Academic literature on the topic 'Number theory – Multiplicative number theory – Primes in progressions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Number theory – Multiplicative number theory – Primes in progressions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Number theory – Multiplicative number theory – Primes in progressions"

1

Koukoulopoulos, Dimitris. "Pretentious multiplicative functions and the prime number theorem for arithmetic progressions." Compositio Mathematica 149, no. 7 (2013): 1129–49. http://dx.doi.org/10.1112/s0010437x12000802.

Full text
Abstract:
AbstractBuilding on the concept ofpretentious multiplicative functions, we give a new and largely elementary proof of the best result known on the counting function of primes in arithmetic progressions.
APA, Harvard, Vancouver, ISO, and other styles
2

Granville, Andrew, Adam J. Harper, and K. Soundararajan. "A new proof of Halász’s theorem, and its consequences." Compositio Mathematica 155, no. 1 (2018): 126–63. http://dx.doi.org/10.1112/s0010437x18007522.

Full text
Abstract:
Halász’s theorem gives an upper bound for the mean value of a multiplicative function$f$. The bound is sharp for general such$f$, and, in particular, it implies that a multiplicative function with$|f(n)|\leqslant 1$has either mean value$0$, or is ‘close to’$n^{it}$for some fixed$t$. The proofs in the current literature have certain features that are difficult to motivate and which are not particularly flexible. In this article we supply a different, more flexible, proof, which indicates how one might obtain asymptotics, and can be modified to treat short intervals and arithmetic progressions.
APA, Harvard, Vancouver, ISO, and other styles
3

Hammonds, Trajan, Casimir Kothari, Noah Luntzlara, Steven J. Miller, Jesse Thorner, and Hunter Wieman. "The explicit Sato–Tate conjecture for primes in arithmetic progressions." International Journal of Number Theory 17, no. 08 (2021): 1905–23. http://dx.doi.org/10.1142/s179304212150069x.

Full text
Abstract:
Let [Formula: see text] be Ramanujan’s tau function, defined by the discriminant modular form [Formula: see text] (this is the unique holomorphic normalized cuspidal newform of weight 12 and level 1). Lehmer’s conjecture asserts that [Formula: see text] for all [Formula: see text]; since [Formula: see text] is multiplicative, it suffices to study primes [Formula: see text] for which [Formula: see text] might possibly be zero. Assuming standard conjectures for the twisted symmetric power [Formula: see text]-functions associated to [Formula: see text] (including GRH), we prove that if [Formula:
APA, Harvard, Vancouver, ISO, and other styles
4

Puchta, Jan-Christoph. "Primes in short arithmetic progressions." Acta Arithmetica 106, no. 2 (2003): 143–49. http://dx.doi.org/10.4064/aa106-2-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

BAIER, STEPHAN, and LIANGYI ZHAO. "ON PRIMES IN QUADRATIC PROGRESSIONS." International Journal of Number Theory 05, no. 06 (2009): 1017–35. http://dx.doi.org/10.1142/s1793042109002523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ramaré, Olivier, Priyamvad Srivastav, and Oriol Serra. "Product of primes in arithmetic progressions." International Journal of Number Theory 16, no. 04 (2019): 747–66. http://dx.doi.org/10.1142/s1793042120500384.

Full text
Abstract:
We prove that, for all [Formula: see text] and for all invertible residue classes [Formula: see text] modulo [Formula: see text], there exists a natural number [Formula: see text] that is congruent to [Formula: see text] modulo [Formula: see text] and that is the product of exactly three primes, all of which are below [Formula: see text]. The proof is further supplemented with a self-contained proof of the special case of the Kneser Theorem we use.
APA, Harvard, Vancouver, ISO, and other styles
7

Wójcik, J. "On a problem in algebraic number theory." Mathematical Proceedings of the Cambridge Philosophical Society 119, no. 2 (1996): 191–200. http://dx.doi.org/10.1017/s0305004100074090.

Full text
Abstract:
Let K be an algebraic number field. If q is a prime ideal of the ring of integers of K and α is a number of K prime to q then Mq(α) denotes the multiplicative group generated by α modulo q. In the paper [5] there is the remark: ‘We do not know whether for all a, b, c ∈ ℚ with abc ≠ 0, |a| ≠ 1,|b| ≠ 1,|c| ≠ 1 there exist infinitely many primes q with Mq (a) = Mq (b) = Mq (c).’
APA, Harvard, Vancouver, ISO, and other styles
8

Zhou, Binbin. "The Chen primes contain arbitrarily long arithmetic progressions." Acta Arithmetica 138, no. 4 (2009): 301–15. http://dx.doi.org/10.4064/aa138-4-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dudek, Adrian W., Loïc Grenié, and Giuseppe Molteni. "Explicit short intervals for primes in arithmetic progressions on GRH." International Journal of Number Theory 15, no. 04 (2019): 825–62. http://dx.doi.org/10.1142/s1793042119500441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

TANNER, NOAM. "STRINGS OF CONSECUTIVE PRIMES IN FUNCTION FIELDS." International Journal of Number Theory 05, no. 01 (2009): 81–88. http://dx.doi.org/10.1142/s1793042109001918.

Full text
Abstract:
In a recent paper, Thorne [5] proved the existence of arbitrarily long strings of consecutive primes in arithmetic progressions in the polynomial ring 𝔽q[t]. Here we extend this result to show that given any k there exists a string of k consecutive primes of degree D in arithmetic progression for all sufficiently large D.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Number theory – Multiplicative number theory – Primes in progressions"

1

Fiorilli, Daniel. "Irrégularités dans la distribution des nombres premiers et des suites plus générales dans les progressions arithmétiques." Thèse, 2011. http://hdl.handle.net/1866/8333.

Full text
Abstract:
Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles. Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Number theory – Multiplicative number theory – Primes in progressions"

1

Florian, Luca, ed. Analytic number theory: Exploring the anatomy of integers. American Mathematical Society, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

A course in analytic number theory. American Mathematical Society, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lectures on the Riemann zeta function. American Mathematical Society, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cojocaru, Alina Carmen, Chantal David, and F. Pappalardi. Scholar, a scientific celebration highlighting open lines of arithmetic research: Conference in honour of M. Ram Murty's mathematical legacy on his 60th birthday, October 15-17, 2013, Centre de Recherches Mathematiques, Universite de Montreal, Quebec, Canada. Edited by Murty Maruti Ram editor. American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shparlinski, Igor E., and David R. Kohel. Frobenius distributions: Lang-Trotter and Sato-Tate conjectures : Winter School on Frobenius Distributions on Curves, February 17-21, 2014 [and] Workshop on Frobenius Distributions on Curves, February 24-28, 2014, Centre International de Rencontres Mathematiques, Marseille, France. American Mathematical Society, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Number theory – Multiplicative number theory – Primes in progressions"

1

Tao, Terence, and Tamar Ziegler. "Narrow Progressions in the Primes." In Analytic Number Theory. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22240-0_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Friedlander, John B. "Counting Primes in Arithmetic Progressions." In Analytic Number Theory. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22240-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Murty, M. Ram. "Primes in Arithmetic Progressions." In Problems in Analytic Number Theory. Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3441-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Murty, M. Ram. "Primes in Arithmetic Progressions." In Problems in Analytic Number Theory. Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3441-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Friedlander, John. "Primes in Arithmetic Progressions and Related Topics." In Analytic Number Theory and Diophantine Problems. Birkhäuser Boston, 1987. http://dx.doi.org/10.1007/978-1-4612-4816-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pintz, János. "Patterns of Primes in Arithmetic Progressions." In Number Theory – Diophantine Problems, Uniform Distribution and Applications. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55357-3_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Elliott, P. D. T. A. "Products of Shifted Primes. Multiplicative Analogues of Goldbach’s Problems, II." In Analytic and Elementary Number Theory. Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-4507-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Indlekofer, Karl-Heinz, and Nikolai M. Timofeev. "A Mean-Value Theorem for Multiplicative Functions on the Set of Shifted Primes." In Analytic and Elementary Number Theory. Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-4507-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Primes in arithmetic progressions." In Analytic Number Theory. American Mathematical Society, 2004. http://dx.doi.org/10.1090/coll/053/18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Primes in Arithmetic Progressions." In Monographs in Number Theory. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812562272_0009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!