Journal articles on the topic 'Nucleophilic substitution reaction mechanisms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nucleophilic substitution reaction mechanisms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhang, Xin, Jingyun Ren, Siu Min Tan, Davin Tan, Richmond Lee, and Choon-Hong Tan. "An enantioconvergent halogenophilic nucleophilic substitution (SN2X) reaction." Science 363, no. 6425 (2019): 400–404. http://dx.doi.org/10.1126/science.aau7797.
Full textSHORTER, J. "ChemInform Abstract: Nucleophilic Aliphatic Substitution (Organic Reaction Mechanisms)." ChemInform 22, no. 45 (2010): no. http://dx.doi.org/10.1002/chin.199145328.
Full textSHORTER, J. "ChemInform Abstract: Nucleophilic Aliphatic Substitution (Organic Reaction Mechanisms)." ChemInform 25, no. 18 (2010): no. http://dx.doi.org/10.1002/chin.199418286.
Full textCRAMPTON, M. R. "ChemInform Abstract: Nucleophilic Aromatic Substitution (Organic Reaction Mechanisms)." ChemInform 25, no. 13 (2010): no. http://dx.doi.org/10.1002/chin.199413288.
Full textCRAMPTON, M. R. "ChemInform Abstract: Nucleophilic Aromatic Substitution (Organic Reaction Mechanisms)." ChemInform 22, no. 45 (2010): no. http://dx.doi.org/10.1002/chin.199145325.
Full textMąkosza, Mieczysław. "How Does Nucleophilic Aromatic Substitution in Nitroarenes Really Proceed: General Mechanism." Synthesis 49, no. 15 (2017): 3247–54. http://dx.doi.org/10.1055/s-0036-1588444.
Full textNudelman, Norma Sbarbati, Cecilia E. Silvana Alvaro, Monica Savini, Viviana Nicotra, and Jeannette Yankelevich. "Effects of the Nucleophile Structure on the Mechanisms of Reaction of 1-Chloro-2,4-dinitrobenzene with Aromatic Amines in Aprotic Solvents." Collection of Czechoslovak Chemical Communications 64, no. 10 (1999): 1583–93. http://dx.doi.org/10.1135/cccc19991583.
Full textDing, Yan. "A Brief Discussion on Nucleophilic Substitution Reaction on Saturated Carbon Atom." Applied Mechanics and Materials 312 (February 2013): 433–37. http://dx.doi.org/10.4028/www.scientific.net/amm.312.433.
Full textArdèvol, Albert, Javier Iglesias-Fernández, Víctor Rojas-Cervellera, and Carme Rovira. "The reaction mechanism of retaining glycosyltransferases." Biochemical Society Transactions 44, no. 1 (2016): 51–60. http://dx.doi.org/10.1042/bst20150177.
Full textLu, Xiaosong, and John Warkentin. "Mechanism of ipso aromatic substitution by reaction of aryloxy(methoxy)carbenes and diaryloxycarbenes with DMAD." Canadian Journal of Chemistry 79, no. 4 (2001): 364–69. http://dx.doi.org/10.1139/v01-029.
Full textKochetova, Ludmila B., Tatyana P. Kustova, and Alyona A. Kruglyakova. "Quantum-chemical study of mechanisms of sulfonation of benzoic and benzenesulfonic acids hydrazides in the gas phase." Butlerov Communications 62, no. 5 (2020): 107–15. http://dx.doi.org/10.37952/roi-jbc-01/20-62-5-107.
Full textLai, Wenchuan, Yuehui Yuan, Xu Wang, Yang Liu, Yulong Li, and Xiangyang Liu. "Radical mechanism of a nucleophilic reaction depending on a two-dimensional structure." Physical Chemistry Chemical Physics 20, no. 1 (2018): 489–97. http://dx.doi.org/10.1039/c7cp06708a.
Full textGazitúa, Marcela, Ricardo A. Tapia, Renato Contreras, and Paola R. Campodónico. "Mechanistic pathways of aromatic nucleophilic substitution in conventional solvents and ionic liquids." New J. Chem. 38, no. 6 (2014): 2611–18. http://dx.doi.org/10.1039/c4nj00130c.
Full textYutilova, Kseniia, Yuliia Bespal’ko, and Elena Shved. "A Computational Study of 2-(chloromethyl)oxirane Ring Opening by Bromide and Acetate Anions Considering Electrophilic Activation with Cations of Alkali Metals." Croatica chemica acta 92, no. 3 (2019): 357–67. http://dx.doi.org/10.5562/cca3505.
Full textKochetova, Ludmila B., and Tatiana P. Kustova. "Kinetics and mechanism of acyl transfer reactions. Part 15. Quantumchemicalsimulation of mechanisms of reactions of N-ethylaniline sulfonation." Butlerov Communications 57, no. 2 (2019): 19–27. http://dx.doi.org/10.37952/roi-jbc-01/19-57-2-19.
Full textCouture, Christiane, and Anthony James Paine. "Mechanisms and models for homogeneous copper mediated ligand exchange reactions of the type: CuNu + ArX → ArNu + CuX." Canadian Journal of Chemistry 63, no. 1 (1985): 111–20. http://dx.doi.org/10.1139/v85-019.
Full textKochetova, Ludmila B., Tatyana P. Kustova, and Al’ona A. Kruglyakova. "Quantum-chemical study of mechanisms of benzamide and benzenesulfonamide reactions with 3-nitrobenzenesulfonic acid chloride in the gas phase." Butlerov Communications 63, no. 8 (2020): 86–93. http://dx.doi.org/10.37952/roi-jbc-01/20-63-8-86.
Full textSiddiqi, K. S., and Shahab Nami. "Synthesis, kinetics and mechanism of nucleophilic substitution in octahedral (cat)2Sn(py)2." Journal of the Serbian Chemical Society 70, no. 12 (2005): 1389–93. http://dx.doi.org/10.2298/jsc0512389s.
Full textMora, José, Cristian Cervantes, and Edgar Marquez. "New Insight into the Chloroacetanilide Herbicide Degradation Mechanism through a Nucleophilic Attack of Hydrogen Sulfide." International Journal of Molecular Sciences 19, no. 10 (2018): 2864. http://dx.doi.org/10.3390/ijms19102864.
Full textDood, Amber J., John C. Dood, Daniel Cruz-Ramírez de Arellano, Kimberly B. Fields, and Jeffrey R. Raker. "Analyzing explanations of substitution reactions using lexical analysis and logistic regression techniques." Chemistry Education Research and Practice 21, no. 1 (2020): 267–86. http://dx.doi.org/10.1039/c9rp00148d.
Full textCuesta, Sebastián A., F. Javier Torres, Luis Rincón, José Luis Paz, Edgar A. Márquez, and José R. Mora. "Effect of the Nucleophile’s Nature on Chloroacetanilide Herbicides Cleavage Reaction Mechanism. A DFT Study." International Journal of Molecular Sciences 22, no. 13 (2021): 6876. http://dx.doi.org/10.3390/ijms22136876.
Full textBernasconi, Claude F., Rodney J. Ketner, Xin Chen, and Zvi Rappoport. "Detection and kinetic characterization of SNV intermediates. Reactions of thiomethoxybenzylidene Meldrum's acid with thiolate ions, alkoxide ions, OH-, and water in aqueous DMSO." Canadian Journal of Chemistry 77, no. 5-6 (1999): 584–94. http://dx.doi.org/10.1139/v99-009.
Full textCaminos, Daniel A., Alexis D. Garro, Silvia M. Soria-Castro та Alicia B. Peñéñory. "Microwave role in the thermally induced SRN1 reaction for α-arylation of ketones". RSC Advances 5, № 26 (2015): 20058–65. http://dx.doi.org/10.1039/c4ra17055e.
Full textWAHAB, Olaide, Jide IGE, Grace OGUNLUSI, Lukman OLASUNKANMI, and Kayode SANUSI. "Oxatriquinane Derivatives: A Theoretical Investigation of SN1-SN2 Reactions Borderline." Walailak Journal of Science and Technology (WJST) 15, no. 6 (2016): 439–53. http://dx.doi.org/10.48048/wjst.2018.2476.
Full textAntonov, Alexander S., Elena Yu Tupikina, Valerii V. Karpov, Valeriia V. Mulloyarova, and Victor G. Bardakov. "Sterically Facilitated Intramolecular Nucleophilic NMe2 Group Substitution in the Synthesis of Fused Isoxazoles: Theoretical Study." Molecules 25, no. 24 (2020): 5977. http://dx.doi.org/10.3390/molecules25245977.
Full textGolub, Igor E., Oleg A. Filippov, Natalia V. Belkova, Lina M. Epstein, and Elena S. Shubina. "The Reaction of Hydrogen Halides with Tetrahydroborate Anion and Hexahydro-Closo-Hexaborate Dianion." Molecules 26, no. 12 (2021): 3754. http://dx.doi.org/10.3390/molecules26123754.
Full textDoucet, Katherine G., Cory C. Pye, and Thomas G. Enright. "An exploratory ab initio study of the SN2 reaction of 1,3,3-trimethyltriazene with halide ions." Canadian Journal of Chemistry 85, no. 11 (2007): 958–63. http://dx.doi.org/10.1139/v07-110.
Full textSharma, Nishant, Rupayan Biswas, and Upakarasamy Lourderaj. "Dynamics of a gas-phase SNAr reaction: non-concerted mechanism despite the Meisenheimer complex being a transition state." Physical Chemistry Chemical Physics 22, no. 45 (2020): 26562–67. http://dx.doi.org/10.1039/d0cp05567k.
Full textOrmazábal-Toledo, Rodrigo, and Renato Contreras. "Philicity and Fugality Scales for Organic Reactions." Advances in Chemistry 2014 (August 18, 2014): 1–13. http://dx.doi.org/10.1155/2014/541547.
Full textCampodonico, Paola, José G. Santos, Juan Andres, and Renato Contreras. "Relationship between nucleophilicity/electrophilicity indices and reaction mechanisms for the nucleophilic substitution reactions of carbonyl compounds." Journal of Physical Organic Chemistry 17, no. 4 (2004): 273–81. http://dx.doi.org/10.1002/poc.719.
Full textWang, Weihua, Yuhua Wang, Wenling Feng, Wenliang Wang, and Ping Li. "Theoretical Investigations on the Reactivity of Hydrogen Peroxide toward 2,3,7,8-Tetrachlorodibenzo-p-dioxin." Molecules 23, no. 11 (2018): 2826. http://dx.doi.org/10.3390/molecules23112826.
Full textLiu, Peng, Dunyou Wang, and Yulong Xu. "A new, double-inversion mechanism of the F− + CH3Cl SN2 reaction in aqueous solution." Physical Chemistry Chemical Physics 18, no. 46 (2016): 31895–903. http://dx.doi.org/10.1039/c6cp06195h.
Full textChirkina, Elena, Leonid Krivdin, and Nikolay Korchevin. "THEORETICAL STUDY OF THE REACTION MECHANISM 1,2-ETHANEDIIOL WITH 1,3-DICHLOROPROPENE." Scientific Papers Collection of the Angarsk State Technical University 2018, no. 1 (2020): 68–77. http://dx.doi.org/10.36629/2686-7788-2018-1-68-77.
Full textKolodiazhna, Anastasy O., and Oleg I. Kolodiazhnyi. "Asymmetric Electrophilic Reactions in Phosphorus Chemistry." Symmetry 12, no. 1 (2020): 108. http://dx.doi.org/10.3390/sym12010108.
Full textMdhluli, Brian Kamogelo, Winston Nxumalo, and Ignacy Cukrowski. "A REP-FAMSEC Method as a Tool in Explaining Reaction Mechanisms: A Nucleophilic Substitution of 2-Phenylquinoxaline as a DFT Case Study." Molecules 26, no. 6 (2021): 1570. http://dx.doi.org/10.3390/molecules26061570.
Full textMazal, Ctibor, та Jaroslav Jonas. "Nucleophilic Vinylic Substitution on α-Tosyloxymethylene Lactones". Collection of Czechoslovak Chemical Communications 58, № 7 (1993): 1607–23. http://dx.doi.org/10.1135/cccc19931607.
Full textLiu, Peng, Jingxue Zhang, and Dunyou Wang. "Multi-level quantum mechanics theories and molecular mechanics study of the double-inversion mechanism of the F−+ CH3I reaction in aqueous solution." Physical Chemistry Chemical Physics 19, no. 22 (2017): 14358–65. http://dx.doi.org/10.1039/c7cp02313h.
Full textKolodiazhnyi, Oleg I. "Stereochemistry of electrophilic and nucleophilic substitutions at phosphorus." Pure and Applied Chemistry 91, no. 1 (2019): 43–57. http://dx.doi.org/10.1515/pac-2018-0807.
Full textYuan, Hua, Chun-Ni Chen, Meng-Yang Li, and Chen-Zhong Cao. "Recognition of nucleophilic substitution reaction mechanisms of carboxylic esters based on support vector machine." Journal of Physical Organic Chemistry 30, no. 7 (2016): e3658. http://dx.doi.org/10.1002/poc.3658.
Full textOh, Teresa, Dong Sik Bae, and Myung Ho Kim. "Pentacene Growth on Organic-Inorganic Hybrid Type SiOC Film." Solid State Phenomena 121-123 (March 2007): 389–94. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.389.
Full textSlivka, Mikhailo, and Mikhailo Onysko. "The Use of Electrophilic Cyclization for the Preparation of Condensed Heterocycles." Synthesis 53, no. 19 (2021): 3497–512. http://dx.doi.org/10.1055/s-0040-1706036.
Full textChirkina, Elena, Leonid Krivdin, and Nikolay Korchevin. "QUANTUM-CHEMICAL STUDY OF THE REACTION MECHANISM 1,2-ETHANEDIIOL WITH 1,3-DICHLOROPROPENE." Modern Technologies and Scientific and Technological Progress 2018, no. 1 (2020): 56–57. http://dx.doi.org/10.36629/2686-9896-2020-2018-1-56-57.
Full textAkinyele, Elizabeth T., Ikenna Onyido, and J. Hirst. "Mechanisms of aromatic nucleophilic substitution reactions in ethyl acetate and tetrahydrofuran." Journal of Physical Organic Chemistry 3, no. 1 (1990): 41–47. http://dx.doi.org/10.1002/poc.610030109.
Full textSoria-Castro, Silvia M., Daniel A. Caminos та Alicia B. Peñéñory. "An expedient route to heterocycles through α-arylation of ketones and arylamides by microwave induced thermal SRN1 reactions". RSC Adv. 4, № 34 (2014): 17490–97. http://dx.doi.org/10.1039/c4ra00120f.
Full textYerien, Damian E., Sebastián Barata-Vallejo, Erwin W. Mora Flores, and Al Postigo. "The role of photocatalysts in radical chains in homolytic aromatic substitution, radical addition to olefins, and nucleophilic radical substitution mechanisms." Catalysis Science & Technology 10, no. 15 (2020): 5113–28. http://dx.doi.org/10.1039/d0cy00921k.
Full textOzeir, Mohammad, Jessica Huyet, Marie-Claude Burgevin, et al. "Structural basis for substrate selectivity and nucleophilic substitution mechanisms in human adenine phosphoribosyltransferase catalyzed reaction." Journal of Biological Chemistry 294, no. 32 (2019): 11980–91. http://dx.doi.org/10.1074/jbc.ra119.009087.
Full textZhang, Dan, Zihao Yang, Hongjuan Li, Zhichao Pei, Shiguo Sun, and Yongqian Xu. "A simple excited-state intramolecular proton transfer probe based on a new strategy of thiol–azide reaction for the selective sensing of cysteine and glutathione." Chemical Communications 52, no. 4 (2016): 749–52. http://dx.doi.org/10.1039/c5cc07298k.
Full textCapurso, Matías, Rodrigo Gette, Gabriel Radivoy, and Viviana Dorn. "The Sn2 Reaction: A Theoretical-Computational Analysis of a Simple and Very Interesting Mechanism." Proceedings 41, no. 1 (2019): 81. http://dx.doi.org/10.3390/ecsoc-23-06514.
Full textShen, Ruwei, Bing Luo, Jianlin Yang, Lixiong Zhang, and Li-Biao Han. "Convenient synthesis of allenylphosphoryl compounds via Cu-catalysed couplings of P(O)H compounds with propargyl acetates." Chemical Communications 52, no. 38 (2016): 6451–54. http://dx.doi.org/10.1039/c6cc02563c.
Full textChupakhin, Oleg N., and Valery N. Charushin. "Nucleophilic C–H functionalization of arenes: a new logic of organic synthesis." Pure and Applied Chemistry 89, no. 8 (2017): 1195–208. http://dx.doi.org/10.1515/pac-2017-0108.
Full text