Journal articles on the topic 'Nuclear magnetic resonance. Chemistry, Physical and theoretical'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nuclear magnetic resonance. Chemistry, Physical and theoretical.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

V.S.D. "Studies in Physical and Theoretical Chemistry, Vol 72, Nuclear Magnetic Resonance: principles and theory,." Journal of Molecular Structure 245, no. 3-4 (May 1991): 403–4. http://dx.doi.org/10.1016/0022-2860(91)87115-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pfeifer, Harry. "Principles of Nuclear Magnetic Resonance Microscopy." Zeitschrift für Physikalische Chemie 176, Part_1 (January 1992): 132. http://dx.doi.org/10.1524/zpch.1992.176.part_1.132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

A. Jones, Jonathan. "Quantum computing and nuclear magnetic resonance." PhysChemComm 4, no. 11 (2001): 49. http://dx.doi.org/10.1039/b103231n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yamasaki, Akira. "Cobalt-59 Nuclear Magnetic Resonance Spectroscopy in Coordination Chemistry." Journal of Coordination Chemistry 24, no. 3 (October 1991): 211–60. http://dx.doi.org/10.1080/00958979109407886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khitrin, Anatoly K., Vladimir L. Ermakov, and B. M. Fung. "Nuclear magnetic resonance molecular photography." Journal of Chemical Physics 117, no. 15 (October 15, 2002): 6903–6. http://dx.doi.org/10.1063/1.1513310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Chin H., and Stanley J. Opella. "Shiftless nuclear magnetic resonance spectroscopy." Journal of Chemical Physics 128, no. 5 (February 7, 2008): 052312. http://dx.doi.org/10.1063/1.2816786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Warren, William W. "Nuclear Magnetic Resonance in Expanded Fluid Metals." Zeitschrift für Physikalische Chemie 217, no. 7 (July 1, 2003): 775–82. http://dx.doi.org/10.1524/zpch.217.7.775.20389.

Full text
Abstract:
AbstractAdaptation of the internally-heated autoclave technique to nuclear magnetic resonance (NMR) has permitted NMR measurements of electronically-conducting fluids at high temperatures and pressures. The history of NMR experiments on mercury, selenium, and cesium is reviewed briefly with reference to subsequent relevant research on these materials.
APA, Harvard, Vancouver, ISO, and other styles
8

Bilalbegović, G. "Nuclear Magnetic Resonance Parameters of Water Hexamers." Journal of Physical Chemistry A 114, no. 2 (January 21, 2010): 715–20. http://dx.doi.org/10.1021/jp9075614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pennanen, Teemu S., Perttu Lantto, Mikko Hakala, and Juha Vaara. "Nuclear magnetic resonance parameters in water dimer." Theoretical Chemistry Accounts 129, no. 3-5 (August 15, 2010): 313–24. http://dx.doi.org/10.1007/s00214-010-0782-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Y. K. "Spin-1 nuclear quadrupole resonance theory with comparisons to nuclear magnetic resonance." Concepts in Magnetic Resonance 14, no. 3 (2002): 155–71. http://dx.doi.org/10.1002/cmr.10023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Homer, John, Paul McKeown, William R. McWhinnie, Sunil U. Patel, and Gavin J. Tilstone. "Sonically induced narrowing of solid-state nuclear magnetic resonance spectra: a possible alternative to magic angle spinning nuclear magnetic resonance." Journal of the Chemical Society, Faraday Transactions 87, no. 14 (1991): 2253. http://dx.doi.org/10.1039/ft9918702253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mawhinney, Robert C., Gilles H. Peslherbe, and Heidi M. Muchall. "Characterizing Nitrilimines with Nuclear Magnetic Resonance Spectroscopy. A Theoretical Study†." Journal of Physical Chemistry B 112, no. 2 (January 2008): 650–55. http://dx.doi.org/10.1021/jp709968d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ruessink, B. H., and C. MacLean. "Electric Field Nuclear Magnetic Resonance (Application to Nuclear Quadrupole Coupling)." Zeitschrift für Naturforschung A 41, no. 1-2 (February 1, 1986): 421–24. http://dx.doi.org/10.1515/zna-1986-1-282.

Full text
Abstract:
The technique of electric field NMR is outlined in terms of theoretical approach and of experimental method. As an illustration, new and recent values for quadrupole coupling constants measured in the liquid state are reported. They are compiled together with observations from the solid and the gas. A discussion concerning the differences between the phases is briefly given. Experimental results of quadrupole coupling constants for all of the three phases are still scarce.
APA, Harvard, Vancouver, ISO, and other styles
14

Bleaney, B. "Magnetic resonance, nuclear orientation and antiferromagnetism." Molecular Physics 95, no. 5 (December 1998): 727–29. http://dx.doi.org/10.1080/00268979809483207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zhang, Shanmin. "Near neighbor approximation in nuclear magnetic resonance." Journal of Chemical Physics 120, no. 4 (January 22, 2004): 1886–91. http://dx.doi.org/10.1063/1.1635819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hayes, Sophia E., Stacy Mui, and Kannan Ramaswamy. "Optically pumped nuclear magnetic resonance of semiconductors." Journal of Chemical Physics 128, no. 5 (February 7, 2008): 052203. http://dx.doi.org/10.1063/1.2823131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Sjolander, Tobias F., Michael C. D. Tayler, Jonathan P. King, Dmitry Budker, and Alexander Pines. "Transition-Selective Pulses in Zero-Field Nuclear Magnetic Resonance." Journal of Physical Chemistry A 120, no. 25 (June 20, 2016): 4343–48. http://dx.doi.org/10.1021/acs.jpca.6b04017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wen, Wen-Yang, Edward J. Cain, Paul T. Inglefield, and Alan A. Jones. "Dynamics of Sorbed13CO2in Polycarbonate Probed by Nuclear Magnetic Resonance." Zeitschrift für Physikalische Chemie 155, Part_1_2 (January 1987): 181–97. http://dx.doi.org/10.1524/zpch.1987.155.part_1_2.181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Mishkovsky, Mor, and Lucio Frydman. "Principles and Progress in Ultrafast Multidimensional Nuclear Magnetic Resonance." Annual Review of Physical Chemistry 60, no. 1 (May 2009): 429–48. http://dx.doi.org/10.1146/annurev.physchem.040808.090420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Yamaguchi, Takehito, Masayuki Harada, Yoon-yul Park, and Hiroshi Tomiyasu. "Direct nuclear magnetic resonance observations of excited uranyl ions." Journal of the Chemical Society, Faraday Transactions 86, no. 9 (1990): 1621. http://dx.doi.org/10.1039/ft9908601621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Chmielewski, Piotr J., Lechoslaw Latos-Grazynski, and Ewa Pacholska. "Low-Valent Nickel Thiaporphyrins. Nuclear Magnetic Resonance and Electron Paramagnetic Resonance Studies." Inorganic Chemistry 33, no. 9 (April 1994): 1992–99. http://dx.doi.org/10.1021/ic00087a040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Waksman Minsky, Noemí, and Alma Saucedo Yáñez. "Breve historia de la Resonancia Magnética Nuclear: desde el descubrimiento hasta la aplicación en imagenología." Educación Química 30, no. 2 (April 9, 2019): 129. http://dx.doi.org/10.22201/fq.18708404e.2019.2.68418.

Full text
Abstract:
Nuclear Magnetic Resonance spectroscopy is a high versatile analysis method which has contributed in different fields of scientific knowledge. Initially, its discovery as physical phenomenon caught notable interest. However, applications in chemistry and recently in medicine have had a deeper impact. In a historic context is important to recognize personal contributions of developers of this area of spectroscopy, which is still now generating theoretical and experimental knowledge.
APA, Harvard, Vancouver, ISO, and other styles
23

Karlsson, Torgny, Michael Helmle, N. D. Kurur, and Malcolm H. Levitt. "Rotational resonance echoes in the nuclear magnetic resonance of spinning solids." Chemical Physics Letters 247, no. 4-6 (December 1995): 534–40. http://dx.doi.org/10.1016/s0009-2614(95)01257-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Andrew, E. Raymond. "Human images by nuclear magnetic resonance." International Journal of Quantum Chemistry 32, S14 (March 14, 1987): 331–39. http://dx.doi.org/10.1002/qua.560320830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Cousin, Samuel F., Cyril Charlier, Pavel Kadeřávek, Thorsten Marquardsen, Jean-Max Tyburn, Pierre-Alain Bovier, Simone Ulzega, et al. "High-resolution two-field nuclear magnetic resonance spectroscopy." Physical Chemistry Chemical Physics 18, no. 48 (2016): 33187–94. http://dx.doi.org/10.1039/c6cp05422f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Chadwick, Alan V. "Nuclear magnetic resonance methods of studying mass transport in solids." Journal of the Chemical Society, Faraday Transactions 86, no. 8 (1990): 1157. http://dx.doi.org/10.1039/ft9908601157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Issac, Corinne E., Christine M. Gleave, Paméla T. Nasr, Hoang L. Nguyen, Elizabeth A. Curley, Jonilyn L. Yoder, Eric W. Moore, Lei Chen, and John A. Marohn. "Dynamic nuclear polarization in a magnetic resonance force microscope experiment." Physical Chemistry Chemical Physics 18, no. 13 (2016): 8806–19. http://dx.doi.org/10.1039/c6cp00084c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Vaara, Juha. "Theory and computation of nuclear magnetic resonance parameters." Physical Chemistry Chemical Physics 9, no. 40 (2007): 5399. http://dx.doi.org/10.1039/b706135h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ikäläinen, Suvi, Perttu Lantto, Pekka Manninen, and Juha Vaara. "Laser-induced nuclear magnetic resonance splitting in hydrocarbons." Journal of Chemical Physics 129, no. 12 (September 28, 2008): 124102. http://dx.doi.org/10.1063/1.2977741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Gan, Zhehong, Ivan Hung, Yusuke Nishiyama, Jean-Paul Amoureux, Olivier Lafon, Hiroki Nagashima, Julien Trébosc, and Bingwen Hu. "14N overtone nuclear magnetic resonance of rotating solids." Journal of Chemical Physics 149, no. 6 (August 14, 2018): 064201. http://dx.doi.org/10.1063/1.5044653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Meier, Peter, Ernst Ohmes, and Gerd Kothe. "Multipulse dynamic nuclear magnetic resonance of phospholipid membranes." Journal of Chemical Physics 85, no. 6 (September 15, 1986): 3598–614. http://dx.doi.org/10.1063/1.450931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

van Beek, Jacco D., Marina Carravetta, Gian Carlo Antonioli, and Malcolm H. Levitt. "Spherical tensor analysis of nuclear magnetic resonance signals." Journal of Chemical Physics 122, no. 24 (June 22, 2005): 244510. http://dx.doi.org/10.1063/1.1943947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ramachandran, Ramesh, and Robert G. Griffin. "Multipole-multimode Floquet theory in nuclear magnetic resonance." Journal of Chemical Physics 122, no. 16 (April 22, 2005): 164502. http://dx.doi.org/10.1063/1.1875092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Baar, Andreas, Werner-Michael Kulicke, Klaus Szablikowski, and René Kiesewetter. "Nuclear magnetic resonance spectroscopic characterization of carboxymethylcellulose." Macromolecular Chemistry and Physics 195, no. 5 (May 1994): 1483–92. http://dx.doi.org/10.1002/macp.1994.021950503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Spiess, Hans Wolfgang. "Nuclear Magnetic Resonance Spectroscopy in Macromolecular Science." Macromolecular Chemistry and Physics 204, no. 2 (February 2003): 340–46. http://dx.doi.org/10.1002/macp.200290074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Corzilius, Björn. "High-Field Dynamic Nuclear Polarization." Annual Review of Physical Chemistry 71, no. 1 (April 20, 2020): 143–70. http://dx.doi.org/10.1146/annurev-physchem-071119-040222.

Full text
Abstract:
Dynamic nuclear polarization (DNP) is one of the most prominent methods of sensitivity enhancement in nuclear magnetic resonance (NMR). Even though solid-state DNP under magic-angle spinning (MAS) has left the proof-of-concept phase and has become an important tool for structural investigations of biomolecules as well as materials, it is still far from mainstream applicability because of the potentially overwhelming combination of unique instrumentation, complex sample preparation, and a multitude of different mechanisms and methods available. In this review, I introduce the diverse field and history of DNP, combining aspects of NMR and electron paramagnetic resonance. I then explain the general concepts and detailed mechanisms relevant at high magnetic field, including solution-state methods based on Overhauser DNP but with a greater focus on the more established MAS DNP methods. Finally, I review practical considerations and fields of application and discuss future developments.
APA, Harvard, Vancouver, ISO, and other styles
37

Mayer, Christian, and Annegret Terheiden. "Numerical simulation of magnetic susceptibility effects in nuclear magnetic resonance spectroscopy." Journal of Chemical Physics 118, no. 6 (2003): 2775. http://dx.doi.org/10.1063/1.1536614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gregušová, Adriana, S. Ajith Perera, and Rodney J. Bartlett. "Accuracy of Computed15N Nuclear Magnetic Resonance Chemical Shifts." Journal of Chemical Theory and Computation 6, no. 4 (March 4, 2010): 1228–39. http://dx.doi.org/10.1021/ct9005739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Norris, David G. "Adiabatic radiofrequency pulse forms in biomedical nuclear magnetic resonance." Concepts in Magnetic Resonance 14, no. 2 (2002): 89–101. http://dx.doi.org/10.1002/cmr.10007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kaldoudi, Eleni, and Steve C. R. Williams. "Fat and water differentiation by nuclear magnetic resonance imaging." Concepts in Magnetic Resonance 4, no. 1 (January 1992): 53–71. http://dx.doi.org/10.1002/cmr.1820040104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kaldoudi, Eleni, and Steve C. R. Williams. "Fat and water differentiation by nuclear magnetic resonance imaging." Concepts in Magnetic Resonance 4, no. 2 (April 1992): 162–65. http://dx.doi.org/10.1002/cmr.1820040206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Malhotra, Deepak, and Joseph I. Shapiro. "Nuclear magnetic resonance measurements of intracellular pH: Biomedical implications." Concepts in Magnetic Resonance 5, no. 2 (April 1993): 123–50. http://dx.doi.org/10.1002/cmr.1820050203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Smith, J. A. S. "Nuclear Quadrupole Resonance: The Present State and Further Development." Zeitschrift für Naturforschung A 41, no. 1-2 (February 1, 1986): 453–62. http://dx.doi.org/10.1515/zna-1986-1-289.

Full text
Abstract:
The importance of nuclear electric quadrupole interactions in chemistry, both present and future, depends very much on their power to resolve problems in electronic structure and molecular dynamics. Fortunately, the subject, by its very nature, is “multinuclear”; even if the ground state of a given nucleus is non-quadrupolar, there often exist excited nuclear states which are, an example being 19F, for which quadrupole coupling constants are now being published from angular correlation measurements. Other new techniques are constantly extending the range of the experiments, recent examples being the use of SQUID magnetometers to detect acoustic 121Sb and 123Sb quadrupole resonance in antimony metal and Fourier transform quadrupole resonance spectroscopy based on fast field cycling to measure 2H quadrupole interactions in powders. Recently, much work on quadrupole interactions in solids of half-integral spin nuclei such as 17O or 27Al has been pursued in two different ways; by quadrupole double resonance in natural abundance, and nuclear magnetic resonance in very high magnetic fields, for which enrichment of low-abundance nuclei such as 170 is often required. In the liquid phase, measurements are now sufficiently reliable for comparisons of changes in the nuclear electric quadrupole tensor from gas to liquid and solid phases to be made. The new methods of partial alignment of polar molecules in the liquid phase in strong electric fields, or magnetically anisotropic molecules in high magnetic fields, seem certain to contribute to these developments.
APA, Harvard, Vancouver, ISO, and other styles
44

Pauvert, O., F. Fayon, A. Rakhmatullin, S. Krämer, M. Horvatić, D. Avignant, C. Berthier, M. Deschamps, D. Massiot, and C. Bessada. "91Zr Nuclear Magnetic Resonance Spectroscopy of Solid Zirconium Halides at High Magnetic Field." Inorganic Chemistry 48, no. 18 (September 21, 2009): 8709–17. http://dx.doi.org/10.1021/ic9007119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Dalgarno, D. C., R. W. Olafson, and I. M. Armitage. "Proton nuclear magnetic resonance studies on metallothionein from Scylla serrata." Inorganic Chemistry 24, no. 21 (October 1985): 3439–44. http://dx.doi.org/10.1021/ic00215a028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Gaillard, Jacques, Jean Marc Moulis, and Jacques Meyer. "Hydrogen-1 nuclear magnetic resonance of selenium-substituted clostridial ferredoxins." Inorganic Chemistry 26, no. 2 (January 1987): 320–24. http://dx.doi.org/10.1021/ic00249a021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Nakayama, Hirokazu, Taro Eguchi, and Nobuo Nakamura. "Molecular reorientation in solid (CH3NH3)2CdBR4 as studied by 79Br and 81Br nuclear quadrupole resonance and 1H nuclear magnetic resonance." Journal of the Chemical Society, Faraday Transactions 88, no. 20 (1992): 3067. http://dx.doi.org/10.1039/ft9928803067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Gangoda, M., R. K. Gilpin, and J. Figueirinhas. "Deuterium nuclear magnetic resonance studies of alkyl-modified silica." Journal of Physical Chemistry 93, no. 12 (June 1989): 4815–18. http://dx.doi.org/10.1021/j100349a027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Dong, Shuan, Kazuhiko Yamada, and Gang Wu. "Oxygen-17 Nuclear Magnetic Resonance of Organic Solids." Zeitschrift für Naturforschung A 55, no. 1-2 (February 1, 2000): 21–28. http://dx.doi.org/10.1515/zna-2000-1-205.

Full text
Abstract:
We report solid-state 17O NMR determinations of the oxygen chemical shift (CS) and electric field gradient (EFG) tensors for a series of 17O-enriched organic compounds containing various functional groups. In several cases, analysis of the n O magic-angle-spinning (MAS) and static NMR spectra yields both the magnitude and relative orientations of the 17O CS and EFG tensors. We also demonstrate the feasibility of solid-state 17O NMR as a potentially useful technique for studying molecular structure and hydrogen bonding.
APA, Harvard, Vancouver, ISO, and other styles
50

Holmes, Sean T., Cameron S. Vojvodin, and Robert W. Schurko. "Dispersion-Corrected DFT Methods for Applications in Nuclear Magnetic Resonance Crystallography." Journal of Physical Chemistry A 124, no. 49 (December 1, 2020): 10312–23. http://dx.doi.org/10.1021/acs.jpca.0c06372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography