Academic literature on the topic 'Nucleos(t)ide inhibitors (NI)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nucleos(t)ide inhibitors (NI).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nucleos(t)ide inhibitors (NI)"

1

von Hentig, Nils. "Repositioning HIV protease inhibitors and nucleos(t)ide RNA polymerase inhibitors for the treatment of SARS-CoV-2 infection and COVID-19." European Journal of Clinical Pharmacology 77, no. 9 (March 4, 2021): 1297–307. http://dx.doi.org/10.1007/s00228-021-03108-x.

Full text
Abstract:
Abstract Aims SARS-CoV-2 is a single-stranded RNA virus which is part of the ß-coronavirus family (like SARS 2002 and MERS 2012). The high prevalence of hospitalization and mortality, in addition to the lack of vaccines and therapeutics, forces scientists and clinicians around the world to evaluate new therapeutic options. One strategy is the repositioning of already known drugs, which were approved drugs for other indications. Subject and method SARS-CoV-2 entry inhibitors, RNA polymerase inhibitors, and protease inhibitors seem to be valuable targets of research. At the beginning of the pandemic, the ClinicalTrials.gov webpage listed n=479 clinical trials related to the antiviral treatment of SARS-CoV-2 (01.04.2020, “SARS-CoV-2,” “COVID-19,” “antivirals,” “therapy”), of which n=376 are still accessible online in January 2021 (10.01.2021). Taking into account further studies not listed in the CTG webpage, this narrative review appraises HIV protease inhibitors and nucleos(t)ide RNA polymerase inhibitors as promising candidates for the treatment of COVID-19. Results Lopinavir/ritonavir, darunavir/cobicistat, remdesivir, tenofovir-disoproxilfumarate, favipriravir, and sofosbuvir are evaluated in clinical studies worldwide. Study designs show a high variability and results often are contradictory. Remdesivir is the drug, which is deployed in nearly 70% of the reviewed clinical trials, followed by lopinavir/ritonavir, favipiravir, ribavirine, and sofosbuvir. Discussion This review discusses the pharmacological/clinical background and questions the rationale and study design of clinical trials with already approved HIV protease inhibitors and nucleos(t)ide RNA polymerase inhibitors which are repositioned during the SARS-CoV-2 pandemic worldwide. Proposals are made for future study design and drug repositioning of approved antiretroviral compounds.
APA, Harvard, Vancouver, ISO, and other styles
2

Novotny, Laura A., John Grayson Evans, Lishan Su, Haitao Guo, and Eric G. Meissner. "Review of Lambda Interferons in Hepatitis B Virus Infection: Outcomes and Therapeutic Strategies." Viruses 13, no. 6 (June 9, 2021): 1090. http://dx.doi.org/10.3390/v13061090.

Full text
Abstract:
Hepatitis B virus (HBV) chronically infects over 250 million people worldwide and causes nearly 1 million deaths per year due to cirrhosis and liver cancer. Approved treatments for chronic infection include injectable type-I interferons and nucleos(t)ide reverse transcriptase inhibitors. A small minority of patients achieve seroclearance after treatment with type-I interferons, defined as sustained absence of detectable HBV DNA and surface antigen (HBsAg) antigenemia. However, type-I interferons cause significant side effects, are costly, must be administered for months, and most patients have viral rebound or non-response. Nucleos(t)ide reverse transcriptase inhibitors reduce HBV viral load and improve liver-related outcomes, but do not lower HBsAg levels or impart seroclearance. Thus, new therapeutics are urgently needed. Lambda interferons (IFNLs) have been tested as an alternative strategy to stimulate host antiviral pathways to treat HBV infection. IFNLs comprise an evolutionarily conserved innate immune pathway and have cell-type specific activity on hepatocytes, other epithelial cells found at mucosal surfaces, and some immune cells due to restricted cellular expression of the IFNL receptor. This article will review work that examined expression of IFNLs during acute and chronic HBV infection, the impact of IFNLs on HBV replication in vitro and in vivo, the association of polymorphisms in IFNL genes with clinical outcomes, and the therapeutic evaluation of IFNLs for the treatment of chronic HBV infection.
APA, Harvard, Vancouver, ISO, and other styles
3

Shin, Hye, Chonsaeng Kim, and Sungchan Cho. "Gemcitabine and Nucleos(t)ide Synthesis Inhibitors Are Broad-Spectrum Antiviral Drugs that Activate Innate Immunity." Viruses 10, no. 4 (April 20, 2018): 211. http://dx.doi.org/10.3390/v10040211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Baker, Jennifer, Petrie M. Rainey, David E. Moody, Gene D. Morse, Qing Ma, and Elinore F. McCance-Katz. "Interactions between Buprenorphine and Antiretrovirals: Nucleos(t)ide Reverse Transcriptase Inhibitors (NRTI) Didanosine, Lamivudine, and Tenofovir." American Journal on Addictions 19, no. 1 (January 2010): 17–29. http://dx.doi.org/10.1111/j.1521-0391.2009.00004.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Soriano, Vicente, Pablo Barreiro, Edward Cachay, Shyamasundaran Kottilil, José V. Fernandez-Montero, and Carmen de Mendoza. "Advances in hepatitis B therapeutics." Therapeutic Advances in Infectious Disease 7 (January 2020): 204993612096502. http://dx.doi.org/10.1177/2049936120965027.

Full text
Abstract:
Despite the availability of both effective preventive vaccines and oral antivirals, over 250 million people are chronically infected with the hepatitis B virus (HBV). Globally, chronic hepatitis B is the leading cause of hepatocellular carcinoma, which represents the third cause of cancer mortality, accounting for nearly 1 million annual deaths. Current oral nucleos(t)ide therapy with tenofovir or entecavir suppresses serum HBV-DNA in most treated patients, but rarely is accompanied by HBsAg loss. Thus, treatment has to be given lifelong to prevent viral rebound. A broad spectrum of antivirals that block the HBV life cycle at different steps are in clinical development, including entry inhibitors, cccDNA disrupters/silencers, translation inhibitors, capsid assembly modulators, polymerase inhibitors and secretion inhibitors. Some of them exhibit higher potency than current oral nucleos(t)ides. Drugs in more advanced stages of clinical development are bulevirtide, JNJ-6379, ABI-H0731, ARO-HBV and REP-2139. To date, only treatment with ARO-HBV and with REP-2139 have resulted in HBsAg loss in a significant proportion of patients. Combination therapies using distinct antivirals and/or immune modulators are expected to maximize treatment benefits. The current goal is to achieve a ‘functional cure’, with sustained serum HBsAg after drug discontinuation. Ultimately, the goal of HBV therapy will be virus eradication, an achievement that would require the elimination of the cccDNA reservoir within infected hepatocytes.
APA, Harvard, Vancouver, ISO, and other styles
6

Prifti, Georgia-Myrto, Dimitrios Moianos, Erofili Giannakopoulou, Vasiliki Pardali, John Tavis, and Grigoris Zoidis. "Recent Advances in Hepatitis B Treatment." Pharmaceuticals 14, no. 5 (May 1, 2021): 417. http://dx.doi.org/10.3390/ph14050417.

Full text
Abstract:
Hepatitis B virus infection affects over 250 million chronic carriers, causing more than 800,000 deaths annually, although a safe and effective vaccine is available. Currently used antiviral agents, pegylated interferon and nucleos(t)ide analogues, have major drawbacks and fail to completely eradicate the virus from infected cells. Thus, achieving a “functional cure” of the infection remains a real challenge. Recent findings concerning the viral replication cycle have led to development of novel therapeutic approaches including viral entry inhibitors, epigenetic control of cccDNA, immune modulators, RNA interference techniques, ribonuclease H inhibitors, and capsid assembly modulators. Promising preclinical results have been obtained, and the leading molecules under development have entered clinical evaluation. This review summarizes the key steps of the HBV life cycle, examines the currently approved anti-HBV drugs, and analyzes novel HBV treatment regimens.
APA, Harvard, Vancouver, ISO, and other styles
7

Ireland, Peter J., John E. Tavis, Michael P. D'Erasmo, Danielle R. Hirsch, Ryan P. Murelli, Mark M. Cadiz, Bindi S. Patel, et al. "Synthetic α-Hydroxytropolones Inhibit Replication of Wild-Type and Acyclovir-Resistant Herpes Simplex Viruses." Antimicrobial Agents and Chemotherapy 60, no. 4 (January 19, 2016): 2140–49. http://dx.doi.org/10.1128/aac.02675-15.

Full text
Abstract:
ABSTRACTHerpes simplex virus 1 (HSV-1) and HSV-2 remain major human pathogens despite the development of anti-HSV therapeutics as some of the first antiviral drugs. Current therapies are incompletely effective and frequently drive the evolution of drug-resistant mutants. We recently determined that certain natural troponoid compounds such as β-thujaplicinol readily suppress HSV-1 and HSV-2 replication. Here, we screened 26 synthetic α-hydroxytropolones with the goals of determining a preliminary structure-activity relationship for the α-hydroxytropolone pharmacophore and providing a starting point for future optimization studies. Twenty-five compounds inhibited HSV-1 and HSV-2 replication at 50 μM, and 10 compounds inhibited HSV-1 and HSV-2 at 5 μM, with similar inhibition patterns and potencies against both viruses being observed. The two most powerful inhibitors shared a common biphenyl side chain, were capable of inhibiting HSV-1 and HSV-2 with a 50% effective concentration (EC50) of 81 to 210 nM, and also strongly inhibited acyclovir-resistant mutants. Moderate to low cytotoxicity was observed for all compounds (50% cytotoxic concentration [CC50] of 50 to >100 μM). Therapeutic indexes ranged from >170 to >1,200. These data indicate that troponoids and specifically α-hydroxytropolones are a promising lead scaffold for development as anti-HSV drugs provided that toxicity can be further minimized. Troponoid drugs are envisioned to be employed alone or in combination with existing nucleos(t)ide analogs to suppress HSV replication far enough to prevent viral shedding and to limit the development of or treat nucleos(t)ide analog-resistant mutants.
APA, Harvard, Vancouver, ISO, and other styles
8

Borghetti, Alberto, Gianmaria Baldin, Amedeo Capetti, Gaetana Sterrantino, Stefano Rusconi, Alessandra Latini, Andrea Giacometti, et al. "Efficacy and tolerability of dolutegravir and two nucleos(t)ide reverse transcriptase inhibitors in HIV-1-positive, virologically suppressed patients." AIDS 31, no. 3 (January 2017): 457–59. http://dx.doi.org/10.1097/qad.0000000000001357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Montejano, Rocio, Natalia Stella-Ascariz, Susana Monge, José I. Bernardino, Ignacio Pérez-Valero, Maria Luisa Montes, Eulalia Valencia, et al. "Impact of Nucleos(t)ide Reverse Transcriptase Inhibitors on Blood Telomere Length Changes in a Prospective Cohort of Aviremic HIV–Infected Adults." Journal of Infectious Diseases 218, no. 10 (June 15, 2018): 1531–40. http://dx.doi.org/10.1093/infdis/jiy364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ohsaki, Eriko, Yadarat Suwanmanee, and Keiji Ueda. "Chronic Hepatitis B Treatment Strategies Using Polymerase Inhibitor-Based Combination Therapy." Viruses 13, no. 9 (August 26, 2021): 1691. http://dx.doi.org/10.3390/v13091691.

Full text
Abstract:
Viral polymerase is an essential enzyme for the amplification of the viral genome and is one of the major targets of antiviral therapies. However, a serious concern to be solved in hepatitis B virus (HBV) infection is the difficulty of eliminating covalently closed circular (ccc) DNA. More recently, therapeutic strategies targeting various stages of the HBV lifecycle have been attempted. Although cccDNA-targeted therapies are attractive, there are still many problems to be overcome, and the development of novel polymerase inhibitors remains an important issue. Interferons and nucleos(t)ide reverse transcriptase inhibitors (NRTIs) are the only therapeutic options currently available for HBV infection. Many studies have reported that the combination of interferons and NRTI causes the loss of hepatitis B surface antigen (HBsAg), which is suggestive of seroconversion. Although NRTIs do not directly target cccDNA, they can strongly reduce the serum viral DNA load and could suppress the recycling step of cccDNA formation, improve liver fibrosis/cirrhosis, and reduce the risk of hepatocellular carcinoma. Here, we review recent studies on combination therapies using polymerase inhibitors and discuss the future directions of therapeutic strategies for HBV infection.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Nucleos(t)ide inhibitors (NI)"

1

Aissa, Larousse Jameleddine. "Etude de la variabilité génétique des régions NS3, NS5A et NS5B du virus de l'hépatite C chez des patients Tunisiens non traités." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0434/document.

Full text
Abstract:
Introduction : Le virus de l’hépatite C (VHC), est l’une des premières causes de pathologie hépatique dans le monde. Ce virus à ARN est responsable de l’hépatite C qui aboutit au développement de la cirrhose et du cancer du foie. Selon l’Organisation Mondiale de la Santé, le VHC infecte actuellement plus de 170 millions de personnes dans le monde, soit 3% de la population. L’hépatite C chronique connait toujours en Tunisie un taux de guérison faible pour le génotype 1 car le traitement standard actuellement disponible est la bithérapie interféron pégylé associé à la ribavirine. A l’heure actuelle, le développement de différentes molécules ciblant spécifiquement le VHC, appelées les antiviraux à action directe (AAD), apparait comme une potentielle révolution dans le traitement de l’infection par le VHC.Ces AAD comprennent les inhibiteurs de protéase (IP), les inhibiteurs nucléos(t)idiques (IN) et les inhibiteurs non-nucléosidiques (INN) de la polymérase NS5B ainsi que les inhibiteurs de la protéine NS5A. La quasi-espèce virale est formée d’un mélange complexe de variants viraux parmi lesquels se trouvent des variants associés à des degrés variables à la résistance aux AAD. Ces variants peuvent donc exister naturellement en absence de toute pression médicamenteuse et sont susceptibles d’avoir un impact sur la réponse aux différents traitements par AAD. Notre objectif était de déterminer la prévalence des variants associés à la résistance dans les souches tunisiennes circulantes en préambule à l’introduction deces molécules en Tunisie. Méthodes : L’amplification et le séquençage direct de la protéase NS3, de la polymérase NS5B ainsi que la région NS5A ont été effectuées chez 149 patients tunisiens naïfs de traitement et infectés par le VHC de génotype 1 (génotype 1b = 142 ; génotype 1a = 7). Résultats : Douze séquences NS3 (12/131 ; 9,2%) ont montré des mutations connes pour conférer une résistance aux IP. Une seule séquence (1/95 ; 1,1%) a montré la mutation V321I connue pour conférer une résistance aux IN-NS5B. Trente quatre séquences (34/95 ; 35,8%) ont montré des mutations connues pour diminuer la sensibilité des INN-NS5B. Une seule séquence de génotype 1a (1/7 ; 14,3%) et 17 séquences de génotype 1b (17/112 ; 16,2%) ont montré des mutations connues pour conférer une résistance au inhibiteurs de la protéine NS5A. Conclusions : Notre étude a permis de mettre en évidence la présence de substitutions conférant une diminution de la sensibilité aux AAD chez des patients tunisiens naïfs de tout traitement anti-VHC. Des études in situ seront nécessaires pour évaluer l’impact de ces mutations sur la réponse au traitement
Introduction: Hepatitis C virus (HCV) is a major cause of liver disease worldwide. This RNA virus is responsible for hepatitis C, which leads to the development of cirrhosis and liver cancer. According to the World Health Organization, HCV infects more than 170 million people worldwide, about 3% of the population. Chronic hepatitis C still know in Tunisia low cure rates for genotype 1, because the currently standard treatment available is combination therapy of pegylated interferon plus ribavirin. At present, the development of different molecules that specifically target HCV, called direct-acting antivirals (DAA) appears as a potential revolution in the treatment of HCV infection. These DAA include protease inhibitors (PI), nucleos(t)ide (NI) and non-nucleoside inhibitors (NNI) for NS5B polymerase and NS5A inhibitors. The viral quasispecies is formed by a complex mixture of viral variants including variants associated with variable degrees of resistance to DAA. These variants may therefore exist naturally in absence of drug pressure and may affect response to different treatments by DAA. Our objective was to determine the prevalence of variants associated with resistance in circulating Tunisian strains preamble to the introduction of these molecules in Tunisia. Methods: Amplification and direct sequencing of NS3 protease, NS5B polymerase and NS5A region were performed in 149 Tunisian naïve patients infected with HCV genotype 1 (genotype 1b = 142; genotype 1a = 7) . Results: Twelve sequences NS3 (12/131; 9.2%) showed mutations known to confer resistance to PI. One sequence (1/95; 1.1%) showed the V321I mutation known to confer resistance to NS5B-IN. Thirty four sequences (34/95; 35.8%) showed mutations known to reduce the sensitivity of NS5B-INN. One genotype 1a sequence (1/7; 14.3%) and 17 genotype 1b sequences (17/112; 16.2%) showed mutations known to confer resistance to NS5A inhibitors.Conclusions: Our study highlighted the presence of substitutions conferring decreased susceptibility to DAA in naïve patients infected with HCV genotype 1. Field studies will be needed to evaluate the impact of these mutations on the treatment response
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography