To see the other types of publications on this topic, follow the link: Nuclear Reprogramming.

Journal articles on the topic 'Nuclear Reprogramming'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nuclear Reprogramming.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tada, Takashi, Hironobu Kimura, and Masako Tada. ""Nuclear Reprogramming" and "Epigenetic Reprogramming"." Journal of Mammalian Ova Research 21, no. 3 (2004): 97–104. http://dx.doi.org/10.1274/jmor.21.97.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Smallridge, Rachel. "Nuclear reprogramming." Nature Reviews Molecular Cell Biology 5, no. 11 (November 2004): 870. http://dx.doi.org/10.1038/nrm1537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Halley-Stott, R. P., V. Pasque, and J. B. Gurdon. "Nuclear reprogramming." Development 140, no. 12 (May 28, 2013): 2468–71. http://dx.doi.org/10.1242/dev.092049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ooi, Jolene, and Pentao Liu. "Delineating nuclear reprogramming." Protein & Cell 3, no. 5 (March 31, 2012): 329–45. http://dx.doi.org/10.1007/s13238-012-2920-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kono, T. "Nuclear transfer and reprogramming." Reviews of Reproduction 2, no. 2 (May 1, 1997): 74–80. http://dx.doi.org/10.1530/revreprod/2.2.74.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kono, T. "Nuclear transfer and reprogramming." Reviews of Reproduction 2, no. 2 (May 1, 1997): 74–80. http://dx.doi.org/10.1530/ror.0.0020074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Goding, Colin R., Duanqing Pei, and Xin Lu. "Cancer: pathological nuclear reprogramming?" Nature Reviews Cancer 14, no. 8 (July 17, 2014): 568–73. http://dx.doi.org/10.1038/nrc3781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yamanaka, Shinya. "Pluripotency and nuclear reprogramming." Philosophical Transactions of the Royal Society B: Biological Sciences 363, no. 1500 (March 28, 2008): 2079–87. http://dx.doi.org/10.1098/rstb.2008.2261.

Full text
Abstract:
Embryonic stem cells are promising donor cell sources for cell transplantation therapy, which may in the future be used to treat various diseases and injuries. However, as is the case for organ transplantation, immune rejection after transplantation is a potential problem with this type of therapy. Moreover, the use of human embryos presents serious ethical difficulties. These issues may be overcome if pluripotent stem cells are generated from patients' somatic cells. Here, we review the molecular mechanisms underlying pluripotency and the currently known methods of inducing pluripotency in somatic cells.
APA, Harvard, Vancouver, ISO, and other styles
9

Lorthongpanich, Chanchao, Davor Solter, and Chin Yan Lim. "Nuclear reprogramming in zygotes." International Journal of Developmental Biology 54, no. 11-12 (2010): 1631–40. http://dx.doi.org/10.1387/ijdb.103201cl.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hochedlinger, Konrad, and Rudolf Jaenisch. "Nuclear reprogramming and pluripotency." Nature 441, no. 7097 (June 2006): 1061–67. http://dx.doi.org/10.1038/nature04955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Gurdon, John. "Nuclear reprogramming in eggs." Nature Medicine 15, no. 10 (October 2009): 1141–44. http://dx.doi.org/10.1038/nm1009-1141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Gurdon, J. B., and D. A. Melton. "Nuclear Reprogramming in Cells." Science 322, no. 5909 (December 19, 2008): 1811–15. http://dx.doi.org/10.1126/science.1160810.

Full text
Abstract:
Nuclear reprogramming describes a switch in gene expression of one kind of cell to that of another unrelated cell type. Early studies in frog cloning provided some of the first experimental evidence for reprogramming. Subsequent procedures included mammalian somatic cell nuclear transfer, cell fusion, induction of pluripotency by ectopic gene expression, and direct reprogramming. Through these methods it becomes possible to derive one kind of specialized cell (such as a brain cell) from another, more accessible, tissue (such as skin) in the same individual. This has potential applications for cell replacement without the immunosuppression treatments that are required when cells are transferred between genetically different individuals. This article provides some background to this field, a discussion of mechanisms and efficiency, and comments on prospects for future nuclear reprogramming research.
APA, Harvard, Vancouver, ISO, and other styles
13

Dejosez, Marion, and Thomas P. Zwaka. "Pluripotency and Nuclear Reprogramming." Annual Review of Biochemistry 81, no. 1 (July 7, 2012): 737–65. http://dx.doi.org/10.1146/annurev-biochem-052709-104948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Jouneau, Alice, and Jean-Paul Renard. "Reprogramming in nuclear transfer." Current Opinion in Genetics & Development 13, no. 5 (October 2003): 486–91. http://dx.doi.org/10.1016/j.gde.2003.08.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Meirelles, Flavio. "Reprogramación nuclear y sus consecuencias epigenéticas en transferencia nuclear de células somáticas en animales." SPERMOVA 5, no. 2 (December 22, 2015): 199–205. http://dx.doi.org/10.18548/aspe/0002.39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Stice, Steven L., and James M. Robl. "Nuclear Reprogramming in Nuclear Transplant Rabbit Embryos." Biology of Reproduction 39, no. 3 (October 1, 1988): 657–64. http://dx.doi.org/10.1095/biolreprod39.3.657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Folmes, Clifford DL, Timothy J. Nelson, and Andre Terzic. "Energy metabolism in nuclear reprogramming." Biomarkers in Medicine 5, no. 6 (December 2011): 715–29. http://dx.doi.org/10.2217/bmm.11.87.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Du, Fuliang, Mark G. Carter, Giorgio A. Presicce, Shinn-Chih Wu, and Perng-Chih Shen. "Stem Cells and Nuclear Reprogramming." Stem Cells International 2011 (2011): 1. http://dx.doi.org/10.4061/2011/584686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Singh, Prim B., and Fred Zacouto. "Nuclear reprogramming and epigenetic rejuvenation." Journal of Biosciences 35, no. 2 (April 19, 2010): 315–19. http://dx.doi.org/10.1007/s12038-010-0034-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Šarić, Tomo, and Juergen Hescheler. "Stem cells and nuclear reprogramming." Minimally Invasive Therapy & Allied Technologies 17, no. 2 (January 2008): 64–78. http://dx.doi.org/10.1080/13645700801969303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Marión, Rosa M., and Maria A. Blasco. "Telomere rejuvenation during nuclear reprogramming." Current Opinion in Genetics & Development 20, no. 2 (April 2010): 190–96. http://dx.doi.org/10.1016/j.gde.2010.01.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Cooke, John P. "Vascular regeneration by nuclear reprogramming." Vascular Pharmacology 56, no. 5-6 (May 2012): 315. http://dx.doi.org/10.1016/j.vph.2011.08.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Sancho-Martinez, I., E. Nivet, and J. C. Izpisua Belmonte. "The labyrinth of nuclear reprogramming." Journal of Molecular Cell Biology 3, no. 6 (November 16, 2011): 327–29. http://dx.doi.org/10.1093/jmcb/mjr031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Weitzman, Jonathan B. "Nuclear reprogramming in cloned cows." Genome Biology 2 (2001): spotlight—20010207–01. http://dx.doi.org/10.1186/gb-spotlight-20010207-01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Western, Patrick S., and M. Azim Surani. "Nuclear reprogramming—alchemy or analysis?" Nature Biotechnology 20, no. 5 (May 2002): 445–46. http://dx.doi.org/10.1038/nbt0502-445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Arat, Sezen. "Reproductive cloning and nuclear reprogramming." Current Opinion in Biotechnology 22 (September 2011): S32. http://dx.doi.org/10.1016/j.copbio.2011.05.069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Tamada, H., and N. Kikyo. "Nuclear reprogramming in mammalian somatic cell nuclear cloning." Cytogenetic and Genome Research 105, no. 2-4 (2004): 285–91. http://dx.doi.org/10.1159/000078200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Loi, Pasqualino, Nathalie Beaujean, Saadi Khochbin, Josef Fulka, and Grazyna Ptak. "Asymmetric nuclear reprogramming in somatic cell nuclear transfer?" BioEssays 30, no. 1 (January 2008): 66–74. http://dx.doi.org/10.1002/bies.20684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Collas, Philippe. "Nuclear reprogramming in cell–free extracts." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 358, no. 1436 (August 29, 2003): 1389–95. http://dx.doi.org/10.1098/rstb.2003.1334.

Full text
Abstract:
Methods for directly turning a somatic cell type into another type (a process referred to as transdifferentiation) would be beneficial for producing replacement cells for therapeutic applications. Adult stem cells have been shown to display a broader differentiation potential than anticipated and may contribute to tissues other than those in which they reside. In addition, novel transdifferentiation strategies are being developed. I report recent results on the functional reprogramming of a somatic cell using a nuclear and cytoplasmic extract derived from another somatic cell type. The reprogramming of 293T fibroblasts in an extract from T cells is evidenced by nuclear uptake and the assembly of transcription factors, induction of activity of a chromatin remodelling complex, changes in chromatin composition and activation of lymphoid cell–specific genes. The reprogrammed cells express T–cell–specific surface molecules and a complex regulatory function. Reprogramming cells in cell–free extracts may create possibilities for producing replacement cells for therapeutic applications. The system may also constitute a powerful tool to examine the mechanisms of nuclear reprogramming, at least as they occur in vitro .
APA, Harvard, Vancouver, ISO, and other styles
30

Acemel, Rafael D., and José Luis Gómez-Skarmeta. "Reprogramming Nuclear Architecture: Just a TAD." Cell Stem Cell 24, no. 5 (May 2019): 679–81. http://dx.doi.org/10.1016/j.stem.2019.04.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Menendez, Javier A., Bruna Corominas-Faja, Elisabet Cuyàs, María G. García, Salvador Fernández-Arroyo, Agustín F. Fernández, Jorge Joven, Mario F. Fraga, and Tomás Alarcón. "Oncometabolic Nuclear Reprogramming of Cancer Stemness." Stem Cell Reports 6, no. 3 (March 2016): 273–83. http://dx.doi.org/10.1016/j.stemcr.2015.12.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

WANG, Xue-Geng, Zuo-Yan ZHU, Yong-Hua SUN, and Jue ZHAO. "Nuclear transfer and reprogramming in fish." Hereditas (Beijing) 35, no. 4 (September 27, 2013): 433–40. http://dx.doi.org/10.3724/sp.j.1005.2013.00433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kaňka, Jiří. "Nuclear transplantation: reprogramming of transplanted nuclei." Reproduction Nutrition Development 39, no. 5-6 (1999): 545–54. http://dx.doi.org/10.1051/rnd:19990503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

JAENISCH, R. "Stem cells, pluripotency and nuclear reprogramming." Journal of Thrombosis and Haemostasis 7 (July 2009): 21–23. http://dx.doi.org/10.1111/j.1538-7836.2009.03418.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

LI, Shijie. "Epigenetic reprogramming in mammalian nuclear transfer." Chinese Science Bulletin 49, no. 8 (2004): 766. http://dx.doi.org/10.1360/04wc0025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Pasque, V., K. Miyamoto, and J. B. Gurdon. "Efficiencies and Mechanisms of Nuclear Reprogramming." Cold Spring Harbor Symposia on Quantitative Biology 75 (January 1, 2010): 189–200. http://dx.doi.org/10.1101/sqb.2010.75.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Chen, Dayuan, Feng Li, Zhenfu Fang, Feng Sun, Junke Zheng, Tianlong Gao, Haiyan Fang, et al. "Nuclear reprogramming—the experiment and mechanism." Cell Research 18, S1 (August 2008): S22. http://dx.doi.org/10.1038/cr.2008.112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wong, Wing Tak, Ngan F. Huang, Crystal M. Botham, Nazish Sayed, and John P. Cooke. "Endothelial Cells Derived From Nuclear Reprogramming." Circulation Research 111, no. 10 (October 26, 2012): 1363–75. http://dx.doi.org/10.1161/circresaha.111.247213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Simonsson, Stina, and J. B. Gurdon. "Changing Cell Fate by Nuclear Reprogramming." Cell Cycle 4, no. 4 (January 28, 2005): 513–15. http://dx.doi.org/10.4161/cc.4.4.1581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hiiragi, Takashi, and Davor Solter. "Reprogramming is essential in nuclear transfer." Molecular Reproduction and Development 70, no. 4 (2005): 417–21. http://dx.doi.org/10.1002/mrd.20126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Shi, Wei, Valeri Zakhartchenko, and Eckhard Wolf. "Epigenetic reprogramming in mammalian nuclear transfer." Differentiation 71, no. 2 (March 2003): 91–113. http://dx.doi.org/10.1046/j.1432-0436.2003.710201.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gurdon, J. B. "Nuclear reprogramming and cell replacement therapies." Nature Reviews Molecular Cell Biology 17, no. 3 (February 23, 2016): 137–38. http://dx.doi.org/10.1038/nrm.2016.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Rodolfa, Kit T., and Kevin Eggan. "A Transcriptional Logic for Nuclear Reprogramming." Cell 126, no. 4 (August 2006): 652–55. http://dx.doi.org/10.1016/j.cell.2006.08.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Li, Shijie, Weihua Du, and Ning Li. "Epigenetic reprogramming in mammalian nuclear transfer." Chinese Science Bulletin 49, no. 8 (April 2004): 766–71. http://dx.doi.org/10.1007/bf02889744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Gurdon, J. B., J. A. Byrne, and S. Simonsson. "Nuclear reprogramming and stem cell creation." Proceedings of the National Academy of Sciences 100, Supplement 1 (August 14, 2003): 11819–22. http://dx.doi.org/10.1073/pnas.1834207100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wang, YiXuan, Sheng Liu, LiangXue Lai, and ShaoRong Gao. "Nuclear reprogramming by nuclear transplantation and defined transcription factors." Chinese Science Bulletin 54, no. 1 (January 2009): 14–18. http://dx.doi.org/10.1007/s11434-008-0576-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

De Felici, Massimo. "Nuclear Reprogramming in Mouse Primordial Germ Cells: Epigenetic Contribution." Stem Cells International 2011 (2011): 1–15. http://dx.doi.org/10.4061/2011/425863.

Full text
Abstract:
The unique capability of germ cells to give rise to a new organism, allowing the transmission of primary genetic information from generation to generation, depends on their epigenetic reprogramming ability and underlying genomic totipotency. Recent studies have shown that genome-wide epigenetic modifications, referred to as “epigenetic reprogramming”, occur during the development of the gamete precursors termed primordial germ cells (PGCs) in the embryo. This reprogramming is likely to be critical for the germ line development itself and necessary to erase the parental imprinting and setting the base for totipotency intrinsic to this cell lineage. The status of genome acquired during reprogramming and the associated expression of key pluripotency genes render PGCs susceptible to transform into pluripotent stem cells. This may occurin vivounder still undefined condition, and it is likely at the origin of the formation of germ cell tumors. The phenomenon appears to be reproduced under partly definedin vitroculture conditions, when PGCs are transformed into embryonic germ (EG) cells. In the present paper, I will try to summarize the contribution that epigenetic modifications give to nuclear reprogramming in mouse PGCs.
APA, Harvard, Vancouver, ISO, and other styles
48

Gouveia, Chantel, Carin Huyser, Dieter Egli, and Michael S. Pepper. "Lessons Learned from Somatic Cell Nuclear Transfer." International Journal of Molecular Sciences 21, no. 7 (March 27, 2020): 2314. http://dx.doi.org/10.3390/ijms21072314.

Full text
Abstract:
Somatic cell nuclear transfer (SCNT) has been an area of interest in the field of stem cell research and regenerative medicine for the past 20 years. The main biological goal of SCNT is to reverse the differentiated state of a somatic cell, for the purpose of creating blastocysts from which embryonic stem cells (ESCs) can be derived for therapeutic cloning, or for the purpose of reproductive cloning. However, the consensus is that the low efficiency in creating normal viable offspring in animals by SCNT (1–5%) and the high number of abnormalities seen in these cloned animals is due to epigenetic reprogramming failure. In this review we provide an overview of the current literature on SCNT, focusing on protocol development, which includes early SCNT protocol deficiencies and optimizations along with donor cell type and cell cycle synchrony; epigenetic reprogramming in SCNT; current protocol optimizations such as nuclear reprogramming strategies that can be applied to improve epigenetic reprogramming by SCNT; applications of SCNT; the ethical and legal implications of SCNT in humans; and specific lessons learned for establishing an optimized SCNT protocol using a mouse model.
APA, Harvard, Vancouver, ISO, and other styles
49

Osakada, Fumitaka. "Nuclear reprogramming to treat retinal degenerative diseases." Inflammation and Regeneration 31, no. 1 (2011): 33–49. http://dx.doi.org/10.2492/inflammregen.31.33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Pasque, Vincent, Jerome Jullien, Kei Miyamoto, Richard P. Halley-Stott, and J. B. Gurdon. "Epigenetic factors influencing resistance to nuclear reprogramming." Trends in Genetics 27, no. 12 (December 2011): 516–25. http://dx.doi.org/10.1016/j.tig.2011.08.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography