xiang, Ya Ting Yang, Cao Fei Fu, Qun Ying Huang, Liu Si Sheng, Zhen Qi Chang, and Christophe C. Serra. "A Microfluidic-Assisted Fabrication of Size-Controlled Porose CeO2 Microspheres as an Analog Production of Nuclear Fuel Beads." Advances in Science and Technology 94 (October 2014): 55–68. http://dx.doi.org/10.4028/www.scientific.net/ast.94.55.
Full textJinno, D., Ashwani K. Gupta, and K. Yoshikawa. "Determination of Chemical Kinetic Parameters of Surrogate Solid Wastes." Journal of Engineering for Gas Turbines and Power 126, no. 4 (October 1, 2004): 685–92. http://dx.doi.org/10.1115/1.1772407.
Full textHayes, John R., and Andrew P. Grosvenor. "Investigation of NdxY0.25–xZr0.75O1.88 inert matrix fuel materials made by a co-precipitation synthetic route." Canadian Journal of Chemistry 94, no. 3 (March 2016): 198–210. http://dx.doi.org/10.1139/cjc-2015-0485.
Full textNakanishi, Ryuzo, Morihisa Saeki, Ikuo Wakaida, and Hironori Ohba. "Detection of Gadolinium in Surrogate Nuclear Fuel Debris Using Fiber-Optic Laser-Induced Breakdown Spectroscopy under Gamma Irradiation." Applied Sciences 10, no. 24 (December 16, 2020): 8985. http://dx.doi.org/10.3390/app10248985.
Full textHarrison, R. W., R. N. Worth, J. Buckley, and T. Abram. "Atomistic level study of Ce3Si2 oxidation as an accident tolerant nuclear fuel surrogate." Corrosion Science 164 (March 2020): 108332. http://dx.doi.org/10.1016/j.corsci.2019.108332.
Full textEgeland, G. W., L. D. Zuck, W. R. Cannon, P. A. Lessing, and P. G. Medvedev. "Dry bag isostatic pressing for improved green strength of surrogate nuclear fuel pellets." Journal of Nuclear Materials 406, no. 2 (November 2010): 205–11. http://dx.doi.org/10.1016/j.jnucmat.2010.08.022.
Full textFirouzdor, Vahid, Lucas Wilson, Kumar Sridharan, Brandon Semerau, Benjamin Hauch, Jamieson Brechtl, James I. Cole, and Todd R. Allen. "Development of Diffusion Barrier Coatings for Mitigation of Fuel-Cladding Chemical Interactions." Key Engineering Materials 507 (March 2012): 3–7. http://dx.doi.org/10.4028/www.scientific.net/kem.507.3.
Full textGausse, Clémence, Calum W. Dunlop, Aidan A. Friskney, Martin C. Stennett, Neil C. Hyatt, and Claire L. Corkhill. "Synthesis, characterisation and preliminary corrosion behaviour assessment of simulant Fukushima nuclear accident fuel debris." MRS Advances 5, no. 1-2 (2020): 65–72. http://dx.doi.org/10.1557/adv.2020.35.
Full textMcDeavitt, S. M., A. Parkison, A. R. Totemeier, and J. J. Wegener. "Fabrication of Cermet Nuclear Fuels Designed for the Transmutation of Transuranic Isotopes." Materials Science Forum 561-565 (October 2007): 1733–36. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.1733.
Full textHunt, R. D., J. D. Hunn, J. F. Birdwell, T. B. Lindemer, and J. L. Collins. "The addition of silicon carbide to surrogate nuclear fuel kernels made by the internal gelation process." Journal of Nuclear Materials 401, no. 1-3 (June 2010): 55–59. http://dx.doi.org/10.1016/j.jnucmat.2010.03.018.
Full textPukari, Merja, and Masahide Takano. "Sintering and characterization of ZrN and (Dy,Zr)N as surrogate materials for fast reactor nitride fuel." Journal of Nuclear Materials 444, no. 1-3 (January 2014): 7–13. http://dx.doi.org/10.1016/j.jnucmat.2013.09.001.
Full textOsaka, Masahiko, Shuhei Miwa, and Yoshiaki Tachi. "Simple fabrication process for CeO2–MgO composite as surrogate for actinide-containing target for use in nuclear fuel." Ceramics International 32, no. 6 (January 2006): 659–63. http://dx.doi.org/10.1016/j.ceramint.2005.04.026.
Full textWang, Hong, and Jy-An John Wang. "Bending testing and characterization of surrogate nuclear fuel rods made of Zircaloy-4 cladding and aluminum oxide pellets." Journal of Nuclear Materials 479 (October 2016): 470–82. http://dx.doi.org/10.1016/j.jnucmat.2016.07.044.
Full textDewi, Ariyani Kusuma, Souichirou Yamaguchi, Takashi Onitzuka, and Masayoshi Uno. "Thermal conductivity calculation of ZrC–ZrO2 pellet from powder metallurgy as the surrogate of UCO kernel fuel." Journal of Nuclear Materials 539 (October 2020): 152343. http://dx.doi.org/10.1016/j.jnucmat.2020.152343.
Full textTian, Wei, M. A. Pouchon, Hangxu Guo, Denglei Chen, Xiaojie Yin, and Zhi Qin. "Fabrication of CeO2 ceramic spheres as a surrogate of nuclear fuel by an improved microwave-assisted rapid internal gelation process." Ceramics International 44, no. 6 (April 2018): 6739–46. http://dx.doi.org/10.1016/j.ceramint.2018.01.090.
Full textKwon, Sang Woon, Si Woo Park, and Sung Jai Lee. "Effect of Deposit on the Evaporation Rate of Adhered Salt in Uranium Dendrite." Science and Technology of Nuclear Installations 2020 (July 8, 2020): 1–6. http://dx.doi.org/10.1155/2020/8866234.
Full textKulikova, Svetlana A., Kseniya Yu Belova, Ekaterina A. Tyupina, and Sergey E. Vinokurov. "Conditioning of Spent Electrolyte Surrogate LiCl-KCl-CsCl Using Magnesium Potassium Phosphate Compound." Energies 13, no. 8 (April 16, 2020): 1963. http://dx.doi.org/10.3390/en13081963.
Full textPrabhu, Sreehari Ramachandra, Mahesh D. Pandey, Nicolas Christodoulou, and Brian W. Leitch. "A surrogate model for the 3D prediction of in-service deformation in CANDU® fuel channels." Nuclear Engineering and Design 369 (December 2020): 110871. http://dx.doi.org/10.1016/j.nucengdes.2020.110871.
Full textWilliams, Ammon, Keith Bryce, and Supathorn Phongikaroon. "Measurement of Cerium and Gadolinium in Solid Lithium Chloride–Potassium Chloride Salt Using Laser-Induced Breakdown Spectroscopy (LIBS)." Applied Spectroscopy 71, no. 10 (July 18, 2017): 2302–12. http://dx.doi.org/10.1177/0003702817709298.
Full textHong, Seong-Gu, Thak-Sang Byun, Lance L. Snead, and Chong Soo Lee. "Evaluation methods for the hoop strength of small-sized tubular ceramic components." Journal of Materials Research 24, no. 4 (April 2009): 1422–34. http://dx.doi.org/10.1557/jmr.2009.0158.
Full textJung, Hundal, Tae Ahn, Roberto Pabalan, and David Pickett. "Corrosion Study of SIMFUEL in Aerated Carbonate Solution Containing Calcium and Silicate." MRS Proceedings 1518 (2013): 139–44. http://dx.doi.org/10.1557/opl.2013.77.
Full textJohnson A., Jonathan, Ryan Wilkerson, Stephen DiPietro, and Gregory B. Thompson. "Cermet surrogate nuclear fuels from coated powders." Journal of Nuclear Materials 557 (December 2021): 153246. http://dx.doi.org/10.1016/j.jnucmat.2021.153246.
Full textBondarenko, V. N., A. V. Goncharov, I. M. Karnaukhov, A. V. Mazilov, V. M. Pistryak, V. I. Sukhostavets, A. G. Tolstolutskii, and K. G. Rudya. "Investigation of the elemental composition of surrogates of fuel-containing materials by nuclear microanalysis." Atomic Energy 102, no. 4 (April 2007): 304–9. http://dx.doi.org/10.1007/s10512-007-0047-6.
Full textRosales, Jhonathan, Isabella J. van Rooyen, and Clemente J. Parga. "Characterizing surrogates to develop an additive manufacturing process for U3Si2 nuclear fuel." Journal of Nuclear Materials 518 (May 2019): 117–28. http://dx.doi.org/10.1016/j.jnucmat.2019.02.026.
Full textNguyen, V. T., S. Wakayama, S. Kishigami, H. Ohta, T. Hikichi, E. Mizutani, H. T. Bui, and T. Wakayama. "139 INJECTION OF SOMATIC CELL CYTOPLASM INTO OOCYTES BEFORE ICSI IMPAIRED FULL-TERM DEVELOPMENT AND INCREASED PLACENTA WEIGHT IN MICE." Reproduction, Fertility and Development 18, no. 2 (2006): 178. http://dx.doi.org/10.1071/rdv18n2ab139.
Full textWorley, Christopher G., and George J. Havrilla. "Micro-X-ray Fluorescence Characterization of Mixed Oxide Fuel Surrogate Feed Material." Analytical Chemistry 70, no. 14 (July 1998): 2957–63. http://dx.doi.org/10.1021/ac9713924.
Full textLatimer, G. D., W. R. Marcum, and W. F. Jones. "Dispersion of Surrogate LWR Fuel Experiments Under LOCA Conditions." Nuclear Technology 206, no. 9 (March 2, 2020): 1374–84. http://dx.doi.org/10.1080/00295450.2020.1712158.
Full textStefanovsky, Sergey V., Vladimir V. Lebedev, Alexander G. Ptashkin, Sergey A. Dmitriev, and James C. Marra. "Cold Crucible Inductive Melting Technology – Application to Vitrification and Ceramization of High Level and Actinide Wastes." Advances in Science and Technology 73 (October 2010): 183–93. http://dx.doi.org/10.4028/www.scientific.net/ast.73.183.
Full textFantidis, J. G., G. E. Nikolaou, and F. N. Tsagas. "Identification of unknown nuclear material." HNPS Proceedings 15 (January 1, 2020): 273. http://dx.doi.org/10.12681/hnps.2611.
Full textFigueroa, Antonio, and Malte Göttsche. "Gaussian processes for surrogate modeling of discharged fuel nuclide compositions." Annals of Nuclear Energy 156 (June 2021): 108085. http://dx.doi.org/10.1016/j.anucene.2020.108085.
Full textEmond, Christy A., and John F. Kalinich. "Biokinetics of Embedded Surrogate Radiological Dispersal Device Material." Health Physics 102, no. 2 (February 2012): 124–36. http://dx.doi.org/10.1097/hp.0b013e31823095e5.
Full textPatnaik, Sobhan. "Comparative analysis of temperature dependent properties of commercial nuclear fuel pellet and surrogates undergoing cracking: A review." Ceramics International 46, no. 16 (November 2020): 24765–78. http://dx.doi.org/10.1016/j.ceramint.2020.06.266.
Full textTerricabras, Adrien J., James O. Kiggans, Ling Wang, and Steven J. Zinkle. "Characterization of high thermal conductivity fuel surrogates before and after ion irradiation." Journal of Nuclear Materials 552 (August 2021): 153027. http://dx.doi.org/10.1016/j.jnucmat.2021.153027.
Full textZhang, Ling Zhe, Ya Kun Sun, Su Li, and Qing Ping Zheng. "Simulation of HCCI Combustion Characteristics for Low RON Gasoline Surrogate Fuels." Applied Mechanics and Materials 694 (November 2014): 54–58. http://dx.doi.org/10.4028/www.scientific.net/amm.694.54.
Full textAKAOKA, Katsuaki, Masabumi MIYABE, Haruyoshi OTOBE, and Ikuo WAKAIDA. "Laser-Induced Breakdown Spectroscopy for Nuclear Fuel Material." Review of Laser Engineering 42, no. 12 (2014): 918. http://dx.doi.org/10.2184/lsj.42.12_918.
Full textGoltsev, V. Y., and A. V. Osintsev. "Estimating the Brittle Strength of Nuclear Fuel Material." KnE Materials Science 4, no. 1 (May 6, 2018): 139. http://dx.doi.org/10.18502/kms.v4i1.2138.
Full textLützenkirchen, Klaus, Maria Wallenius, Zsolt Varga, Thierry Wiss, Alexander Knott, Adrian Nicholl, and Klaus Mayer. "Nuclear forensics on uranium fuel pellets." Radiochimica Acta 107, no. 7 (July 26, 2019): 635–43. http://dx.doi.org/10.1515/ract-2018-3068.
Full textAzevedo, C. R. F. "Selection of fuel cladding material for nuclear fission reactors." Engineering Failure Analysis 18, no. 8 (December 2011): 1943–62. http://dx.doi.org/10.1016/j.engfailanal.2011.06.010.
Full textHoggan, Rita E., Larry D. Zuck, W. Roger Cannon, and Paul A. Lessing. "Processing of surrogate nuclear fuel pellets for better dimensional control with dry bag isostatic pressing." Journal of Nuclear Materials 482 (December 2016): 34–41. http://dx.doi.org/10.1016/j.jnucmat.2016.05.034.
Full textYAMAWAKI, Michio, Hiroo NAKAMURA, Nobuaki NODA, Kenji OKUNO, Kenji NODA, and Satoru TANAKA. "Topics of Fusion Fuel-Material Interactions (FFMI)." Journal of the Atomic Energy Society of Japan / Atomic Energy Society of Japan 36, no. 4 (1994): 301–10. http://dx.doi.org/10.3327/jaesj.36.301.
Full textWang, F., ZL Zheng, and ZW He. "A Soot Precursor Formation Embedded Reaction Mechanism of Diesel Surrogate Fuel." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37, no. 12 (May 7, 2015): 1323–31. http://dx.doi.org/10.1080/15567036.2011.610867.
Full textLee, Young-Woo, Chang Young Joung, Si Hyung Kim, and Sang-Chul Lee. "Inert matrix fuel — A new challenge for material technology in the nuclear fuel cycle." Metals and Materials International 7, no. 2 (April 2001): 159–64. http://dx.doi.org/10.1007/bf03026954.
Full textLe Roux, S. D., and D. J. Van der Merwe. "Texture Analysis in Zircaloy Cladding Tube Material for Nuclear Fuel." Materials Science Forum 157-162 (May 1994): 1455–62. http://dx.doi.org/10.4028/www.scientific.net/msf.157-162.1455.
Full textYONEKAWA, Hidemi, and Kenji OMURA. "Material handling and automation technology at nuclear fuel fabrication plant." Journal of the Japan Society for Precision Engineering 57, no. 5 (1991): 803–6. http://dx.doi.org/10.2493/jjspe.57.803.
Full textKim, Hyun-Jung, Jeong-Sik Yim, Yong-Jin Jeong, and Kang-Hee Lee. "A study on the mechanically equivalent surrogate plate of U Mo dispersion fuel using tungsten." Nuclear Engineering and Technology 51, no. 2 (April 2019): 495–500. http://dx.doi.org/10.1016/j.net.2018.10.015.
Full textBuck, Edgar C., Nancy L. Dietz, and John K. Bates. "Corroded spent nuclear fuel examined with EELS." Proceedings, annual meeting, Electron Microscopy Society of America 54 (August 11, 1996): 562–63. http://dx.doi.org/10.1017/s0424820100165276.
Full textEbiwonjumi, Bamidele, Peng Zhang, and Deokjung Lee. "SENSITIVITY ANALYSIS OF PWR SPENT FUEL DUE TO MODELLING PARAMETER UNCERTAINTIES USING SURROGATE MODELS." EPJ Web of Conferences 247 (2021): 15009. http://dx.doi.org/10.1051/epjconf/202124715009.
Full text