Journal articles on the topic 'Number theory – Diophantine approximation, transcendental number theory – Diophantine approximation, transcendental number theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Number theory – Diophantine approximation, transcendental number theory – Diophantine approximation, transcendental number theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kudin, Alexey, and Denis Vasilyev. "Counting real algebraic numbers with bounded derivative of minimal polynomial." International Journal of Number Theory 15, no. 10 (2019): 2223–39. http://dx.doi.org/10.1142/s1793042119501227.

Full text
Abstract:
In this paper, we consider the problem of counting algebraic numbers [Formula: see text] of fixed degree [Formula: see text] and bounded height [Formula: see text] such that the derivative of the minimal polynomial [Formula: see text] of [Formula: see text] is bounded, [Formula: see text]. This problem has many applications to the problems of metric theory of Diophantine approximation. We prove that the number of [Formula: see text] defined above on the interval [Formula: see text] does not exceed [Formula: see text] for [Formula: see text] and [Formula: see text]. Our result is based on an im
APA, Harvard, Vancouver, ISO, and other styles
2

Muñoz Garcia, E., and R. Pérez-Marco. "Diophantine conditions in small divisors and transcendental number theory." Discrete & Continuous Dynamical Systems - A 9, no. 6 (2003): 1401–9. http://dx.doi.org/10.3934/dcds.2003.9.1401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mundici, Daniele. "Triangles in diophantine approximation." Journal of Number Theory 201 (August 2019): 176–89. http://dx.doi.org/10.1016/j.jnt.2019.02.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Florek, Jan. "Billiard and diophantine approximation." Acta Arithmetica 134, no. 4 (2008): 317–27. http://dx.doi.org/10.4064/aa134-4-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cusick, T. W., A. M. Rockett, and P. Szusz. "On Inhomogeneous Diophantine Approximation." Journal of Number Theory 48, no. 3 (1994): 259–83. http://dx.doi.org/10.1006/jnth.1994.1067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tong, Jingcheng. "Diophantine approximation of a single irrational number." Journal of Number Theory 35, no. 1 (1990): 53–57. http://dx.doi.org/10.1016/0022-314x(90)90102-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schleischitz, Johannes. "Uniform Diophantine approximation and best approximation polynomials." Acta Arithmetica 185, no. 3 (2018): 249–74. http://dx.doi.org/10.4064/aa170901-4-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bugeaud, Yann, and Nicolas Chevallier. "On simultaneous inhomogeneous Diophantine approximation." Acta Arithmetica 123, no. 2 (2006): 97–123. http://dx.doi.org/10.4064/aa123-2-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nakamaye, Michael. "Diophantine approximation on algebraic varieties." Journal de Théorie des Nombres de Bordeaux 11, no. 2 (1999): 439–502. http://dx.doi.org/10.5802/jtnb.260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pinner, Christopher G. "More on inhomogeneous diophantine approximation." Journal de Théorie des Nombres de Bordeaux 13, no. 2 (2001): 539–57. http://dx.doi.org/10.5802/jtnb.337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Fishman, Lior, David Simmons, and Mariusz Urbański. "Diophantine approximation in Banach spaces." Journal de Théorie des Nombres de Bordeaux 26, no. 2 (2014): 363–84. http://dx.doi.org/10.5802/jtnb.871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Dill, Gabriel A. "Effective approximation and Diophantine applications." Acta Arithmetica 177, no. 2 (2017): 169–99. http://dx.doi.org/10.4064/aa8430-9-2016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Vulakh, L. Y. "Diophantine Approximation On Bianchi Groups." Journal of Number Theory 54, no. 1 (1995): 73–80. http://dx.doi.org/10.1006/jnth.1995.1102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ghosh, Anish. "Diophantine approximation on affine hyperplanes." Acta Arithmetica 144, no. 2 (2010): 167–82. http://dx.doi.org/10.4064/aa144-2-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bergelson, Vitaly, Inger J. H\aaland Knutson, and Randall McCutcheon. "Simultaneous Diophantine approximation and VIP systems." Acta Arithmetica 116, no. 1 (2005): 13–23. http://dx.doi.org/10.4064/aa116-1-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Adiceam, Faustin. "Liminf Sets in Simultaneous Diophantine Approximation." Journal de Théorie des Nombres de Bordeaux 28, no. 2 (2016): 461–83. http://dx.doi.org/10.5802/jtnb.949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Urbański, Mariusz. "Diophantine approximation and self-conformal measures." Journal of Number Theory 110, no. 2 (2005): 219–35. http://dx.doi.org/10.1016/j.jnt.2004.07.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Alkan, Emre, Glyn Harman, and Alexandru Zaharescu. "Diophantine approximation with mild divisibility constraints." Journal of Number Theory 118, no. 1 (2006): 1–14. http://dx.doi.org/10.1016/j.jnt.2005.08.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Murty, M. Ram, and Hector Pasten. "Modular forms and effective Diophantine approximation." Journal of Number Theory 133, no. 11 (2013): 3739–54. http://dx.doi.org/10.1016/j.jnt.2013.05.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Li, Taiyu, and Huafeng Liu. "Diophantine approximation over Piatetski-Shapiro primes." Journal of Number Theory 211 (June 2020): 184–98. http://dx.doi.org/10.1016/j.jnt.2019.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Roy, Damien, and Michel Waldschmidt. "Diophantine approximation by conjugate algebraic integers." Compositio Mathematica 140, no. 03 (2004): 593–612. http://dx.doi.org/10.1112/s0010437x03000708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ghosh, Anish, Alexander Gorodnik, and Amos Nevo. "Metric Diophantine approximation on homogeneous varieties." Compositio Mathematica 150, no. 8 (2014): 1435–56. http://dx.doi.org/10.1112/s0010437x13007859.

Full text
Abstract:
AbstractWe develop the metric theory of Diophantine approximation on homogeneous varieties of semisimple algebraic groups and prove results analogous to the classical Khintchine and Jarník theorems. In full generality our results establish simultaneous Diophantine approximation with respect to several completions, and Diophantine approximation over general number fields using $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}S$-alge
APA, Harvard, Vancouver, ISO, and other styles
23

VULAKH, L. YA. "DIOPHANTINE APPROXIMATION IN IMAGINARY QUADRATIC FIELDS." International Journal of Number Theory 06, no. 04 (2010): 731–66. http://dx.doi.org/10.1142/s1793042110003137.

Full text
Abstract:
Let H3 be the upper half-space model of the three-dimensional hyperbolic space. For certain cocompact Fuchsian subgroups Γ of an extended Bianchi group Bd, the extremality of the axis of hyperbolic F ∈ Γ in H3 with respect to Γ implies its extremality with respect to Bd. This reduction is used to obtain sharp lower bounds for the Hurwitz constants and lower bounds for the highest limit points in the Markov spectra of Bd for some d < 1000. In particular, such bounds are found for all non-Euclidean class one imaginary quadratic fields. The Hurwitz constants for the imaginary quadratic fields
APA, Harvard, Vancouver, ISO, and other styles
24

Marcovecchio, Raffaele. "Multiple Legendre polynomials in diophantine approximation." International Journal of Number Theory 10, no. 07 (2014): 1829–55. http://dx.doi.org/10.1142/s1793042114500584.

Full text
Abstract:
We construct a class of multiple Legendre polynomials and prove that they satisfy an Apéry-like recurrence. We give new upper bounds of the approximation measures of logarithms of rational numbers by algebraic numbers of bounded degree. We prove, e.g., that the nonquadraticity exponent of log 2 is bounded from above by 12.841618…, thus improving upon a recent result of the author. Our construction also yields some other known results.
APA, Harvard, Vancouver, ISO, and other styles
25

Nesharim, Erez, René Rühr, and Ronggang Shi. "Metric Diophantine approximation with congruence conditions." International Journal of Number Theory 16, no. 09 (2020): 1923–33. http://dx.doi.org/10.1142/s1793042120500980.

Full text
Abstract:
We prove a version of the Khinchin–Groshev theorem for Diophantine approximation of matrices subject to a congruence condition. The proof relies on an extension of the Dani correspondence to the quotient by a congruence subgroup. This correspondence together with a multiple ergodic theorem are used to study rational approximations in several congruence classes simultaneously. The result in this part holds in the generality of weighted approximation but is restricted to simple approximation functions.
APA, Harvard, Vancouver, ISO, and other styles
26

Tong, Jingcheng. "Segre's theorem on asymmetric diophantine approximation." Journal of Number Theory 28, no. 1 (1988): 116–18. http://dx.doi.org/10.1016/0022-314x(88)90122-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Alam, Mahbub, Anish Ghosh, and Shucheng Yu. "Quantitative Diophantine approximation with congruence conditions." Journal de Théorie des Nombres de Bordeaux 33, no. 1 (2021): 261–71. http://dx.doi.org/10.5802/jtnb.1161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Baker, R., J. Brüder, and G. Harman. "Simultaneous diophantine approximation with square-free numbers." Acta Arithmetica 63, no. 1 (1993): 51–60. http://dx.doi.org/10.4064/aa-63-1-51-60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Inoue, Kae, and Hitoshi Nakada. "On metric Diophantine approximation in positive characteristic." Acta Arithmetica 110, no. 3 (2003): 205–18. http://dx.doi.org/10.4064/aa110-3-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bugeaud, Yann, and Bernard de Mathan. "On a mixed problem in Diophantine approximation." Acta Arithmetica 139, no. 1 (2009): 65–77. http://dx.doi.org/10.4064/aa139-1-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Biró, András, and Vera T. Sós. "Strong characterizing sequences in simultaneous diophantine approximation." Journal of Number Theory 99, no. 2 (2003): 405–14. http://dx.doi.org/10.1016/s0022-314x(02)00068-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Schmidt, Asmus L. "Diophantine approximation in the field Q(i2)." Journal of Number Theory 131, no. 10 (2011): 1983–2012. http://dx.doi.org/10.1016/j.jnt.2011.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Liao, Lingmin, and Michał Rams. "Inhomogeneous Diophantine approximation with general error functions." Acta Arithmetica 160, no. 1 (2013): 25–35. http://dx.doi.org/10.4064/aa160-1-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Roy, Damien. "On the topology of Diophantine approximation spectra." Compositio Mathematica 153, no. 7 (2017): 1512–46. http://dx.doi.org/10.1112/s0010437x17007126.

Full text
Abstract:
Fix an integer$n\geqslant 2$. To each non-zero point$\mathbf{u}$in$\mathbb{R}^{n}$, one attaches several numbers calledexponents of Diophantine approximation. However, as Khintchine first observed, these numbers are not independent of each other. This raises the problem of describing the set of all possible values that a given family of exponents can take by varying the point $\mathbf{u}$. To avoid trivialities, one restricts to points $\mathbf{u}$whose coordinates are linearly independent over $\mathbb{Q}$. The resulting set of values is called thespectrum of these exponents. We show that, in
APA, Harvard, Vancouver, ISO, and other styles
35

Liu, Zhixin. "Diophantine approximation by unlike powers of primes." International Journal of Number Theory 13, no. 09 (2017): 2445–52. http://dx.doi.org/10.1142/s1793042117501330.

Full text
Abstract:
Let [Formula: see text] be nonzero real numbers not all of the same sign, satisfying that [Formula: see text] is irrational, and [Formula: see text] be a real number. In this paper, we prove that for any [Formula: see text] [Formula: see text] has infinitely many solutions in prime variables [Formula: see text].
APA, Harvard, Vancouver, ISO, and other styles
36

Lagarias, Jeffrey C., and Johan T. Hastad. "Simultaneous Diophantine approximation of rationals by rationals." Journal of Number Theory 24, no. 2 (1986): 200–228. http://dx.doi.org/10.1016/0022-314x(86)90104-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Dodson, M. M., B. P. Rynne, and J. A. G. Vickers. "Dirichlet's theorem and diophantine approximation on manifolds." Journal of Number Theory 36, no. 1 (1990): 85–88. http://dx.doi.org/10.1016/0022-314x(90)90006-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Harman, Glyn. "Some theorems in the metric theory of diophantine approximation." Mathematical Proceedings of the Cambridge Philosophical Society 99, no. 3 (1986): 385–94. http://dx.doi.org/10.1017/s0305004100064331.

Full text
Abstract:
An excellent introduction to the metric theory of diophantine approximation is provided by [19], where, in chapter 1·7, the reader may find a discussion of the first two problems considered in this paper. Our initial question concerns the number of solutions of the inequalityfor almost all α(in the sense of Lebesgue measure on ℝ). Here ∥ ∥ denotes distance to a nearest integer, {βr}, {ar} are given sequences of reals and distinct integers respectively, and f is a function taking values in [0, ½] and with Σf(r) divergent (for convenience we write ℱ for the set of all such functions). It is reas
APA, Harvard, Vancouver, ISO, and other styles
39

ZHANG, YUAN. "A NOTE ON MATRIX APPROXIMATION IN THE THEORY OF MULTIPLICATIVE DIOPHANTINE APPROXIMATION." Bulletin of the Australian Mathematical Society 100, no. 3 (2019): 372–77. http://dx.doi.org/10.1017/s000497271900039x.

Full text
Abstract:
We prove the Hausdorff measure version of the matrix form of Gallagher’s theorem in the inhomogeneous setting, thereby proving a conjecture posed by Hussain and Simmons [‘The Hausdorff measure version of Gallagher’s theorem—closing the gap and beyond’, J. Number Theory186 (2018), 211–225].
APA, Harvard, Vancouver, ISO, and other styles
40

Harman, Glyn. "Simultaneous Diophantine approximation and asymptotic formulae on manifolds." Acta Arithmetica 108, no. 4 (2003): 379–89. http://dx.doi.org/10.4064/aa108-4-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bugeaud, Yann, Michael Drmota, and Bernard de Mathan. "On a mixed Littlewood conjecture in Diophantine approximation." Acta Arithmetica 128, no. 2 (2007): 107–24. http://dx.doi.org/10.4064/aa128-2-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Rynne, Bryan P. "Simultaneous Diophantine approximation on manifolds and Hausdorff dimension." Journal of Number Theory 98, no. 1 (2003): 1–9. http://dx.doi.org/10.1016/s0022-314x(02)00035-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kaziulytė, Laima. "Variants of Khintchine's theorem in metric Diophantine approximation." Journal of Number Theory 215 (October 2020): 160–70. http://dx.doi.org/10.1016/j.jnt.2020.01.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Dodson, M. M., B. P. Rynne, and J. A. G. Vickers. "Simultaneous Diophantine Approximation and Asymptotic Formulae on Manifolds." Journal of Number Theory 58, no. 2 (1996): 298–316. http://dx.doi.org/10.1006/jnth.1996.0079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ru, Min, and Julie Tzu-Yueh Wang. "Diophantine Approximation with Algebraic Points of Bounded Degree." Journal of Number Theory 81, no. 1 (2000): 110–19. http://dx.doi.org/10.1006/jnth.1999.2462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Yu, Han. "A Fourier-analytic approach to inhomogeneous Diophantine approximation." Acta Arithmetica 190, no. 3 (2019): 263–92. http://dx.doi.org/10.4064/aa180627-25-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Qu, Yunyun, and Jiwen Zeng. "Diophantine approximation with prime variables and mixed powers." Ramanujan Journal 52, no. 3 (2019): 625–39. http://dx.doi.org/10.1007/s11139-019-00167-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Chow, Sam, and Niclas Technau. "Higher-rank Bohr sets and multiplicative diophantine approximation." Compositio Mathematica 155, no. 11 (2019): 2214–33. http://dx.doi.org/10.1112/s0010437x19007589.

Full text
Abstract:
Gallagher’s theorem is a sharpening and extension of the Littlewood conjecture that holds for almost all tuples of real numbers. We provide a fibre refinement, solving a problem posed by Beresnevich, Haynes and Velani in 2015. Hitherto, this was only known on the plane, as previous approaches relied heavily on the theory of continued fractions. Using reduced successive minima in lieu of continued fractions, we develop the structural theory of Bohr sets of arbitrary rank, in the context of diophantine approximation. In addition, we generalise the theory and result to the inhomogeneous setting.
APA, Harvard, Vancouver, ISO, and other styles
49

Xiong, Maosheng, and Alexandru Zaharescu. "A problem of Erdős–Szüsz–Turán on diophantine approximation." Acta Arithmetica 125, no. 2 (2006): 163–77. http://dx.doi.org/10.4064/aa125-2-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zhang, Yuqing. "Diophantine exponents of affine subspaces: The simultaneous approximation case." Journal of Number Theory 129, no. 8 (2009): 1976–89. http://dx.doi.org/10.1016/j.jnt.2009.02.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!