Journal articles on the topic 'Nucleoside phosphorylases'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nucleoside phosphorylases.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
PUGMIRE, Matthew J., and Steven E. EALICK. "Structural analyses reveal two distinct families of nucleoside phosphorylases." Biochemical Journal 361, no. 1 (2001): 1–25. http://dx.doi.org/10.1042/bj3610001.
Full textIl’icheva, Irina A., Konstantin M. Polyakov, and Sergey N. Mikhailov. "Strained Conformations of Nucleosides in Active Sites of Nucleoside Phosphorylases." Biomolecules 10, no. 4 (2020): 552. http://dx.doi.org/10.3390/biom10040552.
Full textLewkowicz, E., and A. Iribarren. "Nucleoside Phosphorylases." Current Organic Chemistry 10, no. 11 (2006): 1197–215. http://dx.doi.org/10.2174/138527206777697995.
Full textAlmendros, Marcos, José Berenguer, and Jose-Vicente Sinisterra. "Thermus thermophilus Nucleoside Phosphorylases Active in the Synthesis of Nucleoside Analogues." Applied and Environmental Microbiology 78, no. 9 (2012): 3128–35. http://dx.doi.org/10.1128/aem.07605-11.
Full textKaspar, Felix, Margarita Seeger, Sarah Westarp, et al. "Diversification of 4′-Methylated Nucleosides by Nucleoside Phosphorylases." ACS Catalysis 11, no. 17 (2021): 10830–35. http://dx.doi.org/10.1021/acscatal.1c02589.
Full textLecoq, K., I. Belloc, C. Desgranges, M. Konrad, and B. Daignan-Fornier. "YLR209c Encodes Saccharomyces cerevisiae Purine Nucleoside Phosphorylase." Journal of Bacteriology 183, no. 16 (2001): 4910–13. http://dx.doi.org/10.1128/jb.183.16.4910-4913.2001.
Full textHormigo, Daniel, Jon Del Arco, Javier Acosta, Maximilian J. L. J. Fürst, and Jesús Fernández-Lucas. "Engineering a Bifunctional Fusion Purine/Pyrimidine Nucleoside Phosphorylase for the Production of Nucleoside Analogs." Biomolecules 14, no. 9 (2024): 1196. http://dx.doi.org/10.3390/biom14091196.
Full textRobescu, Marina Simona, Immacolata Serra, Marco Terreni, Daniela Ubiali, and Teodora Bavaro. "A Multi-Enzymatic Cascade Reaction for the Synthesis of Vidarabine 5′-Monophosphate." Catalysts 10, no. 1 (2020): 60. http://dx.doi.org/10.3390/catal10010060.
Full textBalaev, Vladislav V., Alexander A. Lashkov, Azat G. Gabdulkhakov, et al. "Structural investigation of the thymidine phosphorylase fromSalmonella typhimuriumin the unliganded state and its complexes with thymidine and uridine." Acta Crystallographica Section F Structural Biology Communications 72, no. 3 (2016): 224–33. http://dx.doi.org/10.1107/s2053230x1600162x.
Full textKhandazhinskaya, Anastasia, Barbara Eletskaya, Ilja Fateev, et al. "Novel fleximer pyrazole-containing adenosine analogues: chemical, enzymatic and highly efficient biotechnological synthesis." Organic & Biomolecular Chemistry 19, no. 34 (2021): 7379–89. http://dx.doi.org/10.1039/d1ob01069g.
Full textZhou, Xinrui, Kathleen Szeker, Lin-Yu Jiao, Martin Oestreich, Igor A. Mikhailopulo, and Peter Neubauer. "Synthesis of 2,6-Dihalogenated Purine Nucleosides by Thermostable Nucleoside Phosphorylases." Advanced Synthesis & Catalysis 357, no. 6 (2015): 1237–44. http://dx.doi.org/10.1002/adsc.201400966.
Full textMitterbauer, Rudolf, Thomas Karl, and Gerhard Adam. "Saccharomyces cerevisiae URH1 (Encoding Uridine-Cytidine N-Ribohydrolase): Functional Complementation by a Nucleoside Hydrolase from a Protozoan Parasite and by a Mammalian Uridine Phosphorylase." Applied and Environmental Microbiology 68, no. 3 (2002): 1336–43. http://dx.doi.org/10.1128/aem.68.3.1336-1343.2002.
Full textVERRI, Annalisa, Federico FOCHER, Richard J. DUNCOMBE, et al. "Anti-(herpes simplex virus) activity of 4′-thio-2′-deoxyuridines: a biochemical investigation for viral and cellular target enzymes." Biochemical Journal 351, no. 2 (2000): 319–26. http://dx.doi.org/10.1042/bj3510319.
Full textDrenichev, M. S., E. O. Dorinova, I. V. Varizhuk, et al. "Synthesis of Fluorine-Containing Analogues of Purine Deoxynucleosides: Optimization of Enzymatic Transglycosylation Conditions." Doklady Biochemistry and Biophysics 503, no. 1 (2022): 52–58. http://dx.doi.org/10.1134/s1607672922020053.
Full textGomaz, Boris, and Zoran Štefanić. "Oligomeric Symmetry of Purine Nucleoside Phosphorylases." Symmetry 16, no. 1 (2024): 124. http://dx.doi.org/10.3390/sym16010124.
Full textGrebenkina, L. E., A. N. Prutkov, A. V. Matveev, and M. V. Chudinov. "Synthesis of 5-oxymethyl-1,2,4-triazole-3-carboxamides." Fine Chemical Technologies 17, no. 4 (2022): 311–22. http://dx.doi.org/10.32362/2410-6593-2022-17-4-311-322.
Full textYehia, Heba, Sarah Westarp, Viola Röhrs, et al. "Efficient Biocatalytic Synthesis of Dihalogenated Purine Nucleoside Analogues Applying Thermodynamic Calculations." Molecules 25, no. 4 (2020): 934. http://dx.doi.org/10.3390/molecules25040934.
Full textZhang, Yang, Sarah E. Cottet, and Steven E. Ealick. "Structure of Escherichia coli AMP Nucleosidase Reveals Similarity to Nucleoside Phosphorylases." Structure 12, no. 8 (2004): 1383–94. http://dx.doi.org/10.1016/j.str.2004.05.015.
Full textLiu, Gaofei, Tiantong Cheng, Jianlin Chu, Sui Li, and Bingfang He. "Efficient Synthesis of Purine Nucleoside Analogs by a New Trimeric Purine Nucleoside Phosphorylase from Aneurinibacillus migulanus AM007." Molecules 25, no. 1 (2019): 100. http://dx.doi.org/10.3390/molecules25010100.
Full textStepchenko, Vladimir A., Anatoly I. Miroshnikov, Frank Seela, and Igor A. Mikhailopulo. "Enzymatic synthesis and phosphorolysis of 4(2)-thioxo- and 6(5)-azapyrimidine nucleosides by E. coli nucleoside phosphorylases." Beilstein Journal of Organic Chemistry 12 (December 1, 2016): 2588–601. http://dx.doi.org/10.3762/bjoc.12.254.
Full textTran, Timothy H., S. Christoffersen, Paula W. Allan, et al. "The Crystal Structure ofStreptococcus pyogenesUridine Phosphorylase Reveals a Distinct Subfamily of Nucleoside Phosphorylases." Biochemistry 50, no. 30 (2011): 6549–58. http://dx.doi.org/10.1021/bi200707z.
Full textEletskaya, Barbara Z., Maria Ya Berzina, Ilya V. Fateev, et al. "Enzymatic Synthesis of 2-Chloropurine Arabinonucleosides with Chiral Amino Acid Amides at the C6 Position and an Evaluation of Antiproliferative Activity In Vitro." International Journal of Molecular Sciences 24, no. 7 (2023): 6223. http://dx.doi.org/10.3390/ijms24076223.
Full textAntipov, Alexey N., Natalya A. Okorokova, Tatyana N. Safonova, and Vladimir P. Veiko. "Vanadate as a new substrate for nucleoside phosphorylases." JBIC Journal of Biological Inorganic Chemistry 27, no. 2 (2022): 221–27. http://dx.doi.org/10.1007/s00775-021-01923-2.
Full textLewandowicz, Andrzej, and Vern L. Schramm. "Transition State Analysis for Human andPlasmodiumfalciparumPurine Nucleoside Phosphorylases†." Biochemistry 43, no. 6 (2004): 1458–68. http://dx.doi.org/10.1021/bi0359123.
Full textBzowska, Agnieszka, Ewa Kulikowska, and David Shugar. "Purine nucleoside phosphorylases: properties, functions, and clinical aspects." Pharmacology & Therapeutics 88, no. 3 (2000): 349–425. http://dx.doi.org/10.1016/s0163-7258(00)00097-8.
Full textKamel, Sarah, Isabel Thiele, Peter Neubauer, and Anke Wagner. "Thermophilic nucleoside phosphorylases: Their properties, characteristics and applications." Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1868, no. 2 (2020): 140304. http://dx.doi.org/10.1016/j.bbapap.2019.140304.
Full textVande Voorde, Johan, Federico Gago, Kristof Vrancken, Sandra Liekens, and Jan Balzarini. "Characterization of pyrimidine nucleoside phosphorylase of Mycoplasma hyorhinis: implications for the clinical efficacy of nucleoside analogues." Biochemical Journal 445, no. 1 (2012): 113–23. http://dx.doi.org/10.1042/bj20112225.
Full textSerra, I., D. Ubiali, A. M. Albertini, G. Amati, S. Daly, and M. Terreni. "Microbial nucleoside phosphorylases as efficient biocatalysts for the synthesis of antiviral and antitumoral nucleosides." Journal of Biotechnology 150 (November 2010): 408. http://dx.doi.org/10.1016/j.jbiotec.2010.09.545.
Full textZhou, Xinrui, Weizhu Yan, Chong Zhang, et al. "Biocatalytic synthesis of seleno-, thio- and chloro-nucleobase modified nucleosides by thermostable nucleoside phosphorylases." Catalysis Communications 121 (March 2019): 32–37. http://dx.doi.org/10.1016/j.catcom.2018.12.004.
Full textPUGMIRE, Matthew J., and Steven E. EALICK. "Structural analyses reveal two distinct families of nucleoside phosphorylases." Biochemical Journal 361, no. 1 (2002): 1. http://dx.doi.org/10.1042/0264-6021:3610001.
Full textMordkovich, N. N., A. N. Antipov, N. A. Okorokova, T. N. Safonova, K. M. Polyakov, and V. P. Veiko. "The Nature of Thermal Stability of Prokaryotic Nucleoside Phosphorylases." Applied Biochemistry and Microbiology 56, no. 6 (2020): 662–70. http://dx.doi.org/10.1134/s0003683820060125.
Full textSzeker, K., M. Casteleijn, and P. Neubauer. "Optimization of soluble expression of recombinant thermophilic nucleoside phosphorylases." Journal of Biotechnology 150 (November 2010): 399. http://dx.doi.org/10.1016/j.jbiotec.2010.09.520.
Full textTrembacz, H., and M. M. Jezewska. "Adenine nucleoside phosphorylases in F. hepatica, the mammalian parasite." Clinical Biochemistry 30, no. 3 (1997): 262. http://dx.doi.org/10.1016/s0009-9120(97)87712-0.
Full textTaylor Ringia, Erika A., Peter C. Tyler, Gary B. Evans, Richard H. Furneaux, Andrew S. Murkin, and Vern L. Schramm. "Transition State Analogue Discrimination by Related Purine Nucleoside Phosphorylases." Journal of the American Chemical Society 128, no. 22 (2006): 7126–27. http://dx.doi.org/10.1021/ja061403n.
Full textGe, Chong-Tao, Li-ming Ouyang, Qing-bao Ding, Li Tan, and Ling Ou. "Expression of recombinant nucleoside phosphorylases and the application in enzymatic synthesis of nucleoside drugs." Journal of Biotechnology 136 (October 2008): S308—S309. http://dx.doi.org/10.1016/j.jbiotec.2008.07.1902.
Full textTimofeev, Vladimir, Yulia Abramchik, Nadezda Zhukhlistova, et al. "3′-Azidothymidine in the active site ofEscherichia colithymidine phosphorylase: the peculiarity of the binding on the basis of X-ray study." Acta Crystallographica Section D Biological Crystallography 70, no. 4 (2014): 1155–65. http://dx.doi.org/10.1107/s1399004714001904.
Full textZhou, Xinrui, Kathleen Szeker, Bernd Janocha, et al. "Recombinant purine nucleoside phosphorylases from thermophiles: preparation, properties and activity towards purine and pyrimidine nucleosides." FEBS Journal 280, no. 6 (2013): 1475–90. http://dx.doi.org/10.1111/febs.12143.
Full textPérignon, Jean-Louis, Dominique M. Bories, Anne-Marie Houllier, Laure Thuillier, and Pierre H. Cartier. "Metabolism of pyrimidine bases and nucleosides by pyrimidine-nucleoside phosphorylases in cultured human lymphoid cells." Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 928, no. 2 (1987): 130–36. http://dx.doi.org/10.1016/0167-4889(87)90113-3.
Full textChae, Whi-Gun, Thomas C. K. Chan, and Ching-jer Chang. "Facile synthesis of 5′-deoxy- and 2′,5′-dideoxy-6-thiopurine nucleosides by nucleoside phosphorylases." Tetrahedron 54, no. 30 (1998): 8661–70. http://dx.doi.org/10.1016/s0040-4020(98)00476-1.
Full textTaran, S. A., K. N. Verevkina, S. A. Feofanov, and A. I. Miroshnikov. "Enzymatic transglycosylation of natural and modified nucleosides by immobilized thermostable nucleoside phosphorylases from Geobacillus stearothermophilus." Russian Journal of Bioorganic Chemistry 35, no. 6 (2009): 739–45. http://dx.doi.org/10.1134/s1068162009060107.
Full textBychek, Irina A., Anastasia A. Zenchenko, Maria A. Kostromina, et al. "Bacterial Purine Nucleoside Phosphorylases from Mesophilic and Thermophilic Sources: Characterization of Their Interaction with Natural Nucleosides and Modified Arabinofuranoside Analogues." Biomolecules 14, no. 9 (2024): 1069. http://dx.doi.org/10.3390/biom14091069.
Full textStachelska-Wierzchowska, Wierzchowski, Górka, Bzowska, and Wielgus-Kutrowska. "Tri-Cyclic Nucleobase Analogs and their Ribosides as Substrates of Purine-Nucleoside Phosphorylases. II Guanine and Isoguanine Derivatives." Molecules 24, no. 8 (2019): 1493. http://dx.doi.org/10.3390/molecules24081493.
Full textChristoffersen, S., I. Serra, M. Terreni, and J. Piškur. "Nucleoside Phosphorylases fromClostridium Perfringensin the Synthesis of 2′,3′-Dideoxyinosine." Nucleosides, Nucleotides and Nucleic Acids 29, no. 4-6 (2010): 445–48. http://dx.doi.org/10.1080/15257771003741422.
Full textChaikuad, Apirat, and R. Leo Brady. "Conservation of structure and activity in Plasmodium purine nucleoside phosphorylases." BMC Structural Biology 9, no. 1 (2009): 42. http://dx.doi.org/10.1186/1472-6807-9-42.
Full textTomoike, Fumiaki, Seiki Kuramitsu, and Ryoji Masui. "Unique substrate specificity of purine nucleoside phosphorylases from Thermus thermophilus." Extremophiles 17, no. 3 (2013): 505–14. http://dx.doi.org/10.1007/s00792-013-0535-7.
Full textDrenichev, Mikhail S., Vladimir E. Oslovsky, Anastasia A. Zenchenko, et al. "Comparative Analysis of Enzymatic Transglycosylation Using E. coli Nucleoside Phosphorylases: A Synthetic Concept for the Preparation of Purine Modified 2′-Deoxyribonucleosides from Ribonucleosides." International Journal of Molecular Sciences 23, no. 5 (2022): 2795. http://dx.doi.org/10.3390/ijms23052795.
Full textČížková, Zdeňka, Vladimír Maťha, and Karel Beneš. "Enzymatic Synthesis and Its Use in Cladribine Production." Chemické listy 118, no. 12 (2024): 645–49. https://doi.org/10.54779/chl20240645.
Full textSerra, Immacolata, Simona Daly, Andres R. Alcantara, Davide Bianchi, Marco Terreni, and Daniela Ubiali. "Redesigning the synthesis of vidarabine via a multienzymatic reaction catalyzed by immobilized nucleoside phosphorylases." RSC Advances 5, no. 30 (2015): 23569–77. http://dx.doi.org/10.1039/c4ra15018j.
Full textLee, Jeffrey E., Kenneth A. Cornell, Michael K. Riscoe, and P. Lynne Howell. "Structure of E. coli 5′-methylthioadenosine/S-adenosylhomocysteine Nucleosidase Reveals Similarity to the Purine Nucleoside Phosphorylases." Structure 9, no. 10 (2001): 941–53. http://dx.doi.org/10.1016/s0969-2126(01)00656-6.
Full textYokomatsu, Tsutomu, Yoshinobu Hayakawa, Taro Kihara, et al. "Synthesis and evaluation of multisubstrate analogue inhibitors of purine nucleoside phosphorylases." Bioorganic & Medicinal Chemistry 8, no. 11 (2000): 2571–79. http://dx.doi.org/10.1016/s0968-0896(00)00192-9.
Full text